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ABSTRACT. Let XP be a continuous curve of pseudo-arcs
with quotient map ¢ : XP — X, and let XP; denote the
fibered product space {(z,y) € XP x XP :q(z) =q(y)}. We
will show that each homeomorphism of X P; is a product
homeomorphism, or a composition of an interchanging of co-
ordinates and a product homeomorphism. We will also obtain

a few other characteristics of the homeomorphism group of
XP;.

1. INTRODUCTION

In 1983, David P. Bellamy and Janusz M. Lysko [2] showed that
the product of two pseudo-arcs is factorwise rigid. This means that
every self-homeomorphism of a product of two pseudo-arcs is either
a product homeomorphism, or a composition of a permutation of
coordinates and a product homeomorphism. In 1986, Bellamy and
Judy A. Kennedy [1] generalized this result to arbitrary products
of pseudo-arcs.

In 1985, Wayne Lewis [5] proved that, for each one-dimensional
continuum X, there is a continuum X P that has a continuous,
terminal decomposition into pseudo-arcs, with quotient map ¢q :
XP — X. The continuum X P is homogeneous whenever X is. In
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182 K. VILLARREAL

the case that X is homogeneous, the author [9] has shown that the
space X Py = {(z,y) € XP x XP :q(x) =q(y)} is a homogeneous
continuum. In this paper, we show that X Py is factorwise rigid. We
obtain other characteristics of the homeomorphism groups of the
spaces X Py, and we obtain maps that relate the homeomorphism
groups of X, X P, and X Ps.

2. DEFINITIONS AND OTHER PRELIMINARIES

A continuum is a compact, connected metric space. A curve is a
one-dimensional continuum. A topological space Y is homogeneous
if, for every x,y € Y, there exists a homeomorphism h : (Y, z) —
(Yy).

A subcontinuum C of a continuum Y is terminal in Y if, for every
subcontinuum K of Y intersecting C, either K C C or C C K. The
subcontinuum C' is semi-terminal in Y if, for every pair of disjoint
subcontinua Kjand Ky intersecting C, either K1 C C or K9 C C.

A map is a continuous function. We denote the identity function
of the space Y by idy. If g1 : Y — Y and ¢go : Y — Y, then
g1 X go denotes the function g1 X go : ¥ XY — Y x Y, where
(91 % g2) (z,y) = (91 (%) , 92 () -

A continuous decomposition of a continuum Y is a partition of
Y into subcontinua so that the quotient map is open. We say that
the decomposition D is respected by the homeomorphism group of
Y if, for each D, € D and each homeomorphism h : Y — Y, there
exists a Do € D such that h (D7) = Do.

We let dy denote the metric on a space Y, and we let d%/ denote
the metric on Y x Y where d2 ((x1,v1), (z2,2)) is the maximum
of dy (xl, 1‘2) and dy (yl, yQ).

We let H (Y) denote the homeomorphism group of the space
Y. The space H (Y) is a topological group under the operation of
composition of functions. Then the map f, : H(Y) — H(Y),
fg (h) = hogis a homeomorphism, and H (Y') is homogeneous.

If Y is a nondegenerate homogeneous continuum, then H (V') is
not locally compact [7]. However, it is a complete metric space with
metric py (hi, he) = sup{dy (h1 (x),h2 (z)):z € Y}.

A subgroup G of H (Y') acts transitively on Y if {g (x);9 € G} =
Y for all x €Y.
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If X is a homogeneous curve, then we call the continuum X P
with continuous, terminal decomposition into pseudo-arcs and quo-
tient map ¢ : X P — X, constructed as in [5], a continuous X -curve
of pseudo-arcs. In [5], Lewis proved that the homeomorphism group
of X P respects the decomposition, and that for each h € H (X),
there exists hg € H (X P) such that go hg = hogq.

If X is a homogeneous curve and X P is a continuous X-curve
of pseudo-arcs with quotient map ¢ : XP — X, we let XP; =
{(z,9) e XPx XP:q(2) =q®)} =Upex [¢7" (0) x a7 (p)]. We
use the term fibered product induced by q to indicate the space X P.
We use the symbols 7 and 7 to indicate the maps w1 : X Py — X P,
m(x,y) = x, and m : XPyr — XP, my(x,y) = y. In [9], it was
shown that these maps are open.

3. MAIN RESULTS

Theorem 3.1. Let D be a continuous decomposition of the contin-
uum Y with quotient map q : Y — Q. Suppose D is respected by the
homeomorphism group of Y. Then for each h € H (Y'), there exists
a unique o (h) € H(Q) such that go h = a(h) o q. Furthermore,
(1) the function o : H(Y) = H(Q)is continuous and a group
homomorphism;
(2) if a is a surjection, then « is open, and H (Q) is homeo-
morphic and isomorphic to H (Y) /a1t (idg).

Proof: Since the continuous decomposition D is respected by
H(Y), for each h € H(Y) and p; € Q, there exists a unique
p2 € @ such that h (q_1 (pl)) = ¢ ' (p2). Let a(h): Q — Q be
defined by « (h) (p1) = po if and only if h(¢7' (1)) = ¢ (p2).
It is trivial to show that « (h) is a bijection since h is a bijection.
If U is an open subset of @, then « (h) ™" (U) = ¢ (™t (g7 (U))),
which is open since ¢ is an open map and A is a homeomorphism.
Then o (h) € H(Q) .

It is clear from the definition of «a(h) that o h = «(h) o q.
Suppose g € H(Q) and go h = goq. Then if p € @, there exists
x € Y such that ¢(z) = p. Then g(p) = g(¢(x)) = q(h(z)) =
a (k) (¢ (2)) = a () (p), 50 g = (h).

Let h € H(Y) and let € > 0 be given. Since ¢ is continu-
ous on the compact space Y, it is uniformly continuous. Hence,
there exists 0 > 0 such that if y1,y2 € Y and dy (y1,y2) < 0, then
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,q (y2)) < €. Suppose g € H (Y') and py (g, h) < 6. Then if
zeY,dy (g(x),h(x)) <d. Hence, dg (o (9) (¢ (z)),a(h) (¢ (z))) =
dg (¢(g9(x)),q(h(x))) < e If pe Q, there exists z € Y such that
q(z) = p, so dg (a(g) (p),a (h) (p)) < e Then pg (a(g),a(h)) <
€, 50 a: H(Y) = H(Q) is continuous.

If hi,he € H(Y), then gohiohy = v (h1)ogohs = a (hy)oa (hg)o
q, 80 & (hy o hg) = a(hy) o a(hg). Then « is a homomorphism. It
follows that for each h € H (Y), a™ (a(h)) = hoa ! (idg).

Since a~! (idg) is the kernel of the homomorphism «, it is a nor-
mal subgroup of H (V). If a is a surjection, then H (V) /o~ (idg)
and H (@) are isomorphic and homeomorphic.

Also, if «/ is a surjection, then « is a quotient map, so the image
of an open subset of H (Y') that is saturated with respect to « is
an open subset of H (Q). If U is open in H (Y'), then, for each g €
a!(idg), Uogis open. Then o ! (a(U)) = Upep o™ (a(h)) =
Unew [hoa " (idg)] = Uyen- 1(1dQ) [Uog]. Hence, a~ ! (a (U)) is
saturated and open, so a (a™! (a(U))) = a (U) is open in H (Q).
Therefore, « is an open map. O

We call « (h) the homeomorphism of Q induced by h.

Suppose X is a homogeneous curve and X P is a continuous X-
curve of pseudo-arcs with quotient map ¢ : X P — X. Since the de-
composition {q Yp):peX } is a continuous decomposition which
is respected by the homeomorphism group, the hypothesis of The-
orem 3.1 is satisfied. Also, since for each h € H (X), there exists
g € H(XP) such that go g = hogq, we have a(g) = h, so a is a
surjection.

Lemma 3.2. Let X be a homogeneous curve, X P be the continu-
ous X -curve of pseudo-arcs with quotient map q : XP — X, and
X Py be the fibered product induced by q. For each h € H(XP),
let a(h) € H(X) be the homeomorphism induced by h. Suppose
hi,hy € H (X P) such that o (h1) = o (ha). For each (x,y) € X Py,
let o (x,y) = (y,x). Then (h1 X h2) ‘pr and o o (hy X hg) |pr
are in H (X Py).

Proof: It is clear that hy X hg € H (X P x XP). If (z,y) € X Py,
then g (z) = ¢ (y). Then g (b (z)) = a () (¢ (= ))Za( 2) (¢ (y)) =

q (ha (y)). Hence, (hy (z),ha (y)) GXPf Also if (u,v) € X Py and
(h1 > h2) (a,b) = (u,v), then g (u) = q(h1(a)) = a(h1)(q ( ))-
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Similarly, g (v) = a (h2) (¢ (b)) = a(h1) (g (b)). Then, since ¢ (u) =
q(v), a(h1)(g(a)) = a(h1)(g(b)). Since a(h1) is a homeomor-
phism, ¢ (a) = ¢ (b). Then (hy x ho) (X P¢) = X Py. It follows that
(hl X hg) ‘pr eH (XPf) .

Since (x,y) € X Py if and only if (y,2) € XPf, 0 € H(XPy).
Then o o (hy X ha)|xp;, € H(XPy). O

Lemma 3.3. Let X, X P, X Py, and q be as in Lemma 3.2. Let D =
{q_l (p) xqgt(p):pe X} , a decomposition of X Pr. Then each
element of D is minimal with respect to being a non-degenerate,
semi-terminal subcontinuum of X Py. Hence, the homeomorphism
group of X Py respects D.

Proof: Janusz R. Prajs [8] has proven that the elements of D are
semi-terminal.

Let K be a non-degenerate, proper subcontinuum of an element
g (p) x ¢~ (p) of D.

Case 1: 7 (K) = {z1} for some x; € XP. Then, since K is
non-degenerate, there exists {(z1,v1), (z1,y2)} C K, with y; # ya.
Then 7, (y1) and 7, ' (y2) are disjoint subcontinua intersecting
K, neither of which is contained in K. It follows that K is not
semi-terminal.

Case 2: 7 (K) is non-degenerate, and K = {J,cr, (k) 't (x).
Then 71 (K) # ¢! (p) , since K is a proper subcontinuum of ¢~ (p)
x ¢~ (p). Let {y1, 42} € ¢~ (p), with y1 # y2. Then 7' (1) and
Ty ! (y2) are disjoint subcontinua intersecting K, neither of which
is contained in K. It follows that K is not semi-terminal.

Case 3: m (K) is non-degenerate, and there exists xy € m (K)
such that 77! (x0) intersects the complement of K.

If r;t (2) C K for all 2 € my (K) —{xo}, then choose a sequence
{z,} of points in m (K) distinct from zy, and converging to xg.
Let (20,y) € 7 ' (v0) — K. Then {(z,,y)} is a sequence of points
in K converging to (xo,y), contradicting that K is closed. Hence,
there exists = € 71 (K), o # @, such that ;' (z) intersects the
complement of K. Then 7, () and 7, * (z) are disjoint continua
intersecting K, neither of which is contained in K. Then K is not
semi-terminal.

It follows that no proper, non-degenerate subcontinuum of an
element of D is semi-terminal. Since being minimal with respect
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to being a non-degenerate, semi-terminal subcontinuum of X Py is
a topological property, the homeomorphism group of X P; must
respect D. O

Note that, using the notation in the lemma above, for each p € X,
¢ r(p)xqgt(p) = 7r1_1 (q_1 (p)) , 80 the quotient map for D is 71 oq.
Since both 71 and ¢ are open, D is a continuous decomposition, and
the hypotheses of Theorem 3.1 are satisfied.

Lemma 3.4. Let X, XP, XPs, q, a, and o be as in Lemma 3.2.
For each h € H (X Py), let (h) € H(X) be the homeomorphism
induced by h. Then, for each g1,92 € H (XP) such that a(g1) =
a(g2), B((g1 % g2) |xp;) = B (00 (g1 xg2) |xp,;) = a(gr). Also,
B is a surjection.

Proof: We have, for all (z,
=q (g (z)) = a(g1) (¢(2))
B ((g1 % g2) |xp;) = a(g1).

Since o fixes the decomposition elements of X Py, 8 (o) = idx .
Then 8 (00 (g1 X g2) |xp; ) = idx o (g1) = a(g1) -

Let f € H(X). Since « is a surjection, there exists g € H (X P)
such that a(g) = f. By Lemma 3.2, (g x g) ‘pr € H(XPy).
Hence, 3 ((g X g) ‘pr) =a(g) = f, so B is a surjection. 0

y) € X Py, (qom)o(g1 X g2) |xp; (2,y)
=a(g1)o(gom) (z,y). It follows that

Theorem 3.5. Let X be a homogeneous curve, X P the contin-
wous X -curve of pseudo-arcs with quotient map q : XP — X,
and X Py the fibered product induced by q. For each h € H (XP),
let a(h) € H(X) be the homeomorphism induced by h. Let P =
{(h1 x h2) }pr ca(h) =a(h)}, and let o : XPy — X Py be the
map o (x,y) = (y,z). Then

(1) H(XPy) =PU(0oP):

(2) P is a normal subgroup of H (X Py), and P acts transitively
on X Py
P and o o P are clopen, disjoint subsets of H (X Py);
there is an isometric imbedding of H (X P) into H (X Py);
H (X Py) contains no non-degenerate subcontinuum;
H (X Py) is totally disconnected if and only if H (X P) is
totally disconnected.

Proof: By Lemma 3.2, PU (g o P) C
For each h € H (XPy), let 5 (h) €
phism induced by h. Suppose h € H

H (X Py).
H(X ) be the homeomor-
(XPs). Let p € X. Then
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h(g ' () xqa " (p) = a " (B(h)(p)) x ¢~ (B(h)(p)). Let P =
¢ t(p) and P, = ¢ *(B(h)(p)). Since P; and P, are pseudo-
arcs, there exists a homeomorphism f : P, — P;. Then (f x f) o
hlpxp, € H (P x P;). Hence, (f X f) o h|p,xp, is a product
homeomorphism, or a composition of a switching of coordinates
and a product homeomorphism. Then, with respect to the map
(f x f)oh|p xp, either the image of each vertical slice of P; x P
is a vertical slice of P; x P; and the image of each horizontal slice
is a horizontal slice, or the image of each vertical slice is a hori-
zontal slice and the image of each horizontal slice is a vertical slice
[1]. Since f x f takes vertical slices of P, x P, to vertical slices of
Py x P; and horizontal slices to horizontal slices, it must be that
h ‘ XxP; takes vertical slices of P; x P; to vertical slices of Py x Py
and horizontal slices to horizontal slices, or else it takes vertical
slices to horizontal slices and horizontal slices to vertical slices.
Let V consist of all p € X such that h takes vertical slices of

q 1 (p) x ¢t (p) to vertical slices of ¢~ (B (h) (p)) x ¢~ (B (h) (p)).
Let H consist of all p € X such that h takes vertical slices of

g (p)xq~" (p) to horizontal slices of g~ (B (h) (p))xq~" (B (h) (p)) -
Clearly, V and H are disjoint, and V U H = X.

Let {pn} be a sequence in V' converging to p € X. Choose (z,y) €
q¢ ' (p) x ¢! (p) such that = # y. Since q (71 (B ((z,y),1))) is open
and contains p, there exists some pp, € ¢ (m (B ((z,y),1))). Then
there exists (z1,41) € B((z,y),1) N (¢! (pny) X ¢ (pn,)) - For
integers k > 1, choose ny > n;_1 such that

Pn, €4 (771 (B ((.T,y) ) %)))7
and (zx,y1) € B ((,9), %) N (¢ () X ¢ (pny)) -
Then {(zk,yr)} converges to (x,y). Hence, {x;} converges to x, so
{(z, xr)} converges to (x,z). Then {m (h ((zk, yx)))} converges to
71 (h((x,y))), and {m (h ((zx,zx)))} converges to 71 (h ((z,x))).

Since, for each k, (zx, yr) and (xg, zx) belong to the same vertical
slice of ¢~ 1 (pn,, ) xq ™! (pn, ) , and h takes vertical slices of g1 (pp,, ) X
q ! (pn,) to vertical slices of ¢ (B8 (h) (pn,)) X ¢~ (B () (pn,))
m1 (h (g, yx))) = m1 (h ((z, x))) . It follows that m1 (h ((x,y))) =
71 (h ((z,2))) . Then since (z,y) and (x, z) belong to the same ver-
tical slice of ¢~1 (p) x ¢~! (p) and (z,y) # (x,z), the image of this
vertical slice under h could not be a horizontal slice. It follows that
p €V, and V is closed.
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An analogous proof shows that H is closed. Then, since X is
connected, either V =0 or H = (.

Suppose H = (). Define hy : XP — XP and hy : XP — XP
such that hy (z1) = x9 if and only if m (h (7r1_1 (331))) = 9, and
hi(y1) = yo if and only if o (h (7r2_1 (yl))) = 79. Then h; and
ho are bijections since h is a bijection. If U is an open subset of
XP, then h7'(U) = m (=t (mp ! (U))) , which is open since m is
an open map and h is a homeomorphism. It follows that h; is a
homeomorphism. Similarly, ho is a homeomorphism

Let € XP and let ¢ (z) = p. We have h (¢~ ~1(p)
g (B (h)(p)) x ¢ (B (h) (p)). Furthermore, we get h (7r1 x))
m (a7 (B(h) () 50 ha (2) € ¢ (B (h) (p)). Then (g o hi) (2)
B (h)(p) = (B(h)oq)(x). Hence, a (hy) = S (h). Similarly, o (hs)
8 (h) =« (hl) It follows that (hl X hg) |pr e P.

It is trivial to show h = (hy X hsg) ‘pr.

Suppose V' = (). Since h takes vertical slices to horizontal slices
and horizontal slices to vertical slices, o o h takes vertical slices to
vertical slices, and horizontal slices to horizontal slices. Then goh €
P,soh=oco(ocoh)eooP. Therefore, H (XPs) =PU(coP).

Clearly, P and ooP are disjoint, since elements of P take vertical
slices to vertical slices and elements of o o P take vertical slices to

horizontal slices.
We show P is a subgroup of H (X Py). If (h1 x hg) }pr and

(91 X gz) ‘pr are in 7), then (hl X hg) |pr o ((gl X gg) |pr)_1 =
((h1o gfl) x (hg o g;l)) ‘pr . Furthermore,

a(hiogr!) = a(h)oea(g)™ = a(ho)oa(gs) ™ = a(h2ogy").
Then (hy X hg) ‘pr o ((91 X g2) ‘pr)fl € P, so P is a subgroup.
Since there are only two left cosets, P is normal in H (X Py).

We show that P acts transitively on X Py. If (z1,y1), (z2,y2) €
X Py, let p1 = q(z1) = q(y1), and let p» = q(x2) = q(y2) . Since
X is homogeneous, there exists a homeomorphism f : (X,p;) —
(X, p2). Also, there exist homeomorphisms hy : (X P,z1) — (X P, z2)
and he : (XP,y1) — (XP,yz) such that gohy = foq = qo hs.
Then o (h1) = f = a(hy). Therefore, (hi X hy) |xp, € P and
(h1 x h2) |xp; (x1,31) = (22, 12) -

Now we prove statement (3). Suppose {hy,} is a sequence of func-
tions in P converging to some h € H (X Py). Let x € XP. Then,

0
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for each (z,y) € 7, ' (x), {m1 (hn (z,y))} converges to m (h (x,y)) .
Since each h,, takes vertical slices to vertical slices, for each n, there
exists x,, such that for every (z,y) € 7 (x), 71 (hn ((2,9))) = 2p.
Then m; (h (7['1_1 (:c))) = lim,, z,,. It follows that h must take verti-
cal slices to vertical slices, so h € P, confirming that P is closed.

Since composition by ¢ is a homeomorphism of H (X Py), oo P
is closed also. Because P and o o P are disjoint, and their union is
M (X Py), they are both clopen.

Now we imbed H (X P) into H (X Py). If h € H (X P), we have
shown that (h x h) |pr € H(XPs). Leti: H(XP)— H(XPy),
Z(h) = (h X h) ‘pr .

Let hi,he € XP. Now

px Py ((hl X h1) |XPf , (ha X ha) |XPf)
= sup (dip (b1 (z),h1 (), (h2 (z) , ha () : (2,y) € X Py),
= sup (max {dxp (h1 (z),h2 (z)) ,dxp (h1 (y) . h2 (y))} : (2,y) € XPy).

) (

For (z,3) € XPy, max {dx (n (1) ha (0)) e (. 0) B 1)
<sup (dxp (h1(2),h2(2)) : 2 € XP) = pxp (h1, he) . Also, we have
pxp (hi,he) = sup (dxp (hl( ),ha(2)):z € XP). We see this is
equal to sup (% p (ha () b1 (=), (2 (2) ,ha (2)) : (2,2) € X Py) <
sup (% p (b1 (), 71 (y)) , (h2 (), h2 (y)) : (z,y) € X Py), which is
PX Py ((hl X hl ’XPf ,(hQ X hg ’XPf) Then we can conclude that
pXPf ((h1 X h1 ‘pr ,(hz X hg ‘pr) PXP hl,hQ) Therefore, )
is an isometric imbedding.

Suppose H (X Pf) contains a non-degenerate subcontinuum.
Since H (X Py) is homogeneous, idx p; belongs to a non-degenerate
subcontinuum K. Since idxp, € P and P is clopen, we must have
K CP.

Define functions ¢ : P — H(XP) and 92 : P — H(XP),
where 91 ((h1 X he) |xp;) = hy and o3 ((h1 X he) |xp;) = ho.
Since w1 (X Pyr) = X P = my (X Py), these functions are well defined.
If (hy X h2) |pr € P and € > 0, suppose (g1 X g2) ‘pr € P and
PX Py ((h1 X ha) ‘XPf , (g1 % g2) ‘pr) < €. Then, for all z € XP,

dxp (h1 (), g1 (2)) < d&p ((h1(2).h2 (@), (g1 (2), 92 (x))) < e
Hence, pxp (1 ((h1 % ha) |xp; ) %1 ((91 % g2) |xp;)) < € and )
is continuous. An analogous proof shows that o is continuous.
Then 1 (K) must be a continuum in H (X P). But H (XP) con-
tains no non-degenerate subcontinuum by a corollary in [3]. Then



190 K. VILLARREAL

Y1 (K) must be degenerate. Since idxp, € K, 91 (K) = {idxp}.
Similarly, ¥9 (K) = {idxp}. Then K = {iprf} , and any contin-
uum of H (X Py) must be degenerate.

Now we prove (6). If we assume H (X P) is totally disconnected,
then a proof similar to the proof of statement (5) shows H (X Py)
is totally disconnected. If H (X P) contains a non-degenerate con-

nected set K, then i (K) is a non-degenerate connected set in
H (X Py), where ¢ is the imbedding in (4). O

Corollary 3.6. Let P be a pseudo-arc. Then H (PPy) is totally
disconnected if and only if H (P) is totally disconnected.

Proof: This follows from Theorem 3.5(6) and the fact that PP
is homeomorphic to P [4]. O

4. QUESTIONS

It would be interesting to know the answer to the following ques-
tion.

Question 4.1. In terms of the components of H (X) or H (XP),
what are the components of H (X Py)?

It may be necessary to answer this question first, which was
posed by Lewis [6], and was earlier stated, as noted by Lewis in [3],
in a different form by Beverly Brechner.

Question 4.2. Does the homeomorphism group of the pseudo-arc
have any non-degenerate connected subsets?

The answer to the next question may also be useful.

Question 4.3. What is the dimension of H (X Py)? Does it depend
on the dimension of H (X)?

The maps in this paper which relate the homeomorphism groups
of X, XP, and X Py may be helpful in answering these questions.
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