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ANOTHER CLASS OF CONTINUA

WHICH ARE FACTORWISE RIGID

KAREN VILLARREAL

Abstract. Let 𝑋𝑃 be a continuous curve of pseudo-arcs
with quotient map 𝑞 : 𝑋𝑃 → 𝑋, and let 𝑋𝑃𝑓 denote the
fibered product space {(𝑥, 𝑦) ∈ 𝑋𝑃 ×𝑋𝑃 : 𝑞 (𝑥) = 𝑞 (𝑦)} .We
will show that each homeomorphism of 𝑋𝑃𝑓 is a product
homeomorphism, or a composition of an interchanging of co-
ordinates and a product homeomorphism. We will also obtain
a few other characteristics of the homeomorphism group of
𝑋𝑃𝑓 .

1. Introduction

In 1983, David P. Bellamy and Janusz M. Lysko [2] showed that
the product of two pseudo-arcs is factorwise rigid. This means that
every self-homeomorphism of a product of two pseudo-arcs is either
a product homeomorphism, or a composition of a permutation of
coordinates and a product homeomorphism. In 1986, Bellamy and
Judy A. Kennedy [1] generalized this result to arbitrary products
of pseudo-arcs.

In 1985, Wayne Lewis [5] proved that, for each one-dimensional
continuum 𝑋, there is a continuum 𝑋𝑃 that has a continuous,
terminal decomposition into pseudo-arcs, with quotient map 𝑞 :
𝑋𝑃 → 𝑋. The continuum 𝑋𝑃 is homogeneous whenever 𝑋 is. In
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182 K. VILLARREAL

the case that 𝑋 is homogeneous, the author [9] has shown that the
space 𝑋𝑃𝑓 = {(𝑥, 𝑦) ∈ 𝑋𝑃 ×𝑋𝑃 : 𝑞 (𝑥) = 𝑞 (𝑦)} is a homogeneous
continuum. In this paper, we show that𝑋𝑃𝑓 is factorwise rigid. We
obtain other characteristics of the homeomorphism groups of the
spaces 𝑋𝑃𝑓 , and we obtain maps that relate the homeomorphism
groups of 𝑋, 𝑋𝑃, and 𝑋𝑃𝑓 .

2. Definitions and other preliminaries

A continuum is a compact, connected metric space. A curve is a
one-dimensional continuum. A topological space 𝑌 is homogeneous
if, for every 𝑥, 𝑦 ∈ 𝑌, there exists a homeomorphism ℎ : (𝑌, 𝑥) →
(𝑌, 𝑦) .

A subcontinuum 𝐶 of a continuum 𝑌 is terminal in 𝑌 if, for every
subcontinuum 𝐾 of 𝑌 intersecting 𝐶, either 𝐾 ⊆ 𝐶 or 𝐶 ⊆ 𝐾. The
subcontinuum 𝐶 is semi-terminal in 𝑌 if, for every pair of disjoint
subcontinua 𝐾1and 𝐾2 intersecting 𝐶, either 𝐾1 ⊆ 𝐶 or 𝐾2 ⊆ 𝐶.

A map is a continuous function. We denote the identity function
of the space 𝑌 by id𝑌 . If 𝑔1 : 𝑌 → 𝑌 and 𝑔2 : 𝑌 → 𝑌, then
𝑔1 × 𝑔2 denotes the function 𝑔1 × 𝑔2 : 𝑌 × 𝑌 → 𝑌 × 𝑌, where
(𝑔1 × 𝑔2) (𝑥, 𝑦) = (𝑔1 (𝑥) , 𝑔2 (𝑦)) .

A continuous decomposition of a continuum 𝑌 is a partition of
𝑌 into subcontinua so that the quotient map is open. We say that
the decomposition 𝒟 is respected by the homeomorphism group of
𝑌 if, for each 𝐷1 ∈ 𝒟 and each homeomorphism ℎ : 𝑌 → 𝑌, there
exists a 𝐷2 ∈ 𝒟 such that ℎ (𝐷1) = 𝐷2.

We let d𝑌 denote the metric on a space 𝑌, and we let d2𝑌 denote
the metric on 𝑌 × 𝑌 where d2𝑌 ((𝑥1, 𝑦1) , (𝑥2, 𝑦2)) is the maximum
of d𝑌 (𝑥1, 𝑥2) and d𝑌 (𝑦1, 𝑦2).

We let ℋ (𝑌 ) denote the homeomorphism group of the space
𝑌. The space ℋ (𝑌 ) is a topological group under the operation of
composition of functions. Then the map 𝑓𝑔 : ℋ (𝑌 ) → ℋ (𝑌 ) ,
𝑓𝑔 (ℎ) = ℎ ∘ 𝑔 is a homeomorphism, and ℋ (𝑌 ) is homogeneous.

If 𝑌 is a nondegenerate homogeneous continuum, then ℋ (𝑌 ) is
not locally compact [7]. However, it is a complete metric space with
metric 𝜌𝑌 (ℎ1, ℎ2) = sup {d𝑌 (ℎ1 (𝑥) , ℎ2 (𝑥)) : 𝑥 ∈ 𝑌 } .

A subgroup 𝐺 of ℋ (𝑌 ) acts transitively on 𝑌 if {𝑔 (𝑥) ; 𝑔 ∈ 𝐺} =
𝑌 for all 𝑥 ∈ 𝑌.
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If 𝑋 is a homogeneous curve, then we call the continuum 𝑋𝑃
with continuous, terminal decomposition into pseudo-arcs and quo-
tient map 𝑞 : 𝑋𝑃 → 𝑋, constructed as in [5], a continuous 𝑋-curve
of pseudo-arcs. In [5], Lewis proved that the homeomorphism group
of 𝑋𝑃 respects the decomposition, and that for each ℎ ∈ ℋ (𝑋),
there exists ℎ0 ∈ ℋ (𝑋𝑃 ) such that 𝑞 ∘ ℎ0 = ℎ ∘ 𝑞.

If 𝑋 is a homogeneous curve and 𝑋𝑃 is a continuous 𝑋-curve
of pseudo-arcs with quotient map 𝑞 : 𝑋𝑃 → 𝑋, we let 𝑋𝑃𝑓 =
{(𝑥, 𝑦) ∈ 𝑋𝑃 ×𝑋𝑃 : 𝑞 (𝑥) = 𝑞 (𝑦)} =

∪
𝑝∈𝑋

[
𝑞−1 (𝑝)× 𝑞−1 (𝑝)

]
. We

use the term fibered product induced by 𝑞 to indicate the space 𝑋𝑃𝑓 .
We use the symbols 𝜋1 and 𝜋2 to indicate the maps 𝜋1 : 𝑋𝑃𝑓 → 𝑋𝑃,
𝜋1 (𝑥, 𝑦) = 𝑥, and 𝜋2 : 𝑋𝑃𝑓 → 𝑋𝑃, 𝜋2 (𝑥, 𝑦) = 𝑦. In [9], it was
shown that these maps are open.

3. Main Results

Theorem 3.1. Let 𝒟 be a continuous decomposition of the contin-
uum 𝑌 with quotient map 𝑞 : 𝑌 → 𝑄. Suppose 𝒟 is respected by the
homeomorphism group of 𝑌 . Then for each ℎ ∈ ℋ (𝑌 ) , there exists
a unique 𝛼 (ℎ) ∈ ℋ (𝑄) such that 𝑞 ∘ ℎ = 𝛼 (ℎ) ∘ 𝑞. Furthermore,

(1) the function 𝛼 : ℋ (𝑌 ) → ℋ (𝑄) 𝑖𝑠 continuous and a group
homomorphism;

(2) if 𝛼 is a surjection, then 𝛼 is open, and ℋ (𝑄) is homeo-
morphic and isomorphic to ℋ (𝑌 ) /𝛼−1 (id𝑄).

Proof: Since the continuous decomposition 𝒟 is respected by
ℋ (𝑌 ) , for each ℎ ∈ ℋ (𝑌 ) and 𝑝1 ∈ 𝑄, there exists a unique
𝑝2 ∈ 𝑄 such that ℎ

(
𝑞−1 (𝑝1)

)
= 𝑞−1 (𝑝2). Let 𝛼 (ℎ) : 𝑄 → 𝑄 be

defined by 𝛼 (ℎ) (𝑝1) = 𝑝2 if and only if ℎ
(
𝑞−1 (𝑝1)

)
= 𝑞−1 (𝑝2) .

It is trivial to show that 𝛼 (ℎ) is a bijection since ℎ is a bijection.

If 𝑈 is an open subset of 𝑄, then 𝛼 (ℎ)−1 (𝑈) = 𝑞
(
ℎ−1

(
𝑞−1 (𝑈)

))
,

which is open since 𝑞 is an open map and ℎ is a homeomorphism.
Then 𝛼 (ℎ) ∈ ℋ (𝑄) .

It is clear from the definition of 𝛼 (ℎ) that 𝑞 ∘ ℎ = 𝛼 (ℎ) ∘ 𝑞.
Suppose 𝑔 ∈ ℋ (𝑄) and 𝑞 ∘ ℎ = 𝑔 ∘ 𝑞. Then if 𝑝 ∈ 𝑄, there exists
𝑥 ∈ 𝑌 such that 𝑞 (𝑥) = 𝑝. Then 𝑔 (𝑝) = 𝑔 (𝑞 (𝑥)) = 𝑞 (ℎ (𝑥)) =
𝛼 (ℎ) (𝑞 (𝑥)) = 𝛼 (ℎ) (𝑝), so 𝑔 = 𝛼 (ℎ).

Let ℎ ∈ ℋ (𝑌 ) and let 𝜖 > 0 be given. Since 𝑞 is continu-
ous on the compact space 𝑌, it is uniformly continuous. Hence,
there exists 𝛿 > 0 such that if 𝑦1, 𝑦2 ∈ 𝑌 and d𝑌 (𝑦1, 𝑦2) < 𝛿, then
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d𝑄 (𝑞 (𝑦1) , 𝑞 (𝑦2)) < 𝜖. Suppose 𝑔 ∈ ℋ (𝑌 ) and 𝜌𝑌 (𝑔, ℎ) < 𝛿. Then if
𝑥 ∈ 𝑌, d𝑌 (𝑔 (𝑥) , ℎ (𝑥)) < 𝛿. Hence, d𝑄 (𝛼 (𝑔) (𝑞 (𝑥)) , 𝛼 (ℎ) (𝑞 (𝑥))) =
d𝑄 (𝑞 (𝑔 (𝑥)) , 𝑞 (ℎ (𝑥))) < 𝜖. If 𝑝 ∈ 𝑄, there exists 𝑥 ∈ 𝑌 such that
𝑞 (𝑥) = 𝑝, so d𝑄 (𝛼 (𝑔) (𝑝) , 𝛼 (ℎ) (𝑝)) < 𝜖. Then 𝜌𝑄 (𝛼 (𝑔) , 𝛼 (ℎ)) <
𝜖, so 𝛼 : ℋ (𝑌 ) → ℋ (𝑄) is continuous.

If ℎ1, ℎ2 ∈ ℋ (𝑌 ) , then 𝑞∘ℎ1∘ℎ2 = 𝛼 (ℎ1)∘𝑞∘ℎ2 = 𝛼 (ℎ1)∘𝛼 (ℎ2)∘
𝑞, so 𝛼 (ℎ1 ∘ ℎ2) = 𝛼 (ℎ1) ∘ 𝛼 (ℎ2) . Then 𝛼 is a homomorphism. It
follows that for each ℎ ∈ ℋ (𝑌 ) , 𝛼−1 (𝛼 (ℎ)) = ℎ ∘ 𝛼−1 (id𝑄) .

Since 𝛼−1 (id𝑄) is the kernel of the homomorphism 𝛼, it is a nor-
mal subgroup of ℋ (𝑌 ) . If 𝛼 is a surjection, then ℋ (𝑌 ) /𝛼−1 (id𝑄)
and ℋ (𝑄) are isomorphic and homeomorphic.

Also, if 𝛼 is a surjection, then 𝛼 is a quotient map, so the image
of an open subset of ℋ (𝑌 ) that is saturated with respect to 𝛼 is
an open subset of ℋ (𝑄) . If 𝑈 is open in ℋ (𝑌 ) , then, for each 𝑔 ∈
𝛼−1 (id𝑄) , 𝑈 ∘ 𝑔 is open. Then 𝛼−1 (𝛼 (𝑈)) =

∪
ℎ∈𝑈 𝛼

−1 (𝛼 (ℎ)) =∪
ℎ∈𝑈

[
ℎ ∘ 𝛼−1 (id𝑄)

]
=

∪
𝑔∈𝛼−1(id𝑄) [𝑈 ∘ 𝑔] . Hence, 𝛼−1 (𝛼 (𝑈)) is

saturated and open, so 𝛼
(
𝛼−1 (𝛼 (𝑈))

)
= 𝛼 (𝑈) is open in ℋ (𝑄).

Therefore, 𝛼 is an open map. □
We call 𝛼 (ℎ) the homeomorphism of 𝑄 induced by ℎ.
Suppose 𝑋 is a homogeneous curve and 𝑋𝑃 is a continuous 𝑋-

curve of pseudo-arcs with quotient map 𝑞 : 𝑋𝑃 → 𝑋. Since the de-
composition

{
𝑞−1 (𝑝) : 𝑝 ∈ 𝑋

}
is a continuous decomposition which

is respected by the homeomorphism group, the hypothesis of The-
orem 3.1 is satisfied. Also, since for each ℎ ∈ ℋ (𝑋) , there exists
𝑔 ∈ ℋ (𝑋𝑃 ) such that 𝑞 ∘ 𝑔 = ℎ ∘ 𝑞, we have 𝛼 (𝑔) = ℎ, so 𝛼 is a
surjection.

Lemma 3.2. Let 𝑋 be a homogeneous curve, 𝑋𝑃 be the continu-
ous 𝑋-curve of pseudo-arcs with quotient map 𝑞 : 𝑋𝑃 → 𝑋, and
𝑋𝑃𝑓 be the fibered product induced by 𝑞. For each ℎ ∈ ℋ (𝑋𝑃 ),
let 𝛼 (ℎ) ∈ ℋ (𝑋) be the homeomorphism induced by ℎ. Suppose
ℎ1, ℎ2 ∈ ℋ (𝑋𝑃 ) such that 𝛼 (ℎ1) = 𝛼 (ℎ2). For each (𝑥, 𝑦) ∈ 𝑋𝑃𝑓 ,
let 𝜎 (𝑥, 𝑦) = (𝑦, 𝑥). Then (ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

and 𝜎 ∘ (ℎ1 × ℎ2)
∣∣
𝑋𝑃𝑓

are in ℋ (𝑋𝑃𝑓 ).

Proof: It is clear that ℎ1 ×ℎ2 ∈ ℋ (𝑋𝑃 ×𝑋𝑃 ). If (𝑥, 𝑦) ∈ 𝑋𝑃𝑓 ,
then 𝑞 (𝑥) = 𝑞 (𝑦). Then 𝑞 (ℎ1 (𝑥)) = 𝛼 (ℎ1) (𝑞 (𝑥)) = 𝛼 (ℎ2) (𝑞 (𝑦)) =
𝑞 (ℎ2 (𝑦)). Hence, (ℎ1 (𝑥) , ℎ2 (𝑦)) ∈ 𝑋𝑃𝑓 . Also, if (𝑢, 𝑣) ∈ 𝑋𝑃𝑓 and
(ℎ1 × ℎ2) (𝑎, 𝑏) = (𝑢, 𝑣), then 𝑞 (𝑢) = 𝑞 (ℎ1 (𝑎)) = 𝛼 (ℎ1) (𝑞 (𝑎)).



CONTINUA WHICH ARE FACTORWISE RIGID 185

Similarly, 𝑞 (𝑣) = 𝛼 (ℎ2) (𝑞 (𝑏)) = 𝛼 (ℎ1) (𝑞 (𝑏)). Then, since 𝑞 (𝑢) =
𝑞 (𝑣) , 𝛼 (ℎ1) (𝑞 (𝑎)) = 𝛼 (ℎ1) (𝑞 (𝑏)). Since 𝛼 (ℎ1) is a homeomor-
phism, 𝑞 (𝑎) = 𝑞 (𝑏). Then (ℎ1 × ℎ2) (𝑋𝑃𝑓 ) = 𝑋𝑃𝑓 . It follows that
(ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

∈ ℋ (𝑋𝑃𝑓 ) .
Since (𝑥, 𝑦) ∈ 𝑋𝑃𝑓 if and only if (𝑦, 𝑥) ∈ 𝑋𝑃𝑓 , 𝜎 ∈ ℋ (𝑋𝑃𝑓 ) .

Then 𝜎 ∘ (ℎ1 × ℎ2)
∣∣
𝑋𝑃𝑓

∈ ℋ (𝑋𝑃𝑓 ) . □
Lemma 3.3. Let 𝑋, 𝑋𝑃, 𝑋𝑃𝑓 , and 𝑞 be as in Lemma 3.2. Let 𝒟 ={
𝑞−1 (𝑝)× 𝑞−1 (𝑝) : 𝑝 ∈ 𝑋

}
, a decomposition of 𝑋𝑃𝑓 . Then each

element of 𝒟 is minimal with respect to being a non-degenerate,
semi-terminal subcontinuum of 𝑋𝑃𝑓 . Hence, the homeomorphism
group of 𝑋𝑃𝑓 respects 𝒟.

Proof: Janusz R. Prajs [8] has proven that the elements of 𝒟 are
semi-terminal.

Let 𝐾 be a non-degenerate, proper subcontinuum of an element
𝑞−1 (𝑝)× 𝑞−1 (𝑝) of 𝒟.

Case 1: 𝜋1 (𝐾) = {𝑥1} for some 𝑥1 ∈ 𝑋𝑃. Then, since 𝐾 is
non-degenerate, there exists {(𝑥1, 𝑦1) , (𝑥1, 𝑦2)} ⊆ 𝐾, with 𝑦1 ∕= 𝑦2.
Then 𝜋−1

2 (𝑦1) and 𝜋−1
2 (𝑦2) are disjoint subcontinua intersecting

𝐾, neither of which is contained in 𝐾. It follows that 𝐾 is not
semi-terminal.

Case 2: 𝜋1 (𝐾) is non-degenerate, and 𝐾 =
∪

𝑥∈𝜋1(𝐾) 𝜋
−1
1 (𝑥) .

Then 𝜋1 (𝐾) ∕= 𝑞−1 (𝑝) , since𝐾 is a proper subcontinuum of 𝑞−1 (𝑝)
× 𝑞−1 (𝑝) . Let {𝑦1, 𝑦2} ⊆ 𝑞−1 (𝑝) , with 𝑦1 ∕= 𝑦2. Then 𝜋

−1
2 (𝑦1) and

𝜋−1
2 (𝑦2) are disjoint subcontinua intersecting 𝐾, neither of which

is contained in 𝐾. It follows that 𝐾 is not semi-terminal.

Case 3: 𝜋1 (𝐾) is non-degenerate, and there exists 𝑥0 ∈ 𝜋1 (𝐾)
such that 𝜋−1

1 (𝑥0) intersects the complement of 𝐾.

If 𝜋−1
1 (𝑥) ⊆ 𝐾 for all 𝑥 ∈ 𝜋1 (𝐾)−{𝑥0} , then choose a sequence

{𝑥𝑛} of points in 𝜋1 (𝐾) distinct from 𝑥0, and converging to 𝑥0.
Let (𝑥0, 𝑦) ∈ 𝜋−1

1 (𝑥0) −𝐾. Then {(𝑥𝑛, 𝑦)} is a sequence of points
in 𝐾 converging to (𝑥0, 𝑦) , contradicting that 𝐾 is closed. Hence,
there exists 𝑥 ∈ 𝜋1 (𝐾) , 𝑥 ∕= 𝑥0, such that 𝜋−1

1 (𝑥) intersects the

complement of 𝐾. Then 𝜋−1
1 (𝑥0) and 𝜋

−1
1 (𝑥) are disjoint continua

intersecting 𝐾, neither of which is contained in 𝐾. Then 𝐾 is not
semi-terminal.

It follows that no proper, non-degenerate subcontinuum of an
element of 𝒟 is semi-terminal. Since being minimal with respect
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to being a non-degenerate, semi-terminal subcontinuum of 𝑋𝑃𝑓 is
a topological property, the homeomorphism group of 𝑋𝑃𝑓 must
respect 𝒟. □

Note that, using the notation in the lemma above, for each 𝑝 ∈ 𝑋,
𝑞−1 (𝑝)×𝑞−1 (𝑝) = 𝜋−1

1

(
𝑞−1 (𝑝)

)
, so the quotient map for 𝒟 is 𝜋1∘𝑞.

Since both 𝜋1 and 𝑞 are open, 𝒟 is a continuous decomposition, and
the hypotheses of Theorem 3.1 are satisfied.

Lemma 3.4. Let 𝑋, 𝑋𝑃, 𝑋𝑃𝑓 , 𝑞, 𝛼, and 𝜎 be as in Lemma 3.2.
For each ℎ ∈ ℋ (𝑋𝑃𝑓 ) , let 𝛽 (ℎ) ∈ ℋ (𝑋) be the homeomorphism
induced by ℎ. Then, for each 𝑔1, 𝑔2 ∈ ℋ (𝑋𝑃 ) such that 𝛼 (𝑔1) =
𝛼 (𝑔2) , 𝛽

(
(𝑔1 × 𝑔2)

∣∣
𝑋𝑃𝑓

)
= 𝛽

(
𝜎 ∘ (𝑔1 × 𝑔2)

∣∣
𝑋𝑃𝑓

)
= 𝛼 (𝑔1) . Also,

𝛽 is a surjection.

Proof: We have, for all (𝑥, 𝑦) ∈ 𝑋𝑃𝑓 , (𝑞 ∘ 𝜋1)∘(𝑔1 × 𝑔2)
∣∣
𝑋𝑃𝑓

(𝑥, 𝑦)
= 𝑞 (𝑔1 (𝑥)) = 𝛼 (𝑔1) (𝑞 (𝑥)) = 𝛼 (𝑔1) ∘ (𝑞 ∘ 𝜋1) (𝑥, 𝑦) . It follows that
𝛽
(
(𝑔1 × 𝑔2)

∣∣
𝑋𝑃𝑓

)
= 𝛼 (𝑔1) .

Since 𝜎 fixes the decomposition elements of 𝑋𝑃𝑓 , 𝛽 (𝜎) = id𝑋 .
Then 𝛽

(
𝜎 ∘ (𝑔1 × 𝑔2)

∣∣
𝑋𝑃𝑓

)
= id𝑋 ∘𝛼 (𝑔1) = 𝛼 (𝑔1) .

Let 𝑓 ∈ ℋ (𝑋) . Since 𝛼 is a surjection, there exists 𝑔 ∈ ℋ (𝑋𝑃 )
such that 𝛼 (𝑔) = 𝑓. By Lemma 3.2, (𝑔 × 𝑔)

∣∣
𝑋𝑃𝑓

∈ ℋ (𝑋𝑃𝑓 ) .

Hence, 𝛽
(
(𝑔 × 𝑔)

∣∣
𝑋𝑃𝑓

)
= 𝛼 (𝑔) = 𝑓, so 𝛽 is a surjection. □

Theorem 3.5. Let 𝑋 be a homogeneous curve, 𝑋𝑃 the contin-
uous 𝑋-curve of pseudo-arcs with quotient map 𝑞 : 𝑋𝑃 → 𝑋,
and 𝑋𝑃𝑓 the fibered product induced by 𝑞. For each ℎ ∈ ℋ (𝑋𝑃 ) ,
let 𝛼 (ℎ) ∈ ℋ (𝑋) be the homeomorphism induced by ℎ. Let 𝒫 ={
(ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

: 𝛼 (ℎ1) = 𝛼 (ℎ2)
}
, and let 𝜎 : 𝑋𝑃𝑓 → 𝑋𝑃𝑓 be the

map 𝜎 (𝑥, 𝑦) = (𝑦, 𝑥) . Then

(1) ℋ (𝑋𝑃𝑓 ) = 𝒫∪ (𝜎 ∘ 𝒫) ;
(2) 𝒫 is a normal subgroup of ℋ (𝑋𝑃𝑓 ) , and 𝒫 acts transitively

on 𝑋𝑃𝑓 ;
(3) 𝒫 and 𝜎 ∘ 𝒫 are clopen, disjoint subsets of ℋ (𝑋𝑃𝑓 ) ;
(4) there is an isometric imbedding of ℋ (𝑋𝑃 ) into ℋ (𝑋𝑃𝑓 ) ;
(5) ℋ (𝑋𝑃𝑓 ) contains no non-degenerate subcontinuum;
(6) ℋ (𝑋𝑃𝑓 ) is totally disconnected if and only if ℋ (𝑋𝑃 ) is

totally disconnected.

Proof: By Lemma 3.2, 𝒫∪ (𝜎 ∘ 𝒫) ⊆ ℋ (𝑋𝑃𝑓 ) .
For each ℎ ∈ ℋ (𝑋𝑃𝑓 ) , let 𝛽 (ℎ) ∈ ℋ (𝑋) be the homeomor-

phism induced by ℎ. Suppose ℎ ∈ ℋ (𝑋𝑃𝑓 ) . Let 𝑝 ∈ 𝑋. Then
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ℎ
(
𝑞−1 (𝑝)× 𝑞−1 (𝑝)

)
= 𝑞−1 (𝛽 (ℎ) (𝑝)) × 𝑞−1 (𝛽 (ℎ) (𝑝)) . Let 𝑃1 =

𝑞−1 (𝑝) and 𝑃2 = 𝑞−1 (𝛽 (ℎ) (𝑝)) . Since 𝑃1 and 𝑃2 are pseudo-
arcs, there exists a homeomorphism 𝑓 : 𝑃2 → 𝑃1. Then (𝑓 × 𝑓) ∘
ℎ ∣𝑃1×𝑃1 ∈ ℋ (𝑃1 × 𝑃1) . Hence, (𝑓 × 𝑓) ∘ ℎ ∣𝑃1×𝑃1 is a product
homeomorphism, or a composition of a switching of coordinates
and a product homeomorphism. Then, with respect to the map
(𝑓 × 𝑓) ∘ ℎ ∣𝑃1×𝑃1, either the image of each vertical slice of 𝑃1 ×𝑃1

is a vertical slice of 𝑃1 × 𝑃1 and the image of each horizontal slice
is a horizontal slice, or the image of each vertical slice is a hori-
zontal slice and the image of each horizontal slice is a vertical slice
[1]. Since 𝑓 × 𝑓 takes vertical slices of 𝑃2 × 𝑃2 to vertical slices of
𝑃1 × 𝑃1 and horizontal slices to horizontal slices, it must be that
ℎ
∣∣
𝑋𝑃𝑓

takes vertical slices of 𝑃1 × 𝑃1 to vertical slices of 𝑃2 × 𝑃2

and horizontal slices to horizontal slices, or else it takes vertical
slices to horizontal slices and horizontal slices to vertical slices.

Let 𝑉 consist of all 𝑝 ∈ 𝑋 such that ℎ takes vertical slices of
𝑞−1 (𝑝)× 𝑞−1 (𝑝) to vertical slices of 𝑞−1 (𝛽 (ℎ) (𝑝))× 𝑞−1 (𝛽 (ℎ) (𝑝)).
Let 𝐻 consist of all 𝑝 ∈ 𝑋 such that ℎ takes vertical slices of
𝑞−1 (𝑝)×𝑞−1 (𝑝) to horizontal slices of 𝑞−1 (𝛽 (ℎ) (𝑝))×𝑞−1 (𝛽 (ℎ) (𝑝)) .
Clearly, 𝑉 and 𝐻 are disjoint, and 𝑉 ∪𝐻 = 𝑋.

Let {𝑝𝑛} be a sequence in 𝑉 converging to 𝑝 ∈ 𝑋. Choose (𝑥, 𝑦) ∈
𝑞−1 (𝑝)×𝑞−1 (𝑝) such that 𝑥 ∕= 𝑦. Since 𝑞 (𝜋1 (𝐵 ((𝑥, 𝑦) , 1))) is open
and contains 𝑝, there exists some 𝑝𝑛1 ∈ 𝑞 (𝜋1 (𝐵 ((𝑥, 𝑦) , 1))) . Then
there exists (𝑥1, 𝑦1) ∈ 𝐵 ((𝑥, 𝑦) , 1) ∩ (

𝑞−1 (𝑝𝑛1)× 𝑞−1 (𝑝𝑛1)
)
. For

integers 𝑘 > 1, choose 𝑛𝑘 > 𝑛𝑘−1 such that
𝑝𝑛𝑘

∈ 𝑞
(
𝜋1

(
𝐵
(
(𝑥, 𝑦) , 1𝑘

)))
,

and (𝑥𝑘, 𝑦𝑘) ∈ 𝐵
(
(𝑥, 𝑦) , 1𝑘

) ∩ (
𝑞−1 (𝑝𝑛𝑘

)× 𝑞−1 (𝑝𝑛𝑘
)
)
.

Then {(𝑥𝑘, 𝑦𝑘)} converges to (𝑥, 𝑦) . Hence, {𝑥𝑘} converges to 𝑥, so
{(𝑥𝑘, 𝑥𝑘)} converges to (𝑥, 𝑥) . Then {𝜋1 (ℎ ((𝑥𝑘, 𝑦𝑘)))} converges to
𝜋1 (ℎ ((𝑥, 𝑦))), and {𝜋1 (ℎ ((𝑥𝑘, 𝑥𝑘)))} converges to 𝜋1 (ℎ ((𝑥, 𝑥))) .

Since, for each 𝑘, (𝑥𝑘, 𝑦𝑘) and (𝑥𝑘, 𝑥𝑘) belong to the same vertical
slice of 𝑞−1 (𝑝𝑛𝑘

)×𝑞−1 (𝑝𝑛𝑘
) , and ℎ takes vertical slices of 𝑞−1 (𝑝𝑛𝑘

)×
𝑞−1 (𝑝𝑛𝑘

) to vertical slices of 𝑞−1 (𝛽 (ℎ) (𝑝𝑛𝑘
)) × 𝑞−1 (𝛽 (ℎ) (𝑝𝑛𝑘

)) ,
𝜋1 (ℎ ((𝑥𝑘, 𝑦𝑘))) = 𝜋1 (ℎ ((𝑥𝑘, 𝑥𝑘))) . It follows that 𝜋1 (ℎ ((𝑥, 𝑦))) =
𝜋1 (ℎ ((𝑥, 𝑥))) . Then since (𝑥, 𝑦) and (𝑥, 𝑥) belong to the same ver-
tical slice of 𝑞−1 (𝑝)× 𝑞−1 (𝑝) and (𝑥, 𝑦) ∕= (𝑥, 𝑥) , the image of this
vertical slice under ℎ could not be a horizontal slice. It follows that
𝑝 ∈ 𝑉, and 𝑉 is closed.
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An analogous proof shows that 𝐻 is closed. Then, since 𝑋 is
connected, either 𝑉 = ∅ or 𝐻 = ∅.

Suppose 𝐻 = ∅. Define ℎ1 : 𝑋𝑃 → 𝑋𝑃 and ℎ2 : 𝑋𝑃 → 𝑋𝑃
such that ℎ1 (𝑥1) = 𝑥2 if and only if 𝜋1

(
ℎ
(
𝜋−1
1 (𝑥1)

))
= 𝑥2, and

ℎ1 (𝑦1) = 𝑦2 if and only if 𝜋2
(
ℎ
(
𝜋−1
2 (𝑦1)

))
= 𝑦2. Then ℎ1 and

ℎ2 are bijections since ℎ is a bijection. If 𝑈 is an open subset of
𝑋𝑃, then ℎ−1

1 (𝑈) = 𝜋1
(
ℎ−1

(
𝜋−1
1 (𝑈)

))
, which is open since 𝜋1 is

an open map and ℎ is a homeomorphism. It follows that ℎ1 is a
homeomorphism. Similarly, ℎ2 is a homeomorphism.

Let 𝑥 ∈ 𝑋𝑃 and let 𝑞 (𝑥) = 𝑝. We have ℎ
(
𝑞−1 (𝑝)× 𝑞−1 (𝑝)

)
=

𝑞−1 (𝛽 (ℎ) (𝑝))× 𝑞−1 (𝛽 (ℎ) (𝑝)). Furthermore, we get ℎ
(
𝜋−1
1 (𝑥)

) ⊆
𝜋−1
1

(
𝑞−1 (𝛽 (ℎ) (𝑝))

)
, so ℎ1 (𝑥) ∈ 𝑞−1 (𝛽 (ℎ) (𝑝)). Then (𝑞 ∘ ℎ1) (𝑥) =

𝛽 (ℎ) (𝑝) = (𝛽 (ℎ) ∘ 𝑞) (𝑥). Hence, 𝛼 (ℎ1) = 𝛽 (ℎ). Similarly, 𝛼 (ℎ2) =
𝛽 (ℎ) = 𝛼 (ℎ1). It follows that (ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

∈ 𝒫.
It is trivial to show ℎ = (ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

.
Suppose 𝑉 = ∅. Since ℎ takes vertical slices to horizontal slices

and horizontal slices to vertical slices, 𝜎 ∘ ℎ takes vertical slices to
vertical slices, and horizontal slices to horizontal slices. Then 𝜎∘ℎ ∈
𝒫, so ℎ = 𝜎 ∘ (𝜎 ∘ ℎ) ∈ 𝜎 ∘ 𝒫. Therefore, ℋ (𝑋𝑃𝑓 ) = 𝒫∪ (𝜎 ∘ 𝒫) .

Clearly, 𝒫 and 𝜎∘𝒫 are disjoint, since elements of 𝒫 take vertical
slices to vertical slices and elements of 𝜎 ∘ 𝒫 take vertical slices to
horizontal slices.

We show 𝒫 is a subgroup of ℋ (𝑋𝑃𝑓 ). If (ℎ1 × ℎ2)
∣∣
𝑋𝑃𝑓

and

(𝑔1 × 𝑔2)
∣∣
𝑋𝑃𝑓

are in 𝒫, then (ℎ1 × ℎ2)
∣∣
𝑋𝑃𝑓

∘ ((𝑔1 × 𝑔2)
∣∣
𝑋𝑃𝑓

)−1
=((

ℎ1 ∘ 𝑔−1
1

)× (
ℎ2 ∘ 𝑔−1

2

)) ∣∣
𝑋𝑃𝑓

. Furthermore,

𝛼
(
ℎ1 ∘ 𝑔−1

1

)
= 𝛼 (ℎ1)∘𝛼 (𝑔1)

−1 = 𝛼 (ℎ2)∘𝛼 (𝑔2)
−1 = 𝛼

(
ℎ2 ∘ 𝑔−1

2

)
.

Then (ℎ1 × ℎ2)
∣∣
𝑋𝑃𝑓

∘ ((𝑔1 × 𝑔2)
∣∣
𝑋𝑃𝑓

)−1 ∈ 𝒫, so 𝒫 is a subgroup.
Since there are only two left cosets, 𝒫 is normal in ℋ (𝑋𝑃𝑓 ) .

We show that 𝒫 acts transitively on 𝑋𝑃𝑓 . If (𝑥1, 𝑦1) , (𝑥2, 𝑦2) ∈
𝑋𝑃𝑓 , let 𝑝1 = 𝑞 (𝑥1) = 𝑞 (𝑦1) , and let 𝑝2 = 𝑞 (𝑥2) = 𝑞 (𝑦2) . Since
𝑋 is homogeneous, there exists a homeomorphism 𝑓 : (𝑋, 𝑝1) →
(𝑋, 𝑝2). Also, there exist homeomorphisms ℎ1 : (𝑋𝑃, 𝑥1) → (𝑋𝑃, 𝑥2)
and ℎ2 : (𝑋𝑃, 𝑦1) → (𝑋𝑃, 𝑦2) such that 𝑞 ∘ ℎ1 = 𝑓 ∘ 𝑞 = 𝑞 ∘ ℎ2.
Then 𝛼 (ℎ1) = 𝑓 = 𝛼 (ℎ2) . Therefore, (ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

∈ 𝒫 and

(ℎ1 × ℎ2)
∣∣
𝑋𝑃𝑓

(𝑥1, 𝑦1) = (𝑥2, 𝑦2) .
Now we prove statement (3). Suppose {ℎ𝑛} is a sequence of func-

tions in 𝒫 converging to some ℎ ∈ ℋ (𝑋𝑃𝑓 ) . Let 𝑥 ∈ 𝑋𝑃. Then,
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for each (𝑥, 𝑦) ∈ 𝜋−1
1 (𝑥), {𝜋1 (ℎ𝑛 (𝑥, 𝑦))} converges to 𝜋1 (ℎ (𝑥, 𝑦)) .

Since each ℎ𝑛 takes vertical slices to vertical slices, for each 𝑛, there
exists 𝑥𝑛 such that for every (𝑥, 𝑦) ∈ 𝜋−1

1 (𝑥) , 𝜋1 (ℎ𝑛 ((𝑥, 𝑦))) = 𝑥𝑛.

Then 𝜋1
(
ℎ
(
𝜋−1
1 (𝑥)

))
= lim𝑛 𝑥𝑛. It follows that ℎ must take verti-

cal slices to vertical slices, so ℎ ∈ 𝒫, confirming that 𝒫 is closed.
Since composition by 𝜎 is a homeomorphism of ℋ (𝑋𝑃𝑓 ) , 𝜎 ∘ 𝒫

is closed also. Because 𝒫 and 𝜎 ∘ 𝒫 are disjoint, and their union is
ℋ (𝑋𝑃𝑓 ) , they are both clopen.

Now we imbed ℋ (𝑋𝑃 ) into ℋ (𝑋𝑃𝑓 ) . If ℎ ∈ ℋ (𝑋𝑃 ) , we have
shown that (ℎ× ℎ)

∣∣
𝑋𝑃𝑓

∈ ℋ (𝑋𝑃𝑓 ) . Let 𝑖 : ℋ (𝑋𝑃 ) → ℋ (𝑋𝑃𝑓 ) ,

𝑖 (ℎ) = (ℎ× ℎ)
∣∣
𝑋𝑃𝑓

.
Let ℎ1, ℎ2 ∈ 𝑋𝑃. Now

𝜌𝑋𝑃𝑓

(
(ℎ1 × ℎ1)

∣∣
𝑋𝑃𝑓 , (ℎ2 × ℎ2)

∣∣
𝑋𝑃𝑓

)
= sup

(
d2
𝑋𝑃 (ℎ1 (𝑥) , ℎ1 (𝑦)) , (ℎ2 (𝑥) , ℎ2 (𝑦)) : (𝑥, 𝑦) ∈ 𝑋𝑃𝑓

)
,

= sup (max {d𝑋𝑃 (ℎ1 (𝑥) , ℎ2 (𝑥)) ,d𝑋𝑃 (ℎ1 (𝑦) , ℎ2 (𝑦))} : (𝑥, 𝑦) ∈ 𝑋𝑃𝑓 ) .

For (𝑥, 𝑦) ∈ 𝑋𝑃𝑓 , max {d𝑋𝑃 (ℎ1 (𝑥) , ℎ2 (𝑥)) ,d𝑋𝑃 (ℎ1 (𝑦) , ℎ2 (𝑦))}
≤ sup (d𝑋𝑃 (ℎ1 (𝑧) , ℎ2 (𝑧)) : 𝑧 ∈ 𝑋𝑃 ) = 𝜌𝑋𝑃 (ℎ1, ℎ2) .Also, we have
𝜌𝑋𝑃 (ℎ1, ℎ2) = sup (d𝑋𝑃 (ℎ1 (𝑧) , ℎ2 (𝑧)) : 𝑧 ∈ 𝑋𝑃 ) . We see this is
equal to sup

(
d2𝑋𝑃 (ℎ1 (𝑧) , ℎ1 (𝑧)) , (ℎ2 (𝑧) , ℎ2 (𝑧)) : (𝑧, 𝑧) ∈ 𝑋𝑃𝑓

) ≤
sup

(
d2𝑋𝑃 (ℎ1 (𝑥) , ℎ1 (𝑦)) , (ℎ2 (𝑥) , ℎ2 (𝑦)) : (𝑥, 𝑦) ∈ 𝑋𝑃𝑓

)
, which is

𝜌𝑋𝑃𝑓

(
(ℎ1 × ℎ1)

∣∣
𝑋𝑃𝑓

, (ℎ2 × ℎ2)
∣∣
𝑋𝑃𝑓

)
. Then we can conclude that

𝜌𝑋𝑃𝑓

(
(ℎ1 × ℎ1)

∣∣
𝑋𝑃𝑓

, (ℎ2 × ℎ2)
∣∣
𝑋𝑃𝑓

)
= 𝜌𝑋𝑃 (ℎ1, ℎ2) . Therefore, 𝑖

is an isometric imbedding.
Suppose ℋ (𝑋𝑃𝑓 ) contains a non-degenerate subcontinuum.

Since ℋ (𝑋𝑃𝑓 ) is homogeneous, id𝑋𝑃𝑓
belongs to a non-degenerate

subcontinuum 𝐾. Since id𝑋𝑃𝑓
∈ 𝒫 and 𝒫 is clopen, we must have

𝐾 ⊆ 𝒫.
Define functions 𝜓1 : 𝒫 → ℋ (𝑋𝑃 ) and 𝜓2 : 𝒫 → ℋ (𝑋𝑃 ) ,

where 𝜓1

(
(ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

)
= ℎ1 and 𝜓2

(
(ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

)
= ℎ2.

Since 𝜋1 (𝑋𝑃𝑓 ) = 𝑋𝑃 = 𝜋2 (𝑋𝑃𝑓 ) , these functions are well defined.
If (ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

∈ 𝒫 and 𝜖 > 0, suppose (𝑔1 × 𝑔2)
∣∣
𝑋𝑃𝑓

∈ 𝒫 and

𝜌𝑋𝑃𝑓

(
(ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

, (𝑔1 × 𝑔2)
∣∣
𝑋𝑃𝑓

)
< 𝜖. Then, for all 𝑥 ∈ 𝑋𝑃,

d𝑋𝑃 (ℎ1 (𝑥) , 𝑔1 (𝑥)) ≤ d2𝑋𝑃 ((ℎ1 (𝑥) , ℎ2 (𝑥)) , (𝑔1 (𝑥) , 𝑔2 (𝑥))) < 𝜖.
Hence, 𝜌𝑋𝑃

(
𝜓1

(
(ℎ1 × ℎ2)

∣∣
𝑋𝑃𝑓

)
, 𝜓1

(
(𝑔1 × 𝑔2)

∣∣
𝑋𝑃𝑓

))
< 𝜖, and 𝜓1

is continuous. An analogous proof shows that 𝜓2 is continuous.
Then 𝜓1 (𝐾) must be a continuum in ℋ (𝑋𝑃 ) . But ℋ (𝑋𝑃 ) con-
tains no non-degenerate subcontinuum by a corollary in [3]. Then
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𝜓1 (𝐾) must be degenerate. Since id𝑋𝑃𝑓
∈ 𝐾, 𝜓1 (𝐾) = {id𝑋𝑃 } .

Similarly, 𝜓2 (𝐾) = {id𝑋𝑃 } . Then 𝐾 =
{
id𝑋𝑃𝑓

}
, and any contin-

uum of ℋ (𝑋𝑃𝑓 ) must be degenerate.
Now we prove (6). If we assume ℋ (𝑋𝑃 ) is totally disconnected,

then a proof similar to the proof of statement (5) shows ℋ (𝑋𝑃𝑓 )
is totally disconnected. If ℋ (𝑋𝑃 ) contains a non-degenerate con-
nected set 𝐾, then 𝑖 (𝐾) is a non-degenerate connected set in
ℋ (𝑋𝑃𝑓 ) , where 𝑖 is the imbedding in (4). □
Corollary 3.6. Let 𝑃 be a pseudo-arc. Then ℋ (𝑃𝑃𝑓 ) is totally
disconnected if and only if ℋ (𝑃 ) is totally disconnected.

Proof: This follows from Theorem 3.5(6) and the fact that 𝑃𝑃
is homeomorphic to 𝑃 [4]. □

4. Questions

It would be interesting to know the answer to the following ques-
tion.

Question 4.1. In terms of the components of ℋ (𝑋) or ℋ (𝑋𝑃 ) ,
what are the components of ℋ (𝑋𝑃𝑓 )?

It may be necessary to answer this question first, which was
posed by Lewis [6], and was earlier stated, as noted by Lewis in [3],
in a different form by Beverly Brechner.

Question 4.2. Does the homeomorphism group of the pseudo-arc
have any non-degenerate connected subsets?

The answer to the next question may also be useful.

Question 4.3. What is the dimension of ℋ (𝑋𝑃𝑓 )? Does it depend
on the dimension of ℋ (𝑋)?

The maps in this paper which relate the homeomorphism groups
of 𝑋, 𝑋𝑃, and 𝑋𝑃𝑓 may be helpful in answering these questions.
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