

http://topology.auburn.edu/tp/

# ANOTHER CLASS OF CONTINUA WHICH ARE FACTORWISE RIGID

by

KAREN VILLARREAL

Electronically published on September 13, 2010

**Topology Proceedings** 

| Web:                                                      | http://topology.auburn.edu/tp/         |
|-----------------------------------------------------------|----------------------------------------|
| Mail:                                                     | Topology Proceedings                   |
|                                                           | Department of Mathematics & Statistics |
|                                                           | Auburn University, Alabama 36849, USA  |
| E-mail:                                                   | topolog@auburn.edu                     |
| ISSN:                                                     | 0146-4124                              |
| COPYRIGHT © by Topology Proceedings. All rights reserved. |                                        |



E-Published on September 13, 2010

## ANOTHER CLASS OF CONTINUA WHICH ARE FACTORWISE RIGID

KAREN VILLARREAL

ABSTRACT. Let XP be a continuous curve of pseudo-arcs with quotient map  $q: XP \to X$ , and let  $XP_f$  denote the fibered product space  $\{(x, y) \in XP \times XP : q(x) = q(y)\}$ . We will show that each homeomorphism of  $XP_f$  is a product homeomorphism, or a composition of an interchanging of coordinates and a product homeomorphism. We will also obtain a few other characteristics of the homeomorphism group of  $XP_f$ .

## 1. INTRODUCTION

In 1983, David P. Bellamy and Janusz M. Lysko [2] showed that the product of two pseudo-arcs is factorwise rigid. This means that every self-homeomorphism of a product of two pseudo-arcs is either a product homeomorphism, or a composition of a permutation of coordinates and a product homeomorphism. In 1986, Bellamy and Judy A. Kennedy [1] generalized this result to arbitrary products of pseudo-arcs.

In 1985, Wayne Lewis [5] proved that, for each one-dimensional continuum X, there is a continuum XP that has a continuous, terminal decomposition into pseudo-arcs, with quotient map  $q : XP \to X$ . The continuum XP is homogeneous whenever X is. In

<sup>2010</sup> Mathematics Subject Classification. Primary 54B15, 54F15; Secondary 54B10, 54H11.

Key words and phrases. continuous decomposition, continuum, factorwise rigid, homeomorphism group, homogeneous, pseudo-arc.

<sup>©2010</sup> Topology Proceedings.

the case that X is homogeneous, the author [9] has shown that the space  $XP_f = \{(x, y) \in XP \times XP : q(x) = q(y)\}$  is a homogeneous continuum. In this paper, we show that  $XP_f$  is factorwise rigid. We obtain other characteristics of the homeomorphism groups of the spaces  $XP_f$ , and we obtain maps that relate the homeomorphism groups of X, XP, and  $XP_f$ .

#### 2. Definitions and other preliminaries

A continuum is a compact, connected metric space. A curve is a one-dimensional continuum. A topological space Y is homogeneous if, for every  $x, y \in Y$ , there exists a homeomorphism  $h : (Y, x) \to (Y, y)$ .

A subcontinuum C of a continuum Y is *terminal* in Y if, for every subcontinuum K of Y intersecting C, either  $K \subseteq C$  or  $C \subseteq K$ . The subcontinuum C is *semi-terminal* in Y if, for every pair of disjoint subcontinua  $K_1$  and  $K_2$  intersecting C, either  $K_1 \subseteq C$  or  $K_2 \subseteq C$ .

A map is a continuous function. We denote the identity function of the space Y by  $id_Y$ . If  $g_1 : Y \to Y$  and  $g_2 : Y \to Y$ , then  $g_1 \times g_2$  denotes the function  $g_1 \times g_2 : Y \times Y \to Y \times Y$ , where  $(g_1 \times g_2)(x, y) = (g_1(x), g_2(y))$ .

A continuous decomposition of a continuum Y is a partition of Y into subcontinua so that the quotient map is open. We say that the decomposition  $\mathcal{D}$  is respected by the homeomorphism group of Y if, for each  $D_1 \in \mathcal{D}$  and each homeomorphism  $h: Y \to Y$ , there exists a  $D_2 \in \mathcal{D}$  such that  $h(D_1) = D_2$ .

We let  $d_Y$  denote the metric on a space Y, and we let  $d_Y^2$  denote the metric on  $Y \times Y$  where  $d_Y^2((x_1, y_1), (x_2, y_2))$  is the maximum of  $d_Y(x_1, x_2)$  and  $d_Y(y_1, y_2)$ .

We let  $\mathcal{H}(Y)$  denote the homeomorphism group of the space Y. The space  $\mathcal{H}(Y)$  is a topological group under the operation of composition of functions. Then the map  $f_g : \mathcal{H}(Y) \to \mathcal{H}(Y)$ ,  $f_g(h) = h \circ g$  is a homeomorphism, and  $\mathcal{H}(Y)$  is homogeneous.

If Y is a nondegenerate homogeneous continuum, then  $\mathcal{H}(Y)$  is not locally compact [7]. However, it is a complete metric space with metric  $\rho_Y(h_1, h_2) = \sup \{ d_Y(h_1(x), h_2(x)) : x \in Y \}$ .

A subgroup G of  $\mathcal{H}(Y)$  acts transitively on Y if  $\{g(x); g \in G\} = Y$  for all  $x \in Y$ .

If X is a homogeneous curve, then we call the continuum XP with continuous, terminal decomposition into pseudo-arcs and quotient map  $q: XP \to X$ , constructed as in [5], a *continuous* X-curve of pseudo-arcs. In [5], Lewis proved that the homeomorphism group of XP respects the decomposition, and that for each  $h \in \mathcal{H}(X)$ , there exists  $h_0 \in \mathcal{H}(XP)$  such that  $q \circ h_0 = h \circ q$ .

If X is a homogeneous curve and XP is a continuous X-curve of pseudo-arcs with quotient map  $q : XP \to X$ , we let  $XP_f =$  $\{(x,y) \in XP \times XP : q(x) = q(y)\} = \bigcup_{p \in X} [q^{-1}(p) \times q^{-1}(p)]$ . We use the term *fibered product induced by* q to indicate the space  $XP_f$ . We use the symbols  $\pi_1$  and  $\pi_2$  to indicate the maps  $\pi_1 : XP_f \to XP$ ,  $\pi_1(x,y) = x$ , and  $\pi_2 : XP_f \to XP$ ,  $\pi_2(x,y) = y$ . In [9], it was shown that these maps are open.

## 3. Main Results

**Theorem 3.1.** Let  $\mathcal{D}$  be a continuous decomposition of the continuum Y with quotient map  $q: Y \to Q$ . Suppose  $\mathcal{D}$  is respected by the homeomorphism group of Y. Then for each  $h \in \mathcal{H}(Y)$ , there exists a unique  $\alpha(h) \in \mathcal{H}(Q)$  such that  $q \circ h = \alpha(h) \circ q$ . Furthermore,

- (1) the function  $\alpha : \mathcal{H}(Y) \to \mathcal{H}(Q)$  is continuous and a group homomorphism;
- (2) if  $\alpha$  is a surjection, then  $\alpha$  is open, and  $\mathcal{H}(Q)$  is homeomorphic and isomorphic to  $\mathcal{H}(Y)/\alpha^{-1}(\mathrm{id}_Q)$ .

*Proof:* Since the continuous decomposition  $\mathcal{D}$  is respected by  $\mathcal{H}(Y)$ , for each  $h \in \mathcal{H}(Y)$  and  $p_1 \in Q$ , there exists a unique  $p_2 \in Q$  such that  $h(q^{-1}(p_1)) = q^{-1}(p_2)$ . Let  $\alpha(h) : Q \to Q$  be defined by  $\alpha(h)(p_1) = p_2$  if and only if  $h(q^{-1}(p_1)) = q^{-1}(p_2)$ . It is trivial to show that  $\alpha(h)$  is a bijection since h is a bijection. If U is an open subset of Q, then  $\alpha(h)^{-1}(U) = q(h^{-1}(q^{-1}(U)))$ , which is open since q is an open map and h is a homeomorphism. Then  $\alpha(h) \in \mathcal{H}(Q)$ .

It is clear from the definition of  $\alpha(h)$  that  $q \circ h = \alpha(h) \circ q$ . Suppose  $g \in \mathcal{H}(Q)$  and  $q \circ h = g \circ q$ . Then if  $p \in Q$ , there exists  $x \in Y$  such that q(x) = p. Then  $g(p) = g(q(x)) = q(h(x)) = \alpha(h)(q(x)) = \alpha(h)(p)$ , so  $g = \alpha(h)$ .

Let  $h \in \mathcal{H}(Y)$  and let  $\epsilon > 0$  be given. Since q is continuous on the compact space Y, it is uniformly continuous. Hence, there exists  $\delta > 0$  such that if  $y_1, y_2 \in Y$  and  $d_Y(y_1, y_2) < \delta$ , then

 $\begin{aligned} & \mathrm{d}_Q\left(q\left(y_1\right), q\left(y_2\right)\right) < \epsilon. \text{ Suppose } g \in \mathcal{H}\left(Y\right) \text{ and } \rho_Y\left(g,h\right) < \delta. \text{ Then if } \\ & x \in Y, \mathrm{d}_Y\left(g\left(x\right), h\left(x\right)\right) < \delta. \text{ Hence, } \mathrm{d}_Q\left(\alpha\left(g\right)\left(q\left(x\right)\right), \alpha\left(h\right)\left(q\left(x\right)\right)\right) = \\ & \mathrm{d}_Q\left(q\left(g\left(x\right)\right), q\left(h\left(x\right)\right)\right) < \epsilon. \text{ If } p \in Q, \text{ there exists } x \in Y \text{ such that } \\ & q\left(x\right) = p, \text{ so } \mathrm{d}_Q\left(\alpha\left(g\right)\left(p\right), \alpha\left(h\right)\left(p\right)\right) < \epsilon. \text{ Then } \rho_Q\left(\alpha\left(g\right), \alpha\left(h\right)\right) < \\ & \epsilon, \text{ so } \alpha : \mathcal{H}\left(Y\right) \to \mathcal{H}\left(Q\right) \text{ is continuous.} \end{aligned}$ 

If  $h_1, h_2 \in \mathcal{H}(Y)$ , then  $q \circ h_1 \circ h_2 = \alpha (h_1) \circ q \circ h_2 = \alpha (h_1) \circ \alpha (h_2) \circ q$ , so  $\alpha (h_1 \circ h_2) = \alpha (h_1) \circ \alpha (h_2)$ . Then  $\alpha$  is a homomorphism. It follows that for each  $h \in \mathcal{H}(Y)$ ,  $\alpha^{-1} (\alpha (h)) = h \circ \alpha^{-1} (\mathrm{id}_Q)$ .

Since  $\alpha^{-1}(\mathrm{id}_Q)$  is the kernel of the homomorphism  $\alpha$ , it is a normal subgroup of  $\mathcal{H}(Y)$ . If  $\alpha$  is a surjection, then  $\mathcal{H}(Y)/\alpha^{-1}(\mathrm{id}_Q)$  and  $\mathcal{H}(Q)$  are isomorphic and homeomorphic.

Also, if  $\alpha$  is a surjection, then  $\alpha$  is a quotient map, so the image of an open subset of  $\mathcal{H}(Y)$  that is saturated with respect to  $\alpha$  is an open subset of  $\mathcal{H}(Q)$ . If U is open in  $\mathcal{H}(Y)$ , then, for each  $g \in$  $\alpha^{-1}(\mathrm{id}_Q)$ ,  $U \circ g$  is open. Then  $\alpha^{-1}(\alpha(U)) = \bigcup_{h \in U} \alpha^{-1}(\alpha(h)) =$  $\bigcup_{h \in U} \left[h \circ \alpha^{-1}(\mathrm{id}_Q)\right] = \bigcup_{g \in \alpha^{-1}(\mathrm{id}_Q)} [U \circ g]$ . Hence,  $\alpha^{-1}(\alpha(U))$  is saturated and open, so  $\alpha\left(\alpha^{-1}(\alpha(U))\right) = \alpha(U)$  is open in  $\mathcal{H}(Q)$ . Therefore,  $\alpha$  is an open map.  $\Box$ 

We call  $\alpha(h)$  the homeomorphism of Q induced by h.

Suppose X is a homogeneous curve and XP is a continuous Xcurve of pseudo-arcs with quotient map  $q: XP \to X$ . Since the decomposition  $\{q^{-1}(p): p \in X\}$  is a continuous decomposition which is respected by the homeomorphism group, the hypothesis of Theorem 3.1 is satisfied. Also, since for each  $h \in \mathcal{H}(X)$ , there exists  $g \in \mathcal{H}(XP)$  such that  $q \circ g = h \circ q$ , we have  $\alpha(g) = h$ , so  $\alpha$  is a surjection.

**Lemma 3.2.** Let X be a homogeneous curve, XP be the continuous X-curve of pseudo-arcs with quotient map  $q: XP \to X$ , and  $XP_f$  be the fibered product induced by q. For each  $h \in \mathcal{H}(XP)$ , let  $\alpha(h) \in \mathcal{H}(X)$  be the homeomorphism induced by h. Suppose  $h_1, h_2 \in \mathcal{H}(XP)$  such that  $\alpha(h_1) = \alpha(h_2)$ . For each  $(x, y) \in XP_f$ , let  $\sigma(x, y) = (y, x)$ . Then  $(h_1 \times h_2)|_{XP_f}$  and  $\sigma \circ (h_1 \times h_2)|_{XP_f}$ are in  $\mathcal{H}(XP_f)$ .

Proof: It is clear that  $h_1 \times h_2 \in \mathcal{H}(XP \times XP)$ . If  $(x, y) \in XP_f$ , then q(x) = q(y). Then  $q(h_1(x)) = \alpha(h_1)(q(x)) = \alpha(h_2)(q(y)) =$  $q(h_2(y))$ . Hence,  $(h_1(x), h_2(y)) \in XP_f$ . Also, if  $(u, v) \in XP_f$  and  $(h_1 \times h_2)(a, b) = (u, v)$ , then  $q(u) = q(h_1(a)) = \alpha(h_1)(q(a))$ .

Similarly,  $q(v) = \alpha(h_2)(q(b)) = \alpha(h_1)(q(b))$ . Then, since q(u) = q(v),  $\alpha(h_1)(q(a)) = \alpha(h_1)(q(b))$ . Since  $\alpha(h_1)$  is a homeomorphism, q(a) = q(b). Then  $(h_1 \times h_2)(XP_f) = XP_f$ . It follows that  $(h_1 \times h_2)|_{XP_f} \in \mathcal{H}(XP_f)$ .

Since  $(x, y) \in XP_f$  if and only if  $(y, x) \in XP_f$ ,  $\sigma \in \mathcal{H}(XP_f)$ . Then  $\sigma \circ (h_1 \times h_2)|_{XP_f} \in \mathcal{H}(XP_f)$ .

**Lemma 3.3.** Let  $X, XP, XP_f$ , and q be as in Lemma 3.2. Let  $\mathcal{D} = \{q^{-1}(p) \times q^{-1}(p) : p \in X\}$ , a decomposition of  $XP_f$ . Then each element of  $\mathcal{D}$  is minimal with respect to being a non-degenerate, semi-terminal subcontinuum of  $XP_f$ . Hence, the homeomorphism group of  $XP_f$  respects  $\mathcal{D}$ .

*Proof:* Janusz R. Prajs [8] has proven that the elements of  $\mathcal{D}$  are semi-terminal.

Let K be a non-degenerate, proper subcontinuum of an element  $q^{-1}(p) \times q^{-1}(p)$  of  $\mathcal{D}$ .

**Case 1:**  $\pi_1(K) = \{x_1\}$  for some  $x_1 \in XP$ . Then, since K is non-degenerate, there exists  $\{(x_1, y_1), (x_1, y_2)\} \subseteq K$ , with  $y_1 \neq y_2$ . Then  $\pi_2^{-1}(y_1)$  and  $\pi_2^{-1}(y_2)$  are disjoint subcontinua intersecting K, neither of which is contained in K. It follows that K is not semi-terminal.

Case 2:  $\pi_1(K)$  is non-degenerate, and  $K = \bigcup_{x \in \pi_1(K)} \pi_1^{-1}(x)$ . Then  $\pi_1(K) \neq q^{-1}(p)$ , since K is a proper subcontinuum of  $q^{-1}(p) \times q^{-1}(p)$ . Let  $\{y_1, y_2\} \subseteq q^{-1}(p)$ , with  $y_1 \neq y_2$ . Then  $\pi_2^{-1}(y_1)$  and  $\pi_2^{-1}(y_2)$  are disjoint subcontinua intersecting K, neither of which is contained in K. It follows that K is not semi-terminal.

**Case 3**:  $\pi_1(K)$  is non-degenerate, and there exists  $x_0 \in \pi_1(K)$  such that  $\pi_1^{-1}(x_0)$  intersects the complement of K.

If  $\pi_1^{-1}(x) \subseteq K$  for all  $x \in \pi_1(K) - \{x_0\}$ , then choose a sequence  $\{x_n\}$  of points in  $\pi_1(K)$  distinct from  $x_0$ , and converging to  $x_0$ . Let  $(x_0, y) \in \pi_1^{-1}(x_0) - K$ . Then  $\{(x_n, y)\}$  is a sequence of points in K converging to  $(x_0, y)$ , contradicting that K is closed. Hence, there exists  $x \in \pi_1(K)$ ,  $x \neq x_0$ , such that  $\pi_1^{-1}(x)$  intersects the complement of K. Then  $\pi_1^{-1}(x_0)$  and  $\pi_1^{-1}(x)$  are disjoint continua intersecting K, neither of which is contained in K. Then K is not semi-terminal.

It follows that no proper, non-degenerate subcontinuum of an element of  $\mathcal{D}$  is semi-terminal. Since being minimal with respect

to being a non-degenerate, semi-terminal subcontinuum of  $XP_f$  is a topological property, the homeomorphism group of  $XP_f$  must respect  $\mathcal{D}$ .

Note that, using the notation in the lemma above, for each  $p \in X$ ,  $q^{-1}(p) \times q^{-1}(p) = \pi_1^{-1}(q^{-1}(p))$ , so the quotient map for  $\mathcal{D}$  is  $\pi_1 \circ q$ . Since both  $\pi_1$  and q are open,  $\mathcal{D}$  is a continuous decomposition, and the hypotheses of Theorem 3.1 are satisfied.

**Lemma 3.4.** Let X, XP, XP<sub>f</sub>, q,  $\alpha$ , and  $\sigma$  be as in Lemma 3.2. For each  $h \in \mathcal{H}(XP_f)$ , let  $\beta(h) \in \mathcal{H}(X)$  be the homeomorphism induced by h. Then, for each  $g_1, g_2 \in \mathcal{H}(XP)$  such that  $\alpha(g_1) = \alpha(g_2)$ ,  $\beta((g_1 \times g_2)|_{XP_f}) = \beta(\sigma \circ (g_1 \times g_2)|_{XP_f}) = \alpha(g_1)$ . Also,  $\beta$  is a surjection.

Proof: We have, for all  $(x, y) \in XP_f$ ,  $(q \circ \pi_1) \circ (g_1 \times g_2) |_{XP_f} (x, y)$ =  $q(g_1(x)) = \alpha(g_1)(q(x)) = \alpha(g_1) \circ (q \circ \pi_1)(x, y)$ . It follows that  $\beta((g_1 \times g_2) |_{XP_f}) = \alpha(g_1)$ .

Since  $\sigma$  fixes the decomposition elements of  $XP_f$ ,  $\beta(\sigma) = \mathrm{id}_X$ . Then  $\beta(\sigma \circ (g_1 \times g_2)|_{XP_f}) = \mathrm{id}_X \circ \alpha(g_1) = \alpha(g_1)$ .

Let  $f \in \mathcal{H}(X)$ . Since  $\alpha$  is a surjection, there exists  $g \in \mathcal{H}(XP)$ such that  $\alpha(g) = f$ . By Lemma 3.2,  $(g \times g)|_{XP_f} \in \mathcal{H}(XP_f)$ . Hence,  $\beta((g \times g)|_{XP_f}) = \alpha(g) = f$ , so  $\beta$  is a surjection.  $\Box$ 

**Theorem 3.5.** Let X be a homogeneous curve, XP the continuous X-curve of pseudo-arcs with quotient map  $q : XP \to X$ , and XP<sub>f</sub> the fibered product induced by q. For each  $h \in \mathcal{H}(XP)$ , let  $\alpha(h) \in \mathcal{H}(X)$  be the homeomorphism induced by h. Let  $\mathcal{P} = \{(h_1 \times h_2) | _{XP_f} : \alpha(h_1) = \alpha(h_2) \}$ , and let  $\sigma : XP_f \to XP_f$  be the map  $\sigma(x, y) = (y, x)$ . Then

- (1)  $\mathcal{H}(XP_f) = \mathcal{P} \cup (\sigma \circ \mathcal{P});$
- (2)  $\mathcal{P}$  is a normal subgroup of  $\mathcal{H}(XP_f)$ , and  $\mathcal{P}$  acts transitively on  $XP_f$ ;
- (3)  $\mathcal{P}$  and  $\sigma \circ \mathcal{P}$  are clopen, disjoint subsets of  $\mathcal{H}(XP_f)$ ;
- (4) there is an isometric imbedding of  $\mathcal{H}(XP)$  into  $\mathcal{H}(XP_f)$ ;
- (5)  $\mathcal{H}(XP_f)$  contains no non-degenerate subcontinuum;
- (6)  $\mathcal{H}(XP_f)$  is totally disconnected if and only if  $\mathcal{H}(XP)$  is totally disconnected.

*Proof:* By Lemma 3.2,  $\mathcal{P} \cup (\sigma \circ \mathcal{P}) \subseteq \mathcal{H}(XP_f)$ .

For each  $h \in \mathcal{H}(XP_f)$ , let  $\beta(h) \in \mathcal{H}(X)$  be the homeomorphism induced by h. Suppose  $h \in \mathcal{H}(XP_f)$ . Let  $p \in X$ . Then

 $h(q^{-1}(p) \times q^{-1}(p)) = q^{-1}(\beta(h)(p)) \times q^{-1}(\beta(h)(p))$ . Let  $P_1 =$  $q^{-1}(p)$  and  $P_2 = q^{-1}(\beta(h)(p))$ . Since  $P_1$  and  $P_2$  are pseudoarcs, there exists a homeomorphism  $f: P_2 \to P_1$ . Then  $(f \times f) \circ$  $h|_{P_1 \times P_1} \in \mathcal{H}(P_1 \times P_1)$ . Hence,  $(f \times f) \circ h|_{P_1 \times P_1}$  is a product homeomorphism, or a composition of a switching of coordinates and a product homeomorphism. Then, with respect to the map  $(f \times f) \circ h|_{P_1 \times P_1}$ , either the image of each vertical slice of  $P_1 \times P_1$ is a vertical slice of  $P_1 \times P_1$  and the image of each horizontal slice is a horizontal slice, or the image of each vertical slice is a horizontal slice and the image of each horizontal slice is a vertical slice [1]. Since  $f \times f$  takes vertical slices of  $P_2 \times P_2$  to vertical slices of  $P_1 \times P_1$  and horizontal slices to horizontal slices, it must be that  $h|_{XP_f}$  takes vertical slices of  $P_1 \times P_1$  to vertical slices of  $P_2 \times P_2$ and horizontal slices to horizontal slices, or else it takes vertical slices to horizontal slices and horizontal slices to vertical slices.

Let V consist of all  $p \in X$  such that h takes vertical slices of  $q^{-1}(p) \times q^{-1}(p)$  to vertical slices of  $q^{-1}(\beta(h)(p)) \times q^{-1}(\beta(h)(p))$ . Let H consist of all  $p \in X$  such that h takes vertical slices of  $q^{-1}(p) \times q^{-1}(p)$  to horizontal slices of  $q^{-1}(\beta(h)(p)) \times q^{-1}(\beta(h)(p))$ . Clearly, V and H are disjoint, and  $V \cup H = X$ .

Let  $\{p_n\}$  be a sequence in V converging to  $p \in X$ . Choose  $(x, y) \in$  $q^{-1}(p) \times q^{-1}(p)$  such that  $x \neq y$ . Since  $q(\pi_1(B((x,y),1)))$  is open and contains p, there exists some  $p_{n_1} \in q(\pi_1(B((x,y),1)))$ . Then there exists  $(x_1, y_1) \in B((x, y), 1) \cap (q^{-1}(p_{n_1}) \times q^{-1}(p_{n_1}))$ . For integers k > 1, choose  $n_k > n_{k-1}$  such that

 $p_{n_{k}} \in q\left(\pi_{1}\left(B\left((x, y), \frac{1}{k}\right)\right)\right),$ and  $(x_{k}, y_{k}) \in B\left((x, y), \frac{1}{k}\right) \cap \left(q^{-1}\left(p_{n_{k}}\right) \times q^{-1}\left(p_{n_{k}}\right)\right).$ Then  $\{(x_k, y_k)\}$  converges to (x, y). Hence,  $\{x_k\}$  converges to x, so  $\{(x_k, x_k)\}$  converges to (x, x). Then  $\{\pi_1(h((x_k, y_k)))\}$  converges to  $\pi_1(h((x,y)))$ , and  $\{\pi_1(h((x_k,x_k)))\}$  converges to  $\pi_1(h((x,x)))$ .

Since, for each k,  $(x_k, y_k)$  and  $(x_k, x_k)$  belong to the same vertical slice of  $q^{-1}(p_{n_k}) \times q^{-1}(p_{n_k})$ , and h takes vertical slices of  $q^{-1}(p_{n_k}) \times q^{-1}(p_{n_k})$  to vertical slices of  $q^{-1}(\beta(h)(p_{n_k})) \times q^{-1}(\beta(h)(p_{n_k}))$ ,  $\pi_1(h((x_k, y_k))) = \pi_1(h((x_k, x_k)))$ . It follows that  $\pi_1(h((x, y))) =$  $\pi_1(h((x, x)))$ . Then since (x, y) and (x, x) belong to the same vertical slice of  $q^{-1}(p) \times q^{-1}(p)$  and  $(x, y) \neq (x, x)$ , the image of this vertical slice under h could not be a horizontal slice. It follows that  $p \in V$ , and V is closed.

An analogous proof shows that H is closed. Then, since X is connected, either  $V = \emptyset$  or  $H = \emptyset$ .

Suppose  $H = \emptyset$ . Define  $h_1 : XP \to XP$  and  $h_2 : XP \to XP$ such that  $h_1(x_1) = x_2$  if and only if  $\pi_1(h(\pi_1^{-1}(x_1))) = x_2$ , and  $h_1(y_1) = y_2$  if and only if  $\pi_2(h(\pi_2^{-1}(y_1))) = y_2$ . Then  $h_1$  and  $h_2$  are bijections since h is a bijection. If U is an open subset of XP, then  $h_1^{-1}(U) = \pi_1(h^{-1}(\pi_1^{-1}(U)))$ , which is open since  $\pi_1$  is an open map and h is a homeomorphism. It follows that  $h_1$  is a homeomorphism. Similarly,  $h_2$  is a homeomorphism.

Let  $x \in XP$  and let q(x) = p. We have  $h\left(q^{-1}\left(p\right) \times q^{-1}\left(p\right)\right) = q^{-1}\left(\beta\left(h\right)\left(p\right)\right) \times q^{-1}\left(\beta\left(h\right)\left(p\right)\right)$ . Furthermore, we get  $h\left(\pi_{1}^{-1}\left(x\right)\right) \subseteq \pi_{1}^{-1}\left(q^{-1}\left(\beta\left(h\right)\left(p\right)\right)\right)$ , so  $h_{1}\left(x\right) \in q^{-1}\left(\beta\left(h\right)\left(p\right)\right)$ . Then  $\left(q \circ h_{1}\right)\left(x\right) = \beta\left(h\right)\left(p\right) = \left(\beta\left(h\right) \circ q\right)\left(x\right)$ . Hence,  $\alpha\left(h_{1}\right) = \beta\left(h\right)$ . Similarly,  $\alpha\left(h_{2}\right) = \beta\left(h\right) = \alpha\left(h_{1}\right)$ . It follows that  $\left(h_{1} \times h_{2}\right) |_{XP_{f}} \in \mathcal{P}$ .

It is trivial to show  $h = (h_1 \times h_2)|_{XP_f}$ .

Suppose  $V = \emptyset$ . Since *h* takes vertical slices to horizontal slices and horizontal slices to vertical slices,  $\sigma \circ h$  takes vertical slices to vertical slices, and horizontal slices to horizontal slices. Then  $\sigma \circ h \in \mathcal{P}$ , so  $h = \sigma \circ (\sigma \circ h) \in \sigma \circ \mathcal{P}$ . Therefore,  $\mathcal{H}(XP_f) = \mathcal{P} \cup (\sigma \circ \mathcal{P})$ .

Clearly,  $\mathcal{P}$  and  $\sigma \circ \mathcal{P}$  are disjoint, since elements of  $\mathcal{P}$  take vertical slices to vertical slices and elements of  $\sigma \circ \mathcal{P}$  take vertical slices to horizontal slices.

We show  $\mathcal{P}$  is a subgroup of  $\mathcal{H}(XP_f)$ . If  $(h_1 \times h_2)|_{XP_f}$  and  $(g_1 \times g_2)|_{XP_f}$  are in  $\mathcal{P}$ , then  $(h_1 \times h_2)|_{XP_f} \circ ((g_1 \times g_2)|_{XP_f})^{-1} = ((h_1 \circ g_1^{-1}) \times (h_2 \circ g_2^{-1}))|_{XP_f}$ . Furthermore,

 $\alpha \left( h_1 \circ g_1^{-1} \right) = \alpha \left( h_1 \right) \circ \alpha \left( g_1 \right)^{-1} = \alpha \left( h_2 \right) \circ \alpha \left( g_2 \right)^{-1} = \alpha \left( h_2 \circ g_2^{-1} \right).$ Then  $(h_1 \times h_2) \left|_{XP_f} \circ \left( \left( g_1 \times g_2 \right) \left|_{XP_f} \right)^{-1} \in \mathcal{P}$ , so  $\mathcal{P}$  is a subgroup. Since there are only two left cosets,  $\mathcal{P}$  is normal in  $\mathcal{H} \left( XP_f \right)$ .

We show that  $\mathcal{P}$  acts transitively on  $XP_f$ . If  $(x_1, y_1), (x_2, y_2) \in XP_f$ , let  $p_1 = q(x_1) = q(y_1)$ , and let  $p_2 = q(x_2) = q(y_2)$ . Since X is homogeneous, there exists a homeomorphism  $f : (X, p_1) \to (X, p_2)$ . Also, there exist homeomorphisms  $h_1 : (XP, x_1) \to (XP, x_2)$  and  $h_2 : (XP, y_1) \to (XP, y_2)$  such that  $q \circ h_1 = f \circ q = q \circ h_2$ . Then  $\alpha(h_1) = f = \alpha(h_2)$ . Therefore,  $(h_1 \times h_2)|_{XP_f} \in \mathcal{P}$  and  $(h_1 \times h_2)|_{XP_f}(x_1, y_1) = (x_2, y_2)$ .

Now we prove statement (3). Suppose  $\{h_n\}$  is a sequence of functions in  $\mathcal{P}$  converging to some  $h \in \mathcal{H}(XP_f)$ . Let  $x \in XP$ . Then,

for each  $(x, y) \in \pi_1^{-1}(x)$ ,  $\{\pi_1(h_n(x, y))\}$  converges to  $\pi_1(h(x, y))$ . Since each  $h_n$  takes vertical slices to vertical slices, for each n, there exists  $x_n$  such that for every  $(x, y) \in \pi_1^{-1}(x)$ ,  $\pi_1(h_n((x, y))) = x_n$ . Then  $\pi_1(h(\pi_1^{-1}(x))) = \lim_n x_n$ . It follows that h must take vertical slices to vertical slices, so  $h \in \mathcal{P}$ , confirming that  $\mathcal{P}$  is closed.

Since composition by  $\sigma$  is a homeomorphism of  $\mathcal{H}(XP_f)$ ,  $\sigma \circ \mathcal{P}$  is closed also. Because  $\mathcal{P}$  and  $\sigma \circ \mathcal{P}$  are disjoint, and their union is  $\mathcal{H}(XP_f)$ , they are both clopen.

Now we imbed  $\mathcal{H}(XP)$  into  $\mathcal{H}(XP_f)$ . If  $h \in \mathcal{H}(XP)$ , we have shown that  $(h \times h) |_{XP_f} \in \mathcal{H}(XP_f)$ . Let  $i : \mathcal{H}(XP) \to \mathcal{H}(XP_f)$ ,  $i(h) = (h \times h) |_{XP_f}$ .

Let  $h_1, h_2 \in XP$ . Now

$$\rho_{XP_f}\left((h_1 \times h_1) \left|_{XP_f}\right., (h_2 \times h_2) \left|_{XP_f}\right.\right)$$

$$= \sup \left( d_{XP}^{2} \left( h_{1} \left( x \right), h_{1} \left( y \right) \right), \left( h_{2} \left( x \right), h_{2} \left( y \right) \right) : \left( x, y \right) \in XP_{f} \right)$$

 $= \sup \left( \max \left\{ d_{XP} \left( h_1 \left( x \right), h_2 \left( x \right) \right), d_{XP} \left( h_1 \left( y \right), h_2 \left( y \right) \right) \right\} : (x, y) \in XP_f \right).$ 

For  $(x, y) \in XP_f$ , max  $\{d_{XP}(h_1(x), h_2(x)), d_{XP}(h_1(y), h_2(y))\}$   $\leq \sup(d_{XP}(h_1(z), h_2(z)) : z \in XP) = \rho_{XP}(h_1, h_2)$ . Also, we have  $\rho_{XP}(h_1, h_2) = \sup(d_{XP}(h_1(z), h_2(z)) : z \in XP)$ . We see this is equal to  $\sup(d_{XP}^2(h_1(z), h_1(z)), (h_2(z), h_2(z)) : (z, z) \in XP_f) \leq$   $\sup(d_{XP}^2(h_1(x), h_1(y)), (h_2(x), h_2(y)) : (x, y) \in XP_f)$ , which is  $\rho_{XP_f}((h_1 \times h_1) |_{XP_f}, (h_2 \times h_2) |_{XP_f})$ . Then we can conclude that  $\rho_{XP_f}((h_1 \times h_1) |_{XP_f}, (h_2 \times h_2) |_{XP_f}) = \rho_{XP}(h_1, h_2)$ . Therefore, *i* is an isometric imbedding.

Suppose  $\mathcal{H}(XP_f)$  contains a non-degenerate subcontinuum. Since  $\mathcal{H}(XP_f)$  is homogeneous,  $\mathrm{id}_{XP_f}$  belongs to a non-degenerate subcontinuum K. Since  $\mathrm{id}_{XP_f} \in \mathcal{P}$  and  $\mathcal{P}$  is clopen, we must have  $K \subseteq \mathcal{P}$ .

Define functions  $\psi_1 : \mathcal{P} \to \mathcal{H}(XP)$  and  $\psi_2 : \mathcal{P} \to \mathcal{H}(XP)$ , where  $\psi_1((h_1 \times h_2)|_{XP_f}) = h_1$  and  $\psi_2((h_1 \times h_2)|_{XP_f}) = h_2$ . Since  $\pi_1(XP_f) = XP = \pi_2(XP_f)$ , these functions are well defined. If  $(h_1 \times h_2)|_{XP_f} \in \mathcal{P}$  and  $\epsilon > 0$ , suppose  $(g_1 \times g_2)|_{XP_f} \in \mathcal{P}$  and  $\rho_{XP_f}((h_1 \times h_2)|_{XP_f}, (g_1 \times g_2)|_{XP_f}) < \epsilon$ . Then, for all  $x \in XP$ ,  $d_{XP}(h_1(x), g_1(x)) \leq d_{XP_f}^2((h_1(x), h_2(x)), (g_1(x), g_2(x))) < \epsilon$ . Hence,  $\rho_{XP}(\psi_1((h_1 \times h_2)|_{XP_f}), \psi_1((g_1 \times g_2)|_{XP_f})) < \epsilon$ , and  $\psi_1$ is continuous. An analogous proof shows that  $\psi_2$  is continuous. Then  $\psi_1(K)$  must be a continuum in  $\mathcal{H}(XP)$ . But  $\mathcal{H}(XP)$  contains no non-degenerate subcontinuum by a corollary in [3]. Then

 $\psi_1(K)$  must be degenerate. Since  $\operatorname{id}_{XP_f} \in K$ ,  $\psi_1(K) = \{\operatorname{id}_{XP}\}$ . Similarly,  $\psi_2(K) = \{\operatorname{id}_{XP}\}$ . Then  $K = \{\operatorname{id}_{XP_f}\}$ , and any continuum of  $\mathcal{H}(XP_f)$  must be degenerate.

Now we prove (6). If we assume  $\mathcal{H}(XP)$  is totally disconnected, then a proof similar to the proof of statement (5) shows  $\mathcal{H}(XP_f)$ is totally disconnected. If  $\mathcal{H}(XP)$  contains a non-degenerate connected set K, then i(K) is a non-degenerate connected set in  $\mathcal{H}(XP_f)$ , where i is the imbedding in (4).

**Corollary 3.6.** Let P be a pseudo-arc. Then  $\mathcal{H}(PP_f)$  is totally disconnected if and only if  $\mathcal{H}(P)$  is totally disconnected.

*Proof:* This follows from Theorem 3.5(6) and the fact that PP is homeomorphic to P [4].

## 4. Questions

It would be interesting to know the answer to the following question.

**Question 4.1.** In terms of the components of  $\mathcal{H}(X)$  or  $\mathcal{H}(XP)$ , what are the components of  $\mathcal{H}(XP_f)$ ?

It may be necessary to answer this question first, which was posed by Lewis [6], and was earlier stated, as noted by Lewis in [3], in a different form by Beverly Brechner.

**Question 4.2.** Does the homeomorphism group of the pseudo-arc have any non-degenerate connected subsets?

The answer to the next question may also be useful.

**Question 4.3.** What is the dimension of  $\mathcal{H}(XP_f)$ ? Does it depend on the dimension of  $\mathcal{H}(X)$ ?

The maps in this paper which relate the homeomorphism groups of X, XP, and  $XP_f$  may be helpful in answering these questions.

## References

- David P. Bellamy and Judy A. Kennedy, Factorwise rigidity of products of pseudo-arcs, Topology Appl. 24 (1986), no. 1-3, 197–205.
- [2] David P. Bellamy and Janusz M. Lysko, Factorwise rigidity of the product of two pseudo-arcs, Topology Proc. 8 (1983), no. 1, 21–27.

- [3] Wayne Lewis, Pseudo-arcs and connectedness in homeomorphism groups, Proc. Amer. Math. Soc. 87 (1983), no. 4, 745–748.
- [4] \_\_\_\_\_, The pseudo-arc of pseudo-arcs is unique, Houston J. Math. 10 (1984), no. 2, 227–234.
- [5] \_\_\_\_\_, Continuous curves of pseudo-arcs, Houston J. Math. 11 (1985), no. 1, 91–99.
- [6] Wayne Lewis and You Cheng Zhou, Continua whose homeomorphism groups are generated by arbitrarily small neighborhoods of the identity, Topology Appl. 126 (2002), no. 3, 409–417.
- [7] Judy Kennedy Phelps, Homogeneity and groups of homeomorphisms, Topology Proc. 6 (1981), no. 2, 371–404 (1982).
- [8] Janusz R. Prajs, *Semi-terminal continua in Kelley spaces*. To appear in Transactions of the American Mathematical Society.
- [9] Karen Villarreal, Fibered products of homogeneous continua, Trans. Amer. Math. Soc. 338 (1993), no. 2, 933–939.

Department of Mathematics and Physical Science; Louisiana State University Alexandria; Alexandria, Louisiana 71302

E-mail address: kvillarr@suddenlink.net