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GENERALIZATIONS OF CONTINUITY IN THE

CONTEXT OF PROPER ORBITS AND FIXED

POINT THEORY

GERALD F. JUNGCK

Abstract. A weakened continuity for Hausdorff topological
spaces, orbit-wise continuity (o.w.c.), is introduced. This con-
cept arises naturally in the context of proper orbits and fixed
point theory [10], and we use it to obtain generalizations of
known results by substituting o.w.c. for hypothesized conti-
nuity. In the process we are led to the concept of almost or-
bitally continuous (a.o.c.) maps which proves effective, e.g.,
in generating and extending common fixed point theorems for
weakly compatible maps.

1. Introduction

In [10] we introduced the concept of Proper Orbits, a general-
ization of diminishing orbital diameters (see Kirk [11]). We now
continue the study of proper orbits by introducing orbit-wise con-
tinuity (o.w.c.). This concept – suggested by the proof of the main
result in [10] (Theorem 2.2) – appreciably generalizes continuity.
We use this concept to obtain Theorem 2.4, a generalization of
Theorem 2.2. In section 4 we employ o.w.c. to characterize maps
with proper orbits in terms of periodic and recurrent points. We
also show that if g : X → X is o.w.c., mild conditions on X ensure
that g(a) = a if gn(x) → a. We then consider (section 5) o.w.c.
maps in the context of orbitally continuous (o.c.) maps introduced
and utilized by Ciric [3] and Dien [4]; this leads to a generalization

2010 Mathematics Subject Classification. Primary 54C08, 54H25; Secondary
47H10.

Key words and phrases. Proper orbits, recurrent points, periodic points,
fixed points, common fixed points, orbit-wise continuity, weakly compatible.

c⃝2010 Topology Proceedings.

129



130 GERALD F. JUNGCK

of a Dien theorem [4] and to the introduction of almost orbitally
continuous (a.o.c.) maps. It is shown that o.c ⇒ a.o.c. ⇒ o.w.c.
and that neither implication is reversible. In section 6 we obtain
common fixed point theorems for weakly compatible maps which
are a.o.c. or o.c., thereby generating further extensions and gener-
alizations of known results. Specifically, Theorem 6.6 and Corollary
6.7 unite the concepts of o.c. maps, periodic and recurrent points,
and weakly compatible maps to produce principal results of this
paper.

2. Proper Orbits and Orbit-wise Continuity

Let g : X → X, X a topological space, and let F (g) = {x ∈ X :
g(x) = x}, the set of fixed points of g. For x ∈ X, the orbit of g at
x is the set O(x) = Og(x) = {gn(x) : n ∈ ω} where ω = N ∪ {0}
and N is the set of positive integers. (We use the orbit notation
Og(x) only if more than one function is involved.) If X has a metric
d, the metric space (X, d) is g-orbitally complete if and only if for
all x ∈ X any Cauchy sequence in Og(x) converges. Moreover, if
A ⊂ X, cl(A) denotes the closure of A; and if d is a metric on X,
diam(A) = δ(A) = sup{d(x, y) : x, y ∈ A}. And R+ represents the
set of nonnegative real numbers.

Definition 2.1. [10] Let g be a self map of a topological space X
and let x ∈ X. The orbit O(x) of g at x is proper if O(x) = {x} or
there exists n = nx ∈ N such that cl(O(gn(x))) is a proper subset
of cl(O(x)). If O(x) is proper for each x ∈ M ⊂ X we say that g
has proper orbits on M . If M = X, we say g has proper orbits.

A well known example of proper orbits in a metric space (X, d)
is the concept of diminishing orbital diameters (d.o.d.) [11]. A
self map g of X has d.o.d. if for each x ∈ X, δ(O(x)) < ∞,
and whenever δ(O(x)) > 0, there exists n = nx ∈ N such that
δ(O(x)) > δ(O(gn(x))). If the given property holds for a specific x,
we say that g has d.o.d. at x. See [10] for examples of maps with
proper orbits which do not have d.o.d.

Theorem 2.2. [10] Let X be a Hausdorff topological space and let
g : X → X be continuous. If g has relatively compact proper orbits,
then any nonempty g-invariant closed subset M of X contains a
fixed point of g. Specifically, the closure of each orbit has a fixed
point of g.
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In the proof of Theorem 2.2, we used the fact that if g is con-
tinuous g(cl(A)) ⊂ cl(g(A)) for A ⊂ X. However, we appealed to
this fact only when A = O(x) for some x ∈ X. So in the context
of proper orbits, a “weakened continuity” is called for.

Definition 2.3. A self map g of a Hausdorff topological space X is
orbit-wise continuous (o.w.c.) at x ∈ X if and only if g(cl(O(x))) ⊂
cl(O(g(x))). If g is o.w.c. at each x ∈ A ⊂ X, we say that g is
o.w.c. on A. If A = X we say g is o.w.c..

A check of the proof of Theorem 2.2 above in [10] shows that it
remains valid if g is o.w.c.; i.e., we have

Theorem 2.4. Let X be a Hausdorff topological space and let
g : X → X be orbit-wise continuous. If g has relatively compact
proper orbits, then any nonempty g-invariant closed subset M of
X contains a fixed point of g. Specifically, the closure of each orbit
O(x) has a fixed point of g.

Our objective in the sections to follow is to use Theorem 2.4 and
the above concepts together with others, such as weak compati-
bility, to obtain new results and extend known theorems involving
fixed and common fixed points. Maps f, g : X → X are said to be
weakly compatible if and only if f(x) = g(x) ⇒ f(g(x)) = g(f(x))
[8]. We say f and g are nontrivially weakly compatible if and only
if they are weakly compatible and f(x) = g(x) for at least one
x ∈ X. We use Kg to denote the family of all continuous maps
f : X → X which are nontrivially weakly compatible with g. A
major motivation behind our efforts is the desire to obtain results
analogous to the following, but in more general settings.

Theorem 2.5. [7] A continuous self map g of the unit interval has
a common fixed point with each f ∈ Kg if and only if g has no
nontrivial periodic points.

3. A Corollary and a First Application of Theorem 2.4

If g : X → X is o.w.c., then g(cl(O(x))) ⊂ cl(O(g(x))) ⊂
cl(O(x)); i.e., cl(O(x)) is g-invariant. Consequently, the proof of
Corollary 3.2 in [10] remains valid for orbit wise continuity, and we
have as a Corollary to Theorem 2.4,
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Corollary 3.1. An o.w.c. self-map g of a Hausdorff topological
space X has a fixed point if and only if there exists x ∈ X such that
cl(O(x)) is compact and g has proper orbits on cl(O(x)).

Now letX be a Hausdorff topological space and let f, g : X → X.
The pair (f, g) is said to be a Banach Operator pair if and only if
f(F (g)) ⊂ F (g) [2]. It is shown in [2] that (f, g) is a Banach
Operator pair if and only if f and g commute on F (g).

Theorem 3.2. Let f and g be self maps of a Hausdorff topological
space X having proper orbits. Suppose g is continuous f is o.w.c.,
and (f, g) is a Banach Operator pair. If cl(g(X)) is compact, F (g)∩
F (f) ̸= ∅.

Proof. Since cl(g(X)) is compact, g has relatively compact proper
orbits and by Theorem 2.2, F (g) ̸= ∅. But F (g) is closed since g
is continuous; therefore F (g) is compact since it is a subset of the
compact set cl(g(X)).

Moreover, (f, g) is a Banach Operator pair; consequently f(F (g))
⊂ F (g). Thus the restriction of f to F (g) is an o.w.c. self map of
the compact set F (g) having relatively compact proper orbits. By
Theorem 2.4, F (g) ∩ F (f) ̸= ∅. �

The following example shows that both f and g in the above
theorem must have proper orbits.

Example 3.3. Let X = {0, 1}, g(0) = 0, g(1) = 1, f(0) = 1, and
f(1) = 0. Then X, f , and g satisfy the hypothesis of Theorem 2.1
except f does not have proper orbits – and F (f) ∩ F (g) = ∅.

4. Periodic and Recurrent Points

If g is a self map of a topological space X, a point x is called a
recurrent point (of g) if and only if x is a limit point (accumulation
point) of O(x). And x is nontrivial periodic if and only if gkx = x
for some k ∈ N but gx ̸= x. These two concepts combined produce
proper orbits. A check of the proof of Theorem 3.8 [10], shows that
it can be stated as follows (continuity was not used in the proof).

Proposition 4.1. Let g be a self map of a Hausdorff topological
space X and let x ∈ X. If x is neither a recurrent nor a nontrivial
periodic point, then O(x) is proper.
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Proposition 4.1 prompts us to ask, “If a self map g of a Hausdorff
space has proper orbits, are we guaranteed that g has no recurrent
and no nontrivial periodic points?” The following example shows
that this is not the case.

Example 4.2. Let X = {0} ∪ {1/2n : n ∈ ω} and g(0) = 1,
g(1/2n) = 1/2n+1for n ∈ ω. Then g is a self map of X which
has proper orbits (cl(O(g2(x))) is a proper subset of cl(O(x)) for
x ∈ X), but g has a recurrent point, namely 0. And for future
reference, note that g is o.w.c. at 0 and gn(0) → 0, but g(0) = 1.

However, we can show that when g is orbit-wise continuous on
appropriate sets, the desired equivalences of these properties obtain.

Proposition 4.3. Let X be a Hausdorff topological space and let
g : X → X be o.w.c. on O(x) for some x ∈ X. If x ∈ cl(O(g(x))),
then

(i) gk−1(x) ∈ cl(O(gk(x))) for k ∈ N , and
(ii) cl(O(x)) = cl(O(gk(x))) for k ∈ N .

Proof. (i) holds for k = 1, by hypothesis. If (i) holds for a given k,
since g is o.w.c. on O(x) we have:

gk(x) = g(gk−1(x)) ∈ g(cl(O(gk(x))))

⊂ cl(O(g(gk(x)))) = cl(O(gk+1(x))).

Therefore, (i) holds by induction. But then, for k ∈ N we have:

cl(O(gk−1(x))) = cl(O(gk(x)) ∪ {gk−1(x)})
= cl(O(gk(x))) ∪ cl({gk−1(x)})
= cl(O(gk(x))) ∪ {gk−1(x)}
= cl(O(gk(x))), by (i),

and (ii) is true. �
Theorem 4.4. Let X be a Hausdorff topological space, and let x ∈
X. If g : X → X is o.w.c. on O(x), the following are equivalent.

(1) O(x) is a proper orbit.
(2) x is neither a recurrent nor a nontrivial periodic point of g.
(3) x ∈ cl(O(g(x))) ⇒ g(x) = x.

Proof. (1)⇒(3) If x ∈ cl(O(g(x))), cl(O(x)) = cl(O(gk(x))) for
k ∈ N by Proposition 4.3, so that x = g(x) since O(x) is a proper
orbit.
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(3)⇒(2) If g(x) = x, (2) holds. So suppose x ̸= g(x); then
x /∈ cl(O(g(x))) by (3), in which case x is clearly not a periodic or
recurrent point of g.

(2)⇒(1) Immediate, by Proposition 4.1. �
We now have the desired result.

Corollary 4.5. An orbit-wise continuous self map of a Hausdorff
topological space has proper orbits if and only if it has no recurrent
points or nontrivial periodic points.

An immediate consequence of Corollaries 3.1 and 4.5 is

Corollary 4.6. An o.w.c. self-map g of a Hausdorff topological
space X has a fixed point if and only if there exists x ∈ X such
that cl(O(x)) is compact and contains no recurrent or nontrivial
periodic points of g.

Note that the function g of Example 4.2 above has proper orbits
but that 0 is a recurrent point of g. But even though g is o.w.c. at
0, g is not o.w.c. at any other point. So we see that the requirement
that g be o.w.c. on O(x) in Propositions 4.3 and 4.4 is well advised.
Observe also that gn(x) → 0 as n → ∞ for any x, but g(0) ̸= 0. So
we now look for a condition on g in addition to orbit-wise continuity
at z which ensures g(z) = z if gn(x) → z, an obviously crucial
property in fixed point theory.

The following result is very plausible, and useful. Note that if
X = {0, 1, 2} and g(0) = 1, g(1) = 2, and g(2) = 1, then O(0) is
proper but O(g(0)) is not.

Proposition 4.7. Let g be a self map of a Hausdorff space X and
let a, x ∈ X. If gn(x) → a as n → ∞, then the orbit O(x) is proper.
In fact, O(gk(x)) is proper for k ∈ ω; i.e., g has proper orbits on
O(x).

Proof. Suppose x ̸= a. Since X is Hausdorff, x and a have disjoint
neighborhoods N(x), N(a). Since gn(x) → a, there exists k ∈ N
such that gn(x) ∈ N(a) for n ≥ k; i.e., O(gk(x)) ⊂ N(a).

Therefore, N(x) ∩ O(gk(x)) = ∅, so x /∈ cl(O(gk(x))) and O(x)
is proper.

Suppose x = a, so that gn(a) → a. If gn(a) = a for all n,
O(a) = {a} and is proper. Otherwise there is a k ∈ N such that
gk(a) ̸= a. In this case the above paragraph shows that O(gk(a))
is proper, and the definition of proper orbits therefore implies that
O(a) is proper.
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Moreover, since gn(x) → a implies that gi(gk(x)) → a as i → ∞
for any fixed k ∈ ω, the above argument shows that O(gk(x)) is
proper for k ∈ ω. �

It is well known that if X is a first countable Hausdorff space
and A ⊂ X, then x ∈ cl(A) if and only if there exists a sequence
{xn} in A which converges to x. We use this fact in proving the
following.

Theorem 4.8. Let X be a first countable Hausdorff topological
space and let g : X → X. Suppose x, a ∈ X and gn(x) → a. If g is
o.w.c. on O(x), g(a) = a.

Proof. Since gn(x) → a, a ∈ cl(O(x)). And g o.w.c. on O(x)
implies g(a) ∈ cl(O(g(x))). If g(a) ∈ O(g(x)), g(a) = gk(x) for
some k ∈ N . Therefore, gn(a) = gk+n−1(x) → a as i → ∞,
and a ∈ cl(O(g(a))). Moreover, “gn(a) → a” implies that O(a) is
proper, by Proposition 4.7. And since g is o.w.c. on O(x), g is
o.w.c. on O(gk(x)) = O(a). Therefore, Theorem 4.4. implies that
g(a) = a.

If g(a) /∈ O(g(x)), then g(a) is a limit point of O(g(x)), and
there exists a legitimate subsequence {gin(x)} of {gn(x)} such that
gin(x) → g(a) as n → ∞. But gin(x) → a since gn(x) → a.
Therefore, a = g(a) because X is Hausdorff. �
Note 4.9. As observed above, in Example 4.2 gn(0) → 0 and O(x) is
proper for x ∈ X, but g(0) = 1. However, g is o.w.c. only at x = 0.
Thus the hypothesis that g be o.w.c. on O(x) in Theorems 4.4 and
4.8 is justified and appears to be a relatively minimal restriction.

5. Orbitally Continuous (o.c.) and Almost Orbitally
Continuous (a.o.c.) Maps

We now use the above results to extend a published theorem. In
[3], Ciric introduced the following generalization of continuity for
self maps.

Definition 5.1. [3] A mapping T of a space X into itself is said to
be orbitally continuous if x0, x ∈ X such that limn→∞ T in(x) = x0
then limn→∞ T (T in(x)) = T (x0).

(We shall say T is orbitally continuous at x0 (o.c.) if x0 is such
a point.)

We generalize the above definition as follows.
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Definition 5.2. A mapping T of a space X into itself is said to
be almost orbitally continuous (a.o.c.) at x0 ∈ X if whenever
limn→∞ T in(x) = x0 for some x ∈ X and subsequence {T in(x)}
of {Tn(x)}, there exists a subsequence {T jn(x)} of {Tn(x)} such
that limn→∞ T jn(x) = T (x0). (If T is a.o.c. at all x ∈ M ⊂ X, we
say T is (a.o.c.) on M ; if M = X, T is a.o.c.)

Note. If {xin} is a subsequence of {xn}, we of course assume
n ≤ in < in+1.

Clearly, (o.c.) ⇒ (a.o.c.). The example below shows that the
implication is not reversible.

Example 5.3. Let x2k−1 = ( 1
2k−1 , 0) and x2k = ( 1

2k , 1) for k ∈ N .

Let X = {xn : n ∈ N} ∪ {(0, 0), (0, 1)}. Define T : X → X
by T (xn) = xn+1 for n ∈ N , and T ((0, 0)) = T ((0, 1)) = (0, 0).
Clearly, the only convergent subsequences converge to (0, 0) or
(0, 1), and if a subsequence of {Tn(x)} converges to either, there
exists a subsequence of {Tn(x)} which converges to (0, 0); i.e., T
is a.o.c.. To see that T is not o.c., note that Tn(xk) = xk+n and
consider, e.g., {T 2n(x1)}n.

In [4], Dien proved the following generalization of Caristi’s The-
orem.

Theorem 5.4. [4] Let (X, d) be a complete metric space and S, T
be two orbitally continuous mappings of X into itself. Suppose that
there are a finite number of functions {ϕn : 1 ≤ i ≤ n} of X into
[0,∞) such that

d(Sx, Tx) ≤ q · d(x, y) +
n∑

i=1

[ϕi(x)− ϕi(Sx) + ϕi(y)− ϕi(Ty)]

for all x, y ∈ X and some q ∈ [0, 1).
Then S and T have a common fixed point x∗ ∈ X. Further, if

x ∈ X, then Snx → x∗ and Tnx → x∗ as n → ∞.

The above result can be appreciably generalized by replacing
the orbital continuity requirement (o.c.) with orbit-wise continuity
(o.w.c.). We first show below that (a.o.c.)⇒(o.w.c.), which assures
us that (o.c.)⇒(o.w.c.).

Proposition 5.5. Let g be a self map of a first countable Hausdorff
topological space X. If g is almost orbitally continuous (a.o.c.),
then g is orbit-wise continuous (o.w.c.).
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Proof. Suppose y ∈ g(cl(O(x))) for some x ∈ X. Then y = g(z)
for some z ∈ cl(O(x)). If z ∈ O(x), z = gk(x) for some k ∈ ω, so
y = g(z) = gk(g(x)) ∈ O(g(x)) ⊂ cl(O(g(x))).

If z /∈ O(x), z is a limit point of O(x) and there is a legitimate
subsequence {gin(x)} in O(x) of the sequence {gn(x)} such that
gin(x) → z. Since g is a.o.c., there is a subsequence gjn(x) of
{gn(x)} such that gjn(x) → g(z) = y; i.e., y ∈ cl(O(g(x))). Thus,
in any event, y ∈ g(cl(O(x))) implies y ∈ cl(O(g(x))), and g is
o.w.c.. �

Example 4.2. above provides a function g which is o.w.c. and
not a.o.c.. g is o.w.c. at 0 since g(cl(O(0))) ⊂ X = cl(O(g(0)). But
gn(0) → 0 and no subsequence of {gn(0)} converges to g(0) = 1.

Now note that in the proof of Theorem 5.4 above, the author
first proves that Snx → x∗ and Tnx → x∗ as n → ∞ for all x ∈ X
without appeal to orbital continuity. But Dien then uses orbital
continuity to show that x∗ is a common fixed point of S and T .
Now since Snx → x∗ for all x ∈ X, Theorem 4.8 above tells us that
we need only know that S is o.w.c (on X) to ensure that Sx∗ = x∗.
Of course, the some is true of T . We thus have the following.

Theorem 5.6. Theorem 5.4. with o.w.c. replacing o.c..

We now attempt to generalize Theorem 5.7 below in like manner
by weakening the continuity hypothesis. (Theorem 5.7 follows from
Corollary 3.7 and Theorem 3.8 in [10].) Such a generalization is a
major objective of this paper.

Theorem 5.7. Let g be a continuous self-map of a compact
Hausdorff space X. If g has no recurrent points or nontrivial
periodic points, then g has a common fixed point with each f ∈ Kg.
(Specifically, g has a fixed point.)

6. Weakly Compatible Maps in the Context of o.c and
a.o.c. Maps

Let g : X → X, and let Kg, Kg(owc), Kg(aoc), and Kg(oc) de-
note the family of all continuous, o.w.c., a.o.c. or o.c. (respectively)
maps f : X → X which are non trivially weakly compatible with
g. Note that if g is a.o.c.(e.g.), then g ∈ Kg(aoc). In the following
we see that a consideration of orbits arises naturally in the study
of weakly compatible maps.



138 GERALD F. JUNGCK

Note 6.1. If f, g : X → X, are weakly compatible and f(b) = g(b)
for some b ∈ X, then

f2(b) = f(g(b)) = g(f(b)) = g2(b),

and the next proposition follows easily by induction.

Proposition 6.2. If f, g : X → X are weakly compatible and
f(a) = g(a) for some a ∈ X, then fk(a) = gk(a) for all k ∈ N .
Thus, Og(a) = Of (a).

Theorem 6.3. Let g be a self map of a Hausdorff topological space
X.

(i) Suppose x, z ∈ X and gn(x) → z. If g is a.o.c. at z,
g(z) = z.

(ii) Suppose {gn} converges pointwise on X; i.e., for each x ∈
X there exists zx ∈ X such that gn(x) → zx. Then g has a common
fixed point with

(a) each f ∈ Kg(aoc) if g is a.o.c. at each zx, or
(b) each f ∈ Kg(owc) if g is o.w.c. on X, and X is first

countable.
(iii) If there exists a unique z ∈ X such that gn(x) → z for all

x ∈ X and g is a.o.c. at z, then z is the unique common fixed point
of g and each f ∈ Kg(aoc).

Proof. To see that (i) holds, suppose x, z ∈ X and gn(x) → z.
Since g is a.o.c. at z, there is a subsequence {gin} of {gn} such
that gin(x) → g(z). But gn(x) → z; thus gin(x) → z, and z = g(z)
since X is Hausdorff.

To prove (ii) (a), let f ∈ Kg(aoc). Then there exists a ∈ X

such that f(a) = g(a), and therefore fk(a) = gk(a) for k ∈ N , by
Proposition 6.2. But fk(a) = gk(a) → za as k → ∞. Consequently,
f(za) = g(za) = za by (i), since g is a.o.c. at za and f is a.o.c. on
X.

To prove (ii) (b), let f ∈ Kg(owc) and repeat the argument
given in (ii) (a), but replace the last sentence with “Consequently,
f(za) = g(za) = za by Theorem 4.8 since f and g are o.w.c. on X
and X is first countable.”

(iii) is immediate by (i) and (ii)(a). �
(Observe that in (i) and (iii), g is required to be a.o.c. only at

z, whereas Theorem 4.8. requires g to to be o.w.c. on O(x).)
Proposition 6.3(ii) permits us to say,
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Corollary 6.4. If g is an a.o.c. self map of a Hausdorff topological
space X and {gn} converges pointwise on X, then g has a common
fixed point with each f ∈ Kg(aoc).

(Compare to Theorem 2, Jachymski [5].)

Corollary 6.5. Let g be an o.w.c. self map of an orbitally complete
metric space (X, d). If there exists α ∈ (0, 1) such that

d(g(x), g2(x)) ≤ αd(x, g(x)) for x ∈ X, (∗)

then g has a fixed point, and a common fixed point with each f ∈
Kg(o.w.c).

Proof. A standard argument shows that for each x ∈ X, the se-
quence {gn(x)} is Cauchy and therefore converges to some zx ∈ X.
The conclusion follows from 6.3(ii)(b). �

Clearly, Proposition 6.3 permits us to generalize/extend many
published results. For example, 6.3(iii) permits us to generalize
Theorems 2.1 and 3.1 in Jungck [9] by requiring that g be a.o.c. at
c in lieu of being continuous at c. We can also extend these results
by noting that g has a common fixed point with each f ∈ Kg(aoc).
Dien’s Theorem 5.4, can be further generalized and extended by
using a.o.c. maps and 6.3.(iii).

To motivate the hypotheses in our next two results, we return
to Corollary 6.5. Now g is o.w.c., and in the proof we see that
gn(x) → zx for each x ∈ X; as we shall see later (Proposition
7.2) these two conditions imply that g is actually (o.c.). In fact,
Example 6.10 below shows us that we are obliged to use orbital
continuity (o.c.).

Theorem 6.6. Let X be a first countable Hausdorff space and
g : X → X orbitally continuous (o.c.). If g has relatively com-
pact proper orbits, then g has a common fixed point with each
f ∈ Kg(oc). In particular, g has a fixed point.

Proof. Let f ∈ Kg(oc). Then there is an a ∈ X such that f(a) =
g(a), so that fn(a) = gn(a) for all n ∈ N by Proposition 6.2. Since
g is o.c., g is o.w.c., and we can appeal to Theorem 2.4 to obtain
z ∈ cl(O(a)) such that z = g(z). If z ∈ O(a), z = fk(a) = gk(a) for
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some k ∈ N and therefore f(z) = f(fk(a)) = g(gk(a)) = g(z) = z,
and z is the desired common fixed point.

If z ∈ (cl(O(a))−O(a)), there is a subsequence gin(a) of {gn(a)}
such that gin(a) → z = g(z). Then g(gin(a)) → g(z) = z since g
is o.c. Also, f in(a) → z, and thus f(f in(a)) → f(z) since f is o.c..
But g(gin(a)) = f(f in(a)) for all n, and therefore f(z) = g(z) = z
since X is Hausdorff. �

Corollary 4.5 and Theorem 6.6 permit us to say:

Corollary 6.7. Let g be an o.c. self map of a compact metric
space X. If g has no recurrent or nontrivial periodic points, then
g has a fixed point. In fact, g has a common fixed point with each
f ∈ Kg(oc).

To appreciate the tightness/significance of Corollary 6.7, remem-
ber that a continuous self map g of the unit interval has a common
fixed point with each f ∈ Kg if and only if g has no nontrivial peri-
odic points (Theorem 2.5). However, a rational rotation of the unit
circle C has no nontrivial periodic points or fixed points, but every
point in C is a recurrent point (see Example 3.10 [10]). Conse-
quently, the hypothesis that g have no recurrent points is necessary
in Corollary 6.7.

We now generalize and extend a result by Walter in a paper
[13] based on a F. Browder fixed point theorem using generalized
contractions. To do so we consider a metric space (X, d) and a
continuous increasing map ϕ : R+ → R+ such that ϕ(s) < s for
s > 0. (ϕ is called a gauge function). Also note that O(x, y) =
O(x) ∪ O(y). We now assert:

Theorem 6.8. Let g be a self map of a complete metric space (X, d)
with bounded orbits. If for any x ∈ X there exists n = n(x) ∈ N
such that for n ≥ n(x) and for y ∈ X

d(gn(x), gn(y) ≤ ϕ(diamO(x, y)),

then there exists z ∈ X satisfying the following.
(i) gn(x) → z for all x ∈ X.
(ii) If g is o.w.c., z is the unique fixed point of g.
(iii) If g is a.o.c. at z, z is the unique common fixed point of

g and all f ∈ Kg(aoc).
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Proof. Theorem 1 in [13] confirms (i). Then it is asserted (Section
4 [13]) that g must be continuous to ensure that g has a fixed point
(See Example 2 [13]). However, (ii) – which follows from (i) and
Theorem 4.6 – tells us that the continuity requirement can defi-
nitely be weakened. And (iii), which is a consequence of (i) and
Proposition 6.3 (iii), not only weakens and localizes the continuity
requirement, but extends the conclusion to a larger class of func-
tions, namely Kg(aoc). �

Before stating our next result we remind the reader that by def-
inition, self maps of a metric space with diminishing orbital di-
ameters have bounded orbits. Thus, any such self map of Rn has
relatively compact proper orbits. Therefore, Theorems 2.4 and 6.6
yield:

Corollary 6.9. Let g be a self map of Rn with diminishing orbital
diameters.

1. If g is o.w.c., g has a fixed point.
2. If g is o.c., g has a common fixed point with each f ∈ Kg(oc).

(Compare Corollary 6.9 to Corollary 3.19 in [10].)
We conclude this section with an example which highlights the

distinction between o.c. and a.o.c maps. In particular, it shows
that it was not sufficient to require that g be only a.o.c in Theorem
6.6 and Corollary 6.7.

Example 6.10. Let X and T be the space and map of Example
5.3. Define S : X → X by S(x) = T (x) for x ∈ X − {(0, 0), (0, 1)},
and S((0, 0)) = S((0, 1)) = (0, 1). It is easy to verify that S ∈
KT (a.o.c.), that T and X satisfy the hypothesis of Theorem 6.4,
except that T is a.o.c. but not o.c.. And S and T have no common
fixed point.

7. Some Observations and Conclusion

We repeat the statement of Corollary 6.5 for ease of reference.
Let g be an o.w.c. self map of an orbitally complete metric space

(X, d). If there exists α ∈ (0, 1) such that

d(g(x), g2(x)) ≤ αd(x, g(x)) for x ∈ X, (∗)
then g has a fixed point, and a common fixed point with each
f ∈ Kg(aoc).
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In [6], Jeong and Rhoades consider self maps of metric spaces and
present an amazing collection of fixed point theorems in which the
contractive/expansive restrictions on the maps ensure that every
periodic point is a fixed point (called “property P” and denoted
“F (gn) = F (g) for n ∈ N ” by them). They begin by showing that
the inequality (*) produces property P (Theorem 1.1 [6]) as follows.
If n > 1 and gn(z) = z,

d(z, g(z)) = d(g(gn−1(z)), g2(gn−1(z)))

≤ αd(gn−1(z), d(gn(z)))

≤ . . . ≤ an d(z, g(z)),

so z = g(z).
They then cite a considerable number of papers in which contrac-

tive conditions employed reduce to (*) so that the maps involved do
have property P. For further results on contractions which induce
property P, see e.g., [1].

Now return to Corollary 6.5. If we eliminate only orbit-wise
continuity in the hypothesis of Cororollary 6.5, g will still have
property P; but g may have a recurrent point and no fixed point.
Consider Example 4.2. X is g-orbitally complete, g has no periodic
points, and g satisfies (*) since d(g2(x), g(x)) = 1

2d(g(x), x) for
x ∈ X; however, g has no fixed points. But g is o.w.c. only at
0 and 0 is a recurrent point. Thus orbit-wise continuity on all of
X appears to have been necessary in Corollary 6.5 to eliminate
recurrent points and to guarantee a fixed point.

Note also that in a recently published article [12], Eric McDowell
gives a comprehensive and informative sketch of research activity
during the last sixty years regarding the question of coincidence
values and common fixed points of commuting self maps of various
spaces - mainly the unit interval, triods, and compact metric spaces.
A recurring theme in the article is the role played by property P
(requiring all periodic points to be fixed points) in assuring the
existence of fixed points. In this context, Theorems 2.5 and 5.7
were referenced and discussed.

We close with the statement and proof of an observation which
relates concepts highlighted in this paper.
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Proposition 7.1. Let g be a self map of a Hausdorff space X and
suppose {gn} converges pointwise on X; i.e., for all x ∈ X there
exists zx ∈ X such that gn(x) → zx. Then g is orbitally continuous
(o.c.) on X if (i) g is a.o.c. at each zx, or (ii) g is o.w.c. on X
and X is first countable.

Proof. To prove (i), let x, a ∈ X and suppose there exists a sub-
sequence {gin(x)} of {gn(x)} which converges to a ∈ X. We must
show that g(gin(x)) → g(a). Now gn(x) → zx by hypothesis, so
a = zx. Moreover, since g is a.o.c. at zx, Theorem 6.3(ii)(a) im-
plies that zx = g(zx). Consequently, gin+1(x) = g(gin(x)) → zx =
g(zx) = g(a), and g is o.c..

(ii) follows in like manner by using Theorem 6.3(ii)(b) �
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