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COMPARING LOCALLY ISOMETRIC TOPOLOGIES

FOR Rn

JON W. SHORT AND T. CHRISTINE STEVENS

Abstract. In a previous paper, the authors showed that a
large class of metrizable group topologies for Rn are locally
isometric. The metrics in question are defined by specifying
a sequence in Rn and the rate at which it converges to zero,
and the corresponding topologies are always weaker than the
usual topology for Rn. Under rather mild restrictions on the
sequences and the rate at which they converge to zero, two
very different sequences will yield metrics ν and µ that make
(Rn, ν) and (Rn, µ) locally isometric, and the completions of
these groups will also be locally isometric. Since the local
isometry cannot, in general, be extended to a global homo-
morphism, the question of whether (Rn, ν) and (Rn, µ) are
isomorphic as topological groups remains open. In the cur-
rent paper we explore the conditions that determine whether
such an isomorphism exists. Our results have applications
to the larger problem of determining the ways in which the
topology of an arbitrary connected Lie group can be weak-
ened, while remaining a Hausdorff topological group.

1. Introduction

We study the properties of a collection of group topologies for the
additive group Rn that are metrizable and weaker than the usual
topology. These topologies are defined by choosing a sequence {vi}
in Rn and specifying the approximate rate {pi} at which it will
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converge to the identity. We refer to {vi} and {pi} as the “con-
verging sequence” and the “rate sequence,” respectively. Using a
strengthened version of a theorem in [7], we prove that the resulting
topologies are always locally isometric, provided the rate sequence
is the same. This raises the question, which we investigate in Sec-
tions 3 and 4, of whether the two corresponding topologies must be
globally the same. Section 3 presents some conditions that guaran-
tee an affirmative answer to that question, while Section 4 contains
a procedure for constructing examples where the answer is nega-
tive. In Section 5, we discuss the possibility that the two groups
are topologically isomorphic, even though they have distinct topolo-
gies, and we show that this reduces to the situation addressed in
Sections 3 and 4. Finally, Section 6 announces results that com-
pare topologies that share the same converging sequence but have
different rate sequences.

Our investigation is related to the study of Lie groups of trans-
formations. If L is a Lie group acting on a topological space, then
that action gives rise to a topology for L that is weaker than the
Lie topology and that and makes L a topological group. If L is con-
nected, then Theorem 3.2 in [9] says that the ways in which the Lie
topology can be weakened and remain a Hausdorff group topology
are completely determined by a certain closed abelian subgroup of
L, which is called a decisive subgroup. As an abelian Lie group, that
decisive subgroup must have the form Rp×Tq×Zr×D, where Tq is
a toroid and D is finite, and it can therefore be viewed as a quotient
group of some subgroup of Rn. Thus an examination of the ways in
which the usual topology for Rn can be weakened will shed light on
Lie groups of transformations. Our focus on metrizable topologies
is prompted, in part, by a theorem of Gleason and Palais ([1], Corol-
lary 7.3), which implies that every finite-dimensional metric group
can be obtained by weakening the topology of some Lie group.

Group topologies that are defined by forcing a specific sequence
to converge to the identity have been studied by others, includ-
ing Nienhuys ([3], [4], [5]), Protasov and Zelenyuk [6], and Lukács
[2]. Our work differs from theirs by not requiring the converging
sequence to consist of integers and by paying explicit attention to
the rate of convergence, rather than focusing, as in the study of
T -sequences, on the strongest topology in which a given sequence
converges to the identity.
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2. Background and terminology

We will use the notation presented in this section throughout the
paper. Other notation will be introduced as needed.

R will denote the set of real numbers and Rn the (set-theoretic)
product of n copies of R; the group operation on these sets will
always be addition. If x ∈ Rn, then ∥x∥ will denote the usual
Euclidean norm of x.

Topologies for Rn will be assumed to be group topologies, unless
explicitly stated otherwise. Since we will be examining many such
topologies for Rn, topological statements will always mention the
specific topology under consideration, and the group Rn with the
topology T will be denoted by the pair (Rn, T ).

We caution the reader to be wary of making assumptions about
the nature of T . If A and B are topological groups with identity
element e, then we say that T is a product topology on the group
A×B if the projection maps from A×B to A× {e} and {e} ×B
are continuous. If at least one of the projections is not continuous,
we say that T is a nonproduct topology. The group topologies
for Rn that are considered in this paper are typically nonproduct
topologies, so that understanding the properties of (Rn, T ) is not
as simple as assessing what happens on each factor of Rn.

Central to our strategy for constructing group topologies on Rn

is the notion of a groupnorm (or simply a norm).

Definition 2.1. A groupnorm on an abelian group G is a function
ν : G → R satisfying, for all x, y ∈ G,

(i) ν(x) ≥ 0;
(ii) ν(x) = 0 if and only if x = 0;
(iii) ν(x+ y) ≤ ν(x) + ν(y);
(iv) ν(x) = v(−x).

If ν is a groupnorm on G, then the function d(x, y) = ν(x − y)
defines an invariant metric on G, and the corresponding metric
topology makes G a Hausdorff topological group. Blurring the dis-
tinction between the norm ν, the metric d, and the topology it
induces on G, we will denote by (G, ν) the group G with the topol-
ogy induced by d, and by C(G, ν) its completion in the category of
topological groups.

Z denotes the set of integers. If x ∈ R, then ⌊x⌉ will denote the
greatest integer less than or equal to x−1. Unless stated otherwise,
all sums will be assumed to have only finitely many terms.
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In [8] Stevens introduced the following method for constructing
metrizable group topologies on Rn that are weaker than the usual
topology. The group topologies that arise from this construction
are the subject of this paper.

Proposition 2.2. [8, Proposition 4.1] Let {pi : i ∈ N} be a nonin-
creasing sequence of positive real numbers which converges to zero
in the standard topology on R, and let {vi : i ∈ N} be a sequence of
nonzero elements of Rn such that {∥vi∥} is nondecreasing and the
sequence {pi+1∥vi+1∥/∥vi∥} has a positive lower bound. Then the
function ν : Rn → R defined by

ν(x) = inf
{∑

|ci|pi +
∥∥∥x−

∑
civi

∥∥∥ : ci ∈ Z
}

is a groupnorm on Rn such that ν(x) ≤ ∥x∥ for all x ∈ R and
ν(vi) ≤ pi. ν gives rise to a metrizable group topology on Rn,
weaker than the standard topology, in which vi → 0.

Definition 2.3. If the sequences {vi} and {pi} satisfy the hypoth-
esis of 2.2, then ({vi}, {pi}) will be called a sequential-norming pair
SNP for Rn. If the groupnorm they induce is ν, then ({vi}, {pi}, ν)
will be called a sequential-norming triple SNT for Rn.

For example, ({(i!+
√
3, πi)}, {1/i}) is an SNP on R2. If ν is the

corresponding norm, then ν(i!+
√
3, πi) ≤ 1/i, and thus (i!+

√
3, πi)

converges to zero in (R2, ν) at least as fast as 1/i converges to zero
in the usual topology for R.

As mentioned in the introduction, we refer to the sequence {vi}
as the “converging sequence” and {pi} as the “rate sequence.” For
future reference, we note that multiplying the rate sequence by
a positive constant will change the values of the norm ν but not
the corresponding topology on Rn, and that the topology is also
unchanged if we remove finitely many terms from the converging
sequence {vi} and the corresponding terms from the rate sequence
{pi}.

3. Changing the converging sequence

In this section we compare the topologies generated by two SNTs
for Rn that have different converging sequences but the same rate
sequence. Throughout this section, ({vi}, {pi}, ν) and ({ui}, {pi}, µ)
will denote two such SNTs. Prima facie, one would expect that
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changing the converging sequence might change the topology, and
that situation can, of course, occur. For example, the two SNPs
({i!}, {1/i}) and ({i! + 1}, {1/i}) must determine different topolo-
gies for R, for otherwise the constant sequence {i! + 1 − i!} =
{1, 1, 1, . . . } would converge to 0 in the topology that they deter-
mine, contradicting the fact that it is Hausdorff. On the other hand,
it is possible to change the converging sequence without changing
the topology. For example, Proposition 3.3 implies that the two
SNPs ({i!}, {1/i}) and ({i!+ 3

i }, {1/i}) generate the same topology
for R.

Whether the two SNTs ({vi}, {pi}, ν) and ({ui}, {pi}, µ) deter-
mine the same topology or not, it is always the case that (Rn, ν)
and (Rn, µ) are locally isometric, as are their completions. The first
step in proving this fact, which is formally stated as Theorem 3.2,
is to establish a strengthened version of the local isometry theorem
(Theorem 8) that is the main result in [7].

Proposition 3.1. Let ({vi}, {pi}, ν) and ({ui}, {pi}, µ) be SNTs
on Rn such that, for some real number ϵ > 0,

pi

⌊
∥vi+1∥
∥vi∥

⌉
, pi

⌊
∥ui+1∥
∥ui∥

⌉
> ϵ

for all i. Then (Rn, ν) is locally isometric to (Rn, µ), and C(Rn, ν)
is locally isometric to C(Rn, µ).

Proof. Without loss of generality, we may assume that ϵ ≤ 1, and
we note that Theorem 8 in [7] addresses the case where ϵ = 1.
In order to extend the theorem to the situation where ϵ < 1, we
make some minor modifications to the results in [7], which we will
now briefly describe. In Lemma 13 in [7] we replace the hypothesis
that σ(x) < 1/3 and

∑
|ai|pi,

∑
|bi|pi < 1/3 by the the assumption

that σ(x) < ϵ/3 and
∑

|ai|pi,
∑

|bi|pi < ϵ/3. Then it is easy to
check that the conclusion of that lemma still holds. In the proof
of Proposition 14 in [7], we change the choice of k ∈ R so that
0 < k ≤ ϵ/6. In the first paragraph of the proof, it then follows
that, for any x, y ∈ Bσν , we have σ(x−y) < ϵ/3 , and the remainder
of the proof of Proposition 14 is valid without any changes. In the
proof of Theorem 8 that appears in Section 5 of [7], we choose r so
that 0 < r < min(ϵ/6, s/2). Then the fact that ϵ < 1 guarantees
that the open balls B(q, r − σν(q)) are mutually disjoint, and the
remainder of the proof is unchanged. �
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We now prove that this strengthened version of the local isom-
etry theorem can be applied to any two SNTs with the same rate
sequence.

Theorem 3.2. If ({vi}, {pi}, ν) and ({ui}, {pi}, µ) are SNTs on
Rn, then (Rn, ν) is locally isometric to (Rn, µ) and C(Rn, ν) is lo-
cally isometric to C(Rn, µ).

Proof. By Proposition 3.1, it will suffice to show that any SNT

({vi}, {pi}, ν) satisfies the inequality pi

⌊
∥vi+1∥
∥vi∥

⌉
> ϵ for some ϵ > 0

and for all but finitely many i. By the definition of SNT, we can

choose a real number C > 0 such that pi+1∥vi+1∥
∥vi∥ > C for all i,

and the fact that {pi} is a nonincreasing sequence implies that
pi∥vi+1∥

∥vi∥ > C for all i, as well. Since pi → 0, we know that pi < C/4

for all sufficiently large i. Then for all such i we have

pi

⌊
∥vi+1∥
∥vi∥

⌉
≥ pi

(
∥vi+1∥
∥vi∥

− 2

)
≥ pi

(
C

pi
− 2

)
= C − 2pi > C/2,

where the first inequality holds because ⌊x⌉ ≥ x − 2 for all real
numbers x. Thus the desired condition holds, with ϵ = C/2. �

From Theorem 3.2 we see that any two SNTs on Rn with the same
rate sequence will determine topologies that have the same local
topological properties. This naturally raises the question of whether
those topologies are globally the same. This question does not have
a straightforward solution, and many cases must be resolved by
using ad hoc methods to show that some sequence converges in one
of the topologies but not in the other. There are, however, several
conditions that will assure that the ν-topology and the µ-topology
are the same, and we devote the remainder of this section to them.
In the next section, we will present a strategy for creating SNTs
that definitely determine distinct topologies.

We begin by observing that, if ({vi}, {pi}, ν) and ({ui}, {pi}, µ)
determine the same topology, then clearly ν(ui) → 0 and µ(vi) → 0.
That this condition is not sufficient to assure the equality of the
two topologies is demonstrated by the SNTs ({i!}, {1/i}, ν) and
({i! + 1√

i
}, {1/i}, µ) for R. If we let vi = i! and ui = i! + 1√

i
,

then the two converging sequences differ by 1/
√
i, which converges

to zero in the usual topology and thus in both (R, ν) and (R, µ).
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It follows easily that ν(ui) → 0 and µ(vi) → 0. We will now show
that the partial sums of the series

∞∑
i=1

ui2 =

∞∑
i=1

(i2)! +
1

i

form a Cauchy sequence in (R, µ) but not in (R, ν). Given any

ϵ > 0, we can choose k ∈ N so that
∑l

i=k
1
i2

< ϵ for all l ≥ k, and

thus µ
(∑l

i=k ui2
)
≤
∑l

i=k
1
i2

< ϵ for all l ≥ k. On the other hand,

the fact that
∑∞

i=1
1
i diverges implies that there is an l ≥ k such

that
∑l

i=k
1
i is more than 1/3 from the nearest integer. It follows

that, for such an l, ν
(∑l

i=k(i
2)! + 1

i

)
≥ 1/3, so that the sequence

of partial sums is not ν-Cauchy, and µ and ν determine different
topologies for R.

We note that in the preceding example the difference between
the converging sequences is 1√

i
, which goes to zero in the usual

topology much more slowly than the rate sequence {1/i}. Our first
result says that the SNTs ({vi}, {pi}, ν) and ({ui}, {pi}, µ) on Rn

will determine the same topology if the difference ∥vi−ui∥ between
the two converging sequences is “not too big,” compared with the
rate sequence {pi}.

Proposition 3.3. If ({vi}, {pi}, ν) and ({ui}, {pi}, µ) are SNTs on
Rn and there is a real number K > 0 such that ∥vi−ui∥ ≤ Kpi for
all i ∈ N, then ν and µ determine the same topology for Rn.

Proof. Recall that sums are assumed to have only finitely many
terms, unless otherwise specified. Given ϵ > 0, let δ < ϵ

K+1 . If

ν(x) < δ, then x can be written as x =
∑

aivi + y, where ai ∈ Z,
y ∈ Rn, and

∑
|ai|pi + ∥y∥ < δ. If we rewrite x as

x =
∑

aiui + y +
∑

ai(vi − ui),

then it follows from the definition of µ that

µ(x) ≤
∑

|ai|pi + ∥y +
∑

ai(vi − ui)∥

≤
∑

|ai|pi + ∥y∥+K
∑

|ai|pi
< δ +Kδ = (K + 1)δ < ϵ,



356 JON W. SHORT AND T. CHRISTINE STEVENS

and thus the µ-topology is weaker than the ν-topology. A similar
argument shows the reverse inclusion, and thus the two topologies
for Rn are the same. �

For example, we can apply Proposition 3.3 to the two SNTs
({i!}, {1/i}, ν) and ({i! + 2i

i2+3
}, {1/i}, µ). Since 2i

i2+3
≤ 2

i , the met-
rics ν and µ determine the same topology on R.

Although the preceding proposition’s hypothesis about the
relative sizes of ∥vi − ui∥ and pi is sufficient to make ν and µ
determine the same topology, that condition is by no means
necessary. It is possible for vi and ui to be quite far apart and
still have ({vi}, {pi}, ν) and ({ui}, {pi}, µ) determine the same
topology. One way to accomplish this is to re-index or “shift” a
converging sequence. For example, the SNTs ({i!}, {1/i}, ν) and
({(i + 10)!}, {1/i}, µ) determine the same topology for the real
numbers. As the next proposition demonstrates, such “shifts” do
not change the topology, provided the rate sequence does not con-
verge to zero too rapidly.

Proposition 3.4. Let ({vi}, {pi}, ν) be an SNT and suppose there
exist k ∈ N, C ∈ R such that pi

pi+k
≤ C for all i. If ui = vi+k, then

({ui}, {pi}, µ) is an SNT that defines the same topology as ν.

Proof. To show that ({ui}, {pi}, µ) is an SNT, it suffices to ob-

serve that {pi+1∥ui+1∥
∥ui∥ : i ∈ N} has a positive lower bound, since

({vi}, {pi}, ν) is an SNT and

pi+1∥ui+1∥
∥ui∥

=
pi+1∥vi+k+1∥

∥vi+k∥
≥ pi+k+1∥vi+k+1∥

∥vi+k∥
.

We also note that C ≥ 1, since {pi} is a non-increasing sequence.
To prove that the µ-topology is weaker than the ν-topology, let
ϵ > 0 be given. If x ∈ Rn and ν(x) < min(ϵ/C, pk), then we

can write x as x =
∑l

i=1 aivi + y, where ai ∈ Z, y ∈ Rn, and∑l
i=1 |ai|pi + ∥y∥ < min(ϵ/C, pk). Thus ai = 0 for all i ≤ k, and,

after letting bi = ai+k, we have x =
∑l

i=k+1 aivi+y =
∑l−k

i=1 biui+y,
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so that

µ(x) ≤
l−k∑
i=1

|bi|pi + ∥y∥ =
l−k∑
i=1

|ai+k|pi + ∥y∥

≤ C

(
l−k∑
i=1

|ai+k|pi+k + ∥y∥

)
= C

(
l∑

i=k+1

|ai|pi + ∥y∥

)
< C(ϵ/C) = ϵ.

Conversely, if µ(x) < ϵ, then

x =
m∑
i=1

ciui + z =
m∑
i=1

civi+k + z,

where ci ∈ Z, z ∈ Rn, and
∑m

i=1 |ci|pi + ∥z∥ < ϵ. It follows that

ν(x) ≤
m∑
i=1

|ci|pi+k + ∥z∥ ≤
m∑
i=1

|ci|pi + ∥z∥ < ϵ. �

Propositions 3.3 and 3.4 do not, of course, describe all possi-
ble circumstances in which two SNTs define the same topology for
Rn. The following example points to some additional possibilities.
We let vi = i! and pi = 1/i, obtaining an SNT ({vi}, {pi}, ν). If
we let ui = i! = vi when i is odd, and ui = (i − 1)(i − 1)! =
i!−(i−1)! = vi−vi−1 = vi−ui−1 when i is even, it is easy to verify
that ({ui}, {1/i}, µ) is an SNT. Since vi − ui = (i − 1)! when i is
even, we see that Proposition 3.3 does not apply, nor does Proposi-
tion 3.4. Nevertheless, using the fact that pi−1 ≤ 2pi for all i ≥ 2,
one can show that ν and µ determine the same topology for R.

4. SNTs that determine distinct topologies

In the previous section, we investigated the circumstances under
which two SNTs with the same rate sequence must determine the
same topology for Rn. Looking at the issue from a different per-
spective, we now present a strategy for constructing SNTs that have
the same rate sequence but determine distinct topologies for Rn.
We begin by choosing a rate sequence (that is, a nonincreasing se-
quence {pi} of strictly positive real numbers that converges to zero
in the usual topology) and a real number δ such that 0 < δ ≤ p1.
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Using an idea suggested by the proof of Lemma 2.1.9 in [6], we
will inductively choose sequences {vi} and {ui} in such a way that
({vi}, {pi}, ν) and ({ui}, {pi}, µ) are SNTs and µ(vi), ν(ui) ≥ δ for
all i, so that the two topologies will not be comparable.

Before describing the procedure for choosing the two converging
sequences, we introduce some notation. If m ∈ N and x1, . . . , xm ∈
Rn, we will let

S(x1, x2, . . . , xm) =

{
m∑
i=1

cixi : ci ∈ Z,
m∑
i=1

|ci|pi ≤ p1

}
.

If
∑m

i=1 cixi ∈ S(x1, x2, . . . , xm) has the property that
∑m

i=1 |ci|pi ≤
p1, then each coefficient ci in this sum satisfies the inequality |ci| ≤
p1/pi, and thus we can think of S(x1, x2, . . . , xm) as a set of integral
linear combinations of x1, . . . , xm in which the coefficients are “not
too big.”

For future reference, we note several other useful properties of
S(x1, x2, . . . , xm). The first is that this set is closed under tak-
ing additive inverses, and the second is that S(x1, x2, . . . , xm) ⊆
S(x1, x2, . . . , xm+1). Finally, we claim that, if {∥xi∥} is a non-
decreasing sequence and

x =
m∑
i=1

cixi ∈ S(x1, x2, . . . , xm),

where ci ∈ Z and
∑m

i=1 |ci|pi ≤ p1, then ∥x∥ ≤ p1∥xm∥/pm. To
prove this, note that

p1 ≥
m∑
i=1

|ci|pi ≥
m∑
i=1

|ci|pm,

so that
∑m

i=1 |ci| ≤ p1/pm. Since {∥xi∥} is a non-decreasing se-
quence, it follows that

∥x∥ ≤
m∑
i=1

|ci|∥xi∥ ≤

(
m∑
i=1

|ci|

)
∥xm∥ ≤ p1∥xm∥/pm.
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The algorithm for choosing the converging sequences {vi} and
{ui} also involves another strictly positive constant, θ. The con-
verging sequences {vi} and {ui} will be chosen so that

pi+1∥vi+1∥
∥vi∥

,
pi+1∥ui+1∥

∥ui∥
≥ θ

for all i, thus assuring that ({vi}, {pi}, ν) and ({ui}, {pi}, µ) are

SNTs. Although δ and θ can be chosen arbitrarily, subject to the
conditions θ > 0 and 0 < δ ≤ p1, larger values of these constants
place greater constraints on the choice of vi and ui. We denote by
B the open ball that is centered at the origin and has radius δ, in
the usual metric.

Our procedure for choosing the sequences {vi} and {ui} is as fol-
lows. We let v1 be any element of Rn such that ±v1 /∈ B. As u1, we
choose any element of Rm such that ±u1 ̸∈ S(v1) +B. This is cer-
tainly possible, since S(v1) is finite and thus S(v1)+B is bounded.
Proceeding inductively, we assume that v1, . . . , vi, u1, . . . , ui have
been chosen. We then successively choose vi+1 and ui+1 to be any
elements of Rn such that

∥vi+1∥pi+1

∥vi∥
,
∥ui+1∥pi+1

∥ui∥
≥ θ,

and for all non-zero c ∈ Z with |c| ≤ p1/pi+1,

cvi+1 /∈ S(v1, v2, . . . , vi) + S(u1, u2, . . . , ui) +B

and

cui+1 /∈ S(v1, v2, . . . , vi+1) + S(u1, u2, . . . , ui) +B.

Lemma 4.1. If the sequences {vi} and {ui} are chosen as described
above, then for all i ∈ N,

(i) (S(v1, v2, . . . , vi) +B) ∩ S(u1, u2, . . . , ui) = {0};
(ii) S(v1, v2, . . . , vi) ∩ (S(u1, u2, . . . , ui) +B) = {0}.

Proof. To prove (i) when i = 1, we note that S(u1) = {0,±u1},
and the choice of u1 guarantees that (S(v1) + B) ∩ S(u1) = {0}.
To prove (ii) when i = 1, we assume that t ∈ S(v1) ∩ (S(u1) +B),
whence t can be written in the form t = a1v1 = b1u1 + r, where
|a1| and |b1| are integers less than or equal to 1, and r ∈ B.
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Then b1u1 = a1v1−r ∈ S(v1)+B. From the choice of u1, it follows
that b1 = 0 and thus t = a1v1 = r ∈ B. This contradicts the choice
of v1 unless a1 = 0, and we conclude that t = 0.

Now assume that (i) and (ii) hold when i = j, and let t ∈
(S(v1, v2, . . . , vj+1) +B)∩ S(u1, u2, . . . , uj+1). Then t can be writ-

ten as t =
∑j+1

k=1 akvk + r =
∑j+1

k=1 bkuk, where ak, bk ∈ Z are such
that

j+1∑
k=1

|ak|pk,
j+1∑
k=1

|bk|pk ≤ p1,

and r ∈ B. Solving for bj+1uj+1, we find that

bj+1uj+1 ∈ S(v1, v2, . . . , vj+1) + S(u1, u2, . . . , uj) +B.

Since |bj+1| ≤ p1/pj+1, it follows that bj+1 = 0, and thus

t =

j+1∑
k=1

akvk + r =

j∑
k=1

bkuk.

Solving for aj+1vj+1 shows that

aj+1vj+1 ∈ S(v1, v2, . . . , vj) + S(u1, u2, . . . , uj) +B,

which implies that aj+1 = 0, since |aj+1| ≤ p1/pj+1. Therefore

t =

j∑
k=1

akvk + r =

j∑
k=1

bkyk

∈ (S(v1, v2, . . . , vj) +B) ∩ S(u1, u2, . . . , uj) = {0} ,
and (i) is true when i = j + 1. The proof of (ii) when i = j + 1 is
similar. �

We now prove that the SNTs ({vi}, {pi}, ν) and ({ui}, {pi}, µ)
determine different topologies for Rn.

Theorem 4.2. If {pi} is a rate sequence and the converging se-
quences {vi} and {ui} are chosen as described above, then the triples
({vi}, {pi}, ν) and ({ui}, {pi}, µ) are SNTs that determine distinct
topologies for Rn. In fact, the two topologies are not comparable.

Proof. That ({vi}, {pi}, ν) and ({ui}, {pi}, µ) are SNTs follows from
the fact that

pi+1∥vi+1∥
∥vi∥

,
pi+1∥ui+1∥

∥ui∥
≥ θ
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for all i. To prove that the corresponding topologies are distinct,
it suffices to prove that µ(vi) ≥ δ for all i. If µ(vi) < δ, then vi
can be written as vi =

∑j
k=1 bkuk + r, where bi ∈ Z, r ∈ Rn, and∑j

k=1 |bk|pk + ∥r∥ < δ. Then r ∈ B and
∑j

k=1 |bk|pk < p1, so that
vi ∈ S(u1, u2, . . . , uj) +B. If m = max(i, j), then

vi ∈ S(v1, v2, . . . , vi) ∩ (S(u1, u2, . . . , uj) +B)

⊆ S(v1, v2, . . . , vm) ∩ (S(u1, u2, . . . , um) +B) .

Then Lemma 4.1(ii) implies that vi = 0, contradicting the way in
which the sequence {vi} was chosen. A similar argument, using
Lemma 4.1(i), demonstrates that ν(ui) ≥ δ for all i, so that the
two topologies are not comparable. �

To illustrate Theorem 4.2, we let v1 = 1/2, u1 = 1, and p1 =
1/2, and for i ≥ 2 we let vi = (i!)2/

√
2, ui = (i + 1)(i!)2, and

pi = 1/i. We claim that ({vi}, {pi}, ν) and ({ui}, {pi}, µ) determine
incomparable topologies on R. If we let δ = 1/2, then simple
computations verify that these are SNTs and that the choices of
v1, u1, v2, and u2 meet the criteria specified in our algorithm. To
show that vi+1 satisfies the relevant condition when i ≥ 2, we must
show that, if c is a non-zero integer such that |c| ≤ i+1

2 , then

c[(i+1)!]2/
√
2 /∈ S(v1, v2, . . . , vi)+S(u1, u2, . . . , ui)+B. To do that,

it suffices to show that vi+1 exceeds by at least 1/2 the sum of the
maximum element of S(v1, v2, . . . , vi) and the maximum element of
S(u1, u2, . . . , ui). Since those maximum elements are, respectively,

less than or equal to vip1/pi = i(i!)2

2
√
2

and uip1/pi = i(i+1)(i!)2

2 , it

suffices to show that

[(i+ 1)!]2√
2

>
i(i!)2

2
√
2

+
i(i+ 1)(i!)2

2
+

1

2
.

This is equivalent to the inequality,

(i!)2[i2(2−
√
2) + i(3−

√
2) + 2] >

√
2,

which is clearly true for all i ≥ 2.
A similar argument verifies that the condition on the choice of

ui+1 is met. We must show that, if z is a non-zero integer such
that |z| ≤ i+1

2 , then z(i + 2)[(i + 1)!]2 /∈ S(v1, v2, . . . , vi+1) +
S(u1, u2, . . . , ui) +B. To do that, it suffices to show that

(i+ 2)[(i+ 1)!]2 >
(i+ 1)[(i+ 1)!]2

2
√
2

+
i(i+ 1)(i!)2

2
+

1

2
,
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which is easily seen to be the case. Thus the SNTs ({vi}, {pi}, ν)
and ({ui}, {pi}, µ) determine incomparable topologies for R. We
note that one of the converging sequences in this example consists
primarily of irrational numbers and generates a dense subgroup of
R, while the other contains only integers. It can be difficult to
compare such SNTs by ad hoc methods.

5. Topological isomorphisms

In Section 3, we investigated the circumstances under which two
SNTs ({vi}, {pi}, ν) and ({ui}, {pi}, µ) with the same rate sequence
will determine the same topology for Rn. In other words, we asked
whether the identity function (Rn, ν) → (Rn, µ) is a topological
isomorphism. We now consider the possibility that some function
other than the identity might be a topological isomorphism be-
tween these two groups. The distinction is illustrated by the SNTs

({22i}, {1/i}, ν) and ({3(22i)}, {1/i}, µ) for R. Since any integer in
the open ball of radius 1 in (R, µ) that is centered at the origin must

be divisible by 3, µ(22
i
) ≥ 1 for all i, and thus the two topologies

are distinct. On the other hand, the function f(x) = 3x is a topo-
logical isomorphism from (R, ν) to (R, µ), since the definitions of ν
and µ imply that ν(x) ≤ µ(f(x)) ≤ 3ν(x) for all real numbers x.

We begin with a proposition that describes the form that any
topological isomorphism between the topological groups defined by
two SNTs would have to take. It applies to all SNTs, whether they
have the same rate sequence or not.

Proposition 5.1. Let T1 and T2 be two group topologies for Rn,
each of which is weaker than the usual topology U , and let

f : (Rn, T1) → (Rn, T2)
be a continuous, non-trivial homomorphism.

(i) If n = 1, then there is a non-zero real number α such that
f(x) = αx for all x ∈ R, and f is an algebraic isomorphism;

(ii) If n > 1, then there is a non-zero n× n matrix A such that
f(x) = Ax for all x ∈ Rn, and f is an isomorphism if and
only if A is invertible.

Proof. To prove (i), we let α = f(1). Since f is homomorphism, it
is easy to check that f(j) = αj for all integers j, whence f(q) = αq
for all rational numbers q. Now any x ∈ R is the limit of some
sequence {qi} of rational numbers in (R,U) and thus in (R, T1).
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The continuity of f then implies that f(qi) = αqi → f(x) in (R, T2).
But {αqi} converges to αx in (R,U) and thus also in (R, T2). There-
fore f(x) = αx, and f is non-trivial if and only if α ̸= 0, in which
case f is an isomorphism. Turning now to (ii), let {x1, . . . , xn} be
the standard basis for Rn, and let yi = f(xi) for i = 1, . . . , n. The
fact that f is a homomorphism implies that f(qxi) = qyi for all
rational numbers q, and an argument like that in part (i) shows
that f(rxi) = ryi for all r ∈ R, i = 1, . . . , n. Since f is an ad-
ditive homomorphism that preserves scalar multiplication, it must
be a linear transformation, and thus it can be represented by an
n × n matrix A. Then A ̸= 0 since f is non-trivial, and f is an
isomorphism if and only if A is invertible. �

The next proposition describes the effect of applying an invertible
linear transformation A to a converging sequence {vi}.

Proposition 5.2. If ({vi}, {pi}, ν) is an SNT for Rn and A is an
invertible n×n matrix, then ({A(vi)}, {pi}) is an SNP for Rn. If ρ
denotes the corresponding metric, then the function f : (Rn, ν) →
(Rn, ρ) defined by f(x) = A(x) is a topological isomorphism.

Proof. Since A represents an invertible linear transformation and
the unit sphere in Rn is compact, the set {∥A(x)∥ : ∥x∥ = 1} has a
maximum value M and a strictly positive minimum value m, and
it follows that m∥x∥ ≤ ∥A(x)∥ ≤ M∥x∥ for all x ̸= 0. Therefore

pi+1
∥A(vi+1)∥
∥A(vi)∥ ≥

(
m
M

)
pi+1

∥vi+1∥
∥vi∥ for all i, so that ({A(vi)}, {pi}) sat-

isfies the conditions for being an SNP. To prove that f is continuous,
let ϵ > 0 be given, and choose δ > 0 so that max(δ, δM) < ϵ/2. If
ν(x) < δ, then x can be written as x =

∑
aivi + y, where the sum

contains only finitely many non-zero terms, y ∈ Rn, ai ∈ Z, and∑
|ai|pi + ∥y∥ < δ. Then f(x) = A(x) =

∑
aiA(vi) +A(y) and

ρ(f(x)) ≤
∑

|ai|pi + ∥A(y)∥ ≤
∑

|ai|pi +M∥y∥
< δ + δM < ϵ/2 + ϵ/2 = ϵ.

To prove that f−1 is continuous, we repeat the argument above,
with A replaced by A−1. �

Applying Proposition 5.2 to the case where n = 1, f(x) = 3x,

vi = 22
i
, and pi = 1/i, we obtain the example given in the first

paragraph of this section.
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Building upon these propositions, the following theorem will en-
able us to rephrase our question about topological isomorphisms.

Theorem 5.3. Let ({vi}, {pi}, ν) and ({ui}, {pi}, µ) be two SNTs
for Rn with the same rate sequence. Then (Rn, ν) is topologically
isomorphic to (Rn, µ) if and only if there is an invertible n × n
matrix B such that ({vi}, {pi}, ν) and ({B(ui)}, {pi}, ρ) determine
the same topology for Rn. In particular, when n = 1, the groups
(R, ν) and (R, µ) are topologically isomorphic if and only if there
is a real number b ̸= 0 such that ({vi}, {pi}, ν) and ({bui}, {pi}, ρ)
determine the same topology for R.

Proof. If f : (Rn, ν) → (Rn, µ) is a topological isomorphism, then
by Proposition 5.1 there is an invertible n× n matrix A such that
f(x) = A(x) for all x ∈ R. Let B = A−1. By Proposition 5.2,
({B(ui)}, {pi}) is an SNP that determines a metric ρ on Rn, and
the function g : (Rn, µ) → (Rn, ρ) that is defined by g(x) = B(x) is
a topological isomorphism. Since f and g are topological isomor-
phisms, so is their composition g◦f , which equals the identity map.
Therefore ({vi}, {pi}, ν) and ({B(ui)}, {pi}, ρ) determine the same
topology for Rn.

Conversely, assume there exists an invertible n×n matrix B such
that ({vi}, {pi}, ν) and ({B(ui)}, {pi}, ρ) determine the same topol-
ogy for Rn. By Proposition 5.2, the function h : (R, µ) → (R, ρ)
defined by h(x) = B(x) is a topological isomorphism. Since ν and
ρ determine the same topology, h is also a topological isomorphism
of (Rn, ν) with (Rn, µ). �

Theorem 5.3 enables us to reformulate the issue that was raised
at the beginning of this section. Given an SNT ({vi}, {pi}, ν), it is
natural to ask what other SNTs with the same rate sequence yield
groups that are topologically isomorphic with (Rn, ν). According to
Theorem 5.3, we can focus our attention on the situation where the
isomorphism is the identity map and look for SNTs ({ui}, {pi}, µ)
that determine the same topology as ν. By applying invertible
linear transformations to such SNTs, we will obtain all the SNTs
with the same rate sequence that define groups that are topologi-
cally isomorphic to (Rn, ν).
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6. Changing the rate sequence

Thus far, we have been comparing the topologies determined by
SNTs for Rn that have the same rate sequence but different con-
verging sequences. Here we briefly discuss the opposite situation,
where the converging sequence is the same but the rate sequence
is changed. When the converging sequence {vi} consists of integers
such that each vi divides vi+1, the corresponding topologies for Z
and their completions have been extensively studied by Nienhuys
([3], especially Section 7). His results do not apply, however, to
more general vi.

If we wish to compare any two SNTs for Rn that have the same
converging sequence, it is natural to begin by looking at the ratio
of the two rate sequences, since we know that multiplying the rate
sequence by a positive constant does not change the topology. The
following theorem says that the behavior of this ratio determines
whether the two SNTs generate the same topology.

Theorem 6.1. Let ({vi}, {pi}, ν) and ({vi}, {qi}, µ) be SNTs for
Rn with the same converging sequence. The ν-topology and the
µ-topology are the same if and only if there exist real numbers C
and K such that 0 < C ≤ qi/pi ≤ K for all i.

The proof of Theorem 6.1 will appear in a subsequent paper
that is currently in preparation. Although it is easy to prove that
the ν-topology and the µ-topology are the same if there exist real
numbers C and K satisfying the conditions in the theorem, the
proof of the converse is more complicated.

As an example of Theorem 6.1, we apply it to the SNTs
({i! + 1}, {1/i}, ν) and ({i! + 1}, {1/i2}, µ) on R. The ratio of the
rate sequences is i/i2, which has zero as its greatest lower bound,
and thus the ν-topology and the µ-topology must be different. On
the other hand, the SNT ({i! + 1}, { 3i

4i2+5
}, ρ) must determine the

same topology for R that ν does, because the ratio of the rate

sequences is 3i2

4i2+5
. Since this ratio converges to 3/4 as i → ∞, it

must have an upper bound and a strictly positive lower bound.

7. Concluding remarks

As noted in Section 6, the proof of Theorem 6.1 will appear in a
subsequent paper.
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In [7], we introduced another method for constructing weakened
topologies for Rn, called an extended norming triple (ENT). If n >
m, then this technique uses SNPs on Rm to obtain metrizable group
topologies for Rn that are weaker than the usual topology. Many
of the results in this paper, including Theorem 3.2, are valid for
ENTs, and we plan in a subsequent paper to compare the topologies
defined by different ENTs.
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