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ON MINIMAL 𝑅1 AND

MINIMAL REGULAR TOPOLOGIES

M. L. COLASANTE AND D. VAN DER ZYPEN

Abstract. By means of filters, minimal 𝑅1 and minimal reg-
ular topologies are characterized on suitable intervals consist-
ing of non-trivial 𝑅0 topologies.

1. Introduction

The family 𝐿𝑇 (𝑋) of all topologies definable on a set 𝑋 partially
ordered by inclusion is a complete, atomic lattice in which the meet
of a collection of topologies is their intersection, while the join is
the topology with their union as a subbase. There has been a
considerable amount of interest in topologies which are minimal in
this lattice with respect to certain topological properties (see for
instance [1], [2], [3], [4], [5], [8], [9], [11], [12], [13], [14], [16], [19]).

Given a topological property 𝑃 (like a separation axiom) and
given a family 𝒮 of members of 𝐿𝑇 (𝑋), then 𝜏 ∈ 𝒮 is said to be
minimal 𝑃 in 𝒮 if 𝜏 satisfies 𝑃 but no member of 𝒮 which is strictly
weaker than 𝜏 satisfies 𝑃. It is well known that a 𝑇2-topology on
an infinite set 𝑋 is minimal 𝑇2 in 𝐿𝑇 (𝑋) if and only if every open
filter on 𝑋 with a unique adherent point is convergent [3]. Also, a
regular 𝑇1-topology is minimal regular in 𝐿𝑇 (𝑋) if and only if every
regular filter on 𝑋 with a unique adherent point is convergent [4].
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These are characterizations of minimal topologies satisfying separa-
tion axioms above 𝑇1, and thus topologies in the lattice ℒ1 = {𝜏 ∈
𝐿𝑇 (𝑋) : 𝒞 ≤ 𝜏 ≤ 2𝑋}, where 𝒞 denotes the cofinite topology (i.e.,
the minimal 𝑇1-topology on 𝑋) and 2𝑋 denotes the powerset of 𝑋.
Some separation axioms independent of 𝑇1 (even independent of 𝑇0)
are vacuously satisfied by the indiscrete topology; thus, the study
of minimal topologies in 𝐿𝑇 (𝑋) satisfying such properties becomes
trivial. This is the case of the 𝑅1 and regularity (not necessarily
𝑇1) separation axioms. The purpose of this paper is to show that,
by restricting to suitable intervals ℒ𝜌 of 𝐿𝑇 (𝑋), associated each
to a non-trivial 𝑅0-topology 𝜌, then minimal regular and minimal
𝑅1 topologies in ℒ𝜌 can be characterized in terms of filters. For
instance, we prove in section 3 that an 𝑅1-topology in ℒ𝜌 is min-
imal 𝑅1 if and only if every open filter on 𝑋, for which the set of
adherent points coincides with a point closure, is convergent, and
that a regular topology in ℒ𝜌 is minimal regular if and only if every
regular filter on 𝑋, for which the set of adherent points coincides
with a point closure, is convergent. The characterizations for mini-
mal 𝑇2 and minimal regular topologies mentioned at the beginning
of this paragraph are immediate corollaries of our results in case 𝜌
is a 𝑇1-topology. Additionally, in the last section, we consider an-
other topological property independent of 𝑇0, namely the presober
property, and show that there are no minimal presober topologies
in ℒ𝜌.

2. Preliminaries and notations

A topology 𝜏 ∈ 𝐿𝑇 (𝑋) is said to be an Alexandroff topology if it
is closed under arbitrary intersection. Juris Steprāns and Stephen
Watson [17] attributed this notion to both P. S. Alexandroff and
A. W. Tucker and called them 𝐴𝑇 topologies. This class of topolo-
gies is specially relevant for the study of non-𝑇1 topologies. Note
that the only 𝑇1 Alexandroff topology is the discrete topology.
Among the characterizations known for 𝐴𝑇 topologies, we recall
the one related with the specialization preorder: 𝜏 ∈ 𝐿𝑇 (𝑋) is 𝐴𝑇
if and only if it is the finest topology on 𝑋 consistent with the spe-
cialization preorder, i.e., the finest topology giving the preorder ≤𝜏

satisfying 𝑥 ≤𝜏 𝑦 if and only if 𝑥 belongs to the 𝜏 -closure of {𝑦}.
This preorder characterizes the 𝑇0 property (for every two points
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there is an open set containing one and only one of the points) in
the sense that a topology 𝜏 is 𝑇0 if and only if the preorder ≤𝜏 is a
partial order.

By identifying a set with its characteristic function, 2𝑋 can be
endowed with the product topology of the Cantor cube {0, 1}𝑋 . It
was proved in [18] that a topology 𝜏 on 𝑋 is 𝐴𝑇 if and only if it
is closed when viewed as a subset of 2𝑋 . Moreover, it was proved
there that the closure 𝜏 of 𝜏 in 2𝑋 is also a topology, and therefore
it is the smallest 𝐴𝑇 topology containing 𝜏.

By 𝑐𝑙𝜏 (𝐴), we denote the 𝜏 -closure of a set 𝐴. If 𝐴 = {𝑥}, we
use 𝑐𝑙𝜏 (𝑥), instead of 𝑐𝑙𝜏 ({𝑥}), and refer to it as a point closure.
The 𝜏 -kernel of a set 𝐴 ⊆ 𝑋, denoted by ker𝜏 (𝐴), is the inter-
section of all open sets containing 𝐴. For any 𝑥 ∈ 𝑋, we denote
ker𝜏 ({𝑥}) = ker𝜏 (𝑥). It is obvious that 𝑥 ∈ 𝑐𝑙𝜏 (𝑦) if and only
if 𝑦 ∈ ker𝜏 (𝑥). A set 𝐴 is said to be 𝜏 -kernelled (or just ker-
nelled) if 𝐴 = ker𝜏 (𝐴). Equivalently, 𝐴 is kernelled if and only
if 𝐴 =

∪
𝑥∈𝐴 ker𝜏 (𝑥). Many authors have called sets which are in-

tersections of open sets “saturated” (see, for example, [10]). The
family of all kernelled subsets of 𝑋 is closed under arbitrary unions
and intersections, so it is an 𝐴𝑇 topology. Moreover, it coincides
with 𝜏 . In fact, since every open set is kernelled and 𝜏 is the small-
est 𝐴𝑇 topology containing 𝜏, then every member of 𝜏 is kernelled.
On the other hand, since 𝜏 is closed under arbitrary intersections
and it contains 𝜏, then every kernelled set belongs to 𝜏 . Thus, 𝜏 is
the topology on 𝑋 generated by the family {ker𝜏 (𝑥) : 𝑥 ∈ 𝑋}. In
particular, 𝐴 ⊆ 𝑋 is 𝜏 -closed if and only if 𝐴 =

∪
𝑥∈𝐴 𝑐𝑙𝜏 (𝑥). Note

that, since 𝜏 is 𝑇1 if and only if every subset of 𝑋 is kernelled, then
𝜏 is 𝑇1 if and only if 𝜏 = 2𝑋 .

In what follows, 𝒩𝜏 (𝑥) denotes the filter base of 𝜏 -neighborhoods
of 𝑥 ∈ 𝑋. A filter ℱ on 𝑋 is said to be 𝜏 -convergent to a point 𝑥 ∈
𝑋 if ℱ ⊇ 𝒩𝜏 (𝑥). By 𝑎𝑑ℎ𝜏ℱ , we denote the set of adherent points of
ℱ (i.e., 𝑎𝑑ℎ𝜏ℱ =

∩
𝐹∈ℱ 𝑐𝑙𝜏 (𝐹 )). Since 𝑎𝑑ℎ𝜏ℱ is a closed set, then

it contains the 𝜏 -closure of all its points. It is immediate that if ℱ
is 𝜏 -convergent to 𝑥, then ℱ is 𝜏 -convergent to every 𝑦 ∈ 𝑐𝑙𝜏 (𝑥).
A filter ℱ is said to be a 𝜏 -open filter (𝜏 -closed filter, respectively)
if it has a base of 𝜏 -open sets (𝜏 -closed sets, respectively), and ℱ
is said to be a 𝜏 -regular filter if it is 𝜏 -open and for every 𝐹 ∈ ℱ
there exists 𝐹 ′ ∈ ℱ such that 𝑐𝑙𝜏 (𝐹

′) ⊆ 𝐹. Thus, a 𝜏 -regular filter
is equivalent to a 𝜏 -closed filter. A filter on 𝑋 is said to be an
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ultrafilter if it is a maximal filter. If it is an ultrafilter, then for
each 𝐴 ⊆ 𝑋, either 𝐴 ∈ ℱ or 𝑋∖𝐴 ∈ ℱ , where 𝑋∖𝐴 denotes the
complement of 𝐴 in 𝑋.

For definitions and notation not given here, we refer the reader
to [20].

3. Minimal 𝑅1 and minimal regular topologies in ℒ𝜌

In this section, we restrict our attention to suitable intervals
consisting of 𝑅0 topologies and give characterizations of minimal
𝑅1 and minimal regular topologies on those intervals. Recall that
a topology 𝜏 ∈ 𝐿𝑇 (𝑋) is said to be

(𝑅0) if for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ∈ 𝑐𝑙𝜏 (𝑦)if and only if 𝑦 ∈ 𝑐𝑙𝜏 (𝑥); thus,
𝜏 is 𝑅0 if and only if the point closures form a partition of
𝑋 [15];

(𝑅1) if for all 𝑥, 𝑦 ∈ 𝑋 with 𝑐𝑙𝜏 (𝑥) ∕= 𝑐𝑙𝜏 (𝑦), there are disjoint
open sets separating 𝑐𝑙𝜏 (𝑥) and 𝑐𝑙𝜏 (𝑦) [7];

(Regular) if for each 𝑉 ∈ 𝜏 and each 𝑥 ∈ 𝑉 , there exists 𝑈 ∈ 𝜏
such that 𝑥 ∈ 𝑈 ⊆ 𝑐𝑙𝜏 (𝑈) ⊆ 𝑉.

The separation axioms 𝑅0 and 𝑅1 are also denoted as 𝑆1 and 𝑆2,
respectively [6]. We use in this paper the most common notation
𝑅0 and 𝑅1. It is easy to show that 𝑅𝑒𝑔𝑢𝑙𝑎𝑟 ⇒ 𝑅1 ⇒ 𝑅0, and that
none of the implications can be reversed. Moreover, 𝜏 is 𝑇1 if and
only if 𝜏 is 𝑅0 and 𝑇0, and 𝜏 is 𝑇2 if and only if 𝜏 is 𝑅1 and 𝑇0.

Examples of topologies which are regular non-𝑇0 (thus, regular
non-𝑇1) abound. For instance, if 𝒫 denotes any non-trivial partition
of a set 𝑋, then the associated partition topology 𝜏𝒫 , defined as the
topology having as open sets the unions of elements of 𝒫 together
with the empty set, is a regular topology which is not 𝑇0. On the
other hand, if a topological space satisfies any of the properties 𝑅0,
𝑅1, or 𝑅𝑒𝑔𝑢𝑙𝑎𝑟, and one doubles the space by taking the product
of 𝑋 with the two point indiscrete space, then the resulting space
is no longer 𝑇0, but it satisfies the same property as did the original
space.

The following characterizations, which are straightforward to
prove, are used throughout the paper without explicitly mentioning
them.

Lemma 3.1. Let 𝜏 ∈ 𝐿𝑇 (𝑋). Then
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(i) 𝜏 is 𝑅0 if and only if 𝑐𝑙𝜏 (𝑥) = ker𝜏 (𝑥) for all 𝑥 ∈ 𝑋, if and
only if 𝑐𝑙𝜏 (𝑥) ⊆ 𝑉 for all 𝑉 ∈ 𝜏 and 𝑥 ∈ 𝑉.

(ii) 𝜏 is 𝑅1 if and only if 𝜏 is 𝑅0, and for all 𝑥, 𝑦 ∈ 𝑋 such that
𝑦 /∈ 𝑐𝑙𝜏 (𝑥), there are disjoint open sets separating 𝑥 and 𝑦.

(iii) 𝜏 is 𝑅1 if and only if 𝜏 is 𝑅0 and 𝑎𝑑ℎ𝜏𝒩𝜏 (𝑥) = 𝑐𝑙(𝑥), for
all 𝑥 ∈ 𝑋.

To each 𝜌 ∈ 𝐿𝑇 (𝑋), we associate the interval

ℒ𝜌 = {𝜏 ∈ 𝐿𝑇 (𝑋) : 𝑎𝑡(𝜌) ≤ 𝜏 ≤ 𝜌},
where 𝑎𝑡(𝜌) denotes the topology on 𝑋 generated by the sets
{𝑋 ∖𝑐𝑙𝜌(𝐻): 𝐻 is a finite subset of 𝑋} and where 𝜌 is the clo-
sure of 𝜌 in 2𝑋 .

Note that if 𝜌 is any 𝑇1-topology, then 𝑎𝑡(𝜌) = 𝒞 and 𝜌 = 2𝑋 . In
this case, ℒ𝜌 is precisely the lattice ℒ1 of all 𝑇1 topologies on 𝑋.

Lemma 3.2. Let 𝜌 ∈ 𝐿𝑇 (𝑋). Then 𝑐𝑙𝑎𝑡(𝜌)(𝑥) = 𝑐𝑙𝜌(𝑥) = 𝑐𝑙𝜌(𝑥),
for every 𝑥 ∈ 𝑋.

Proof: Let 𝑥 ∈ 𝑋. Since a set is 𝜌-closed if and only if it is a
union of 𝜌-closed sets, then 𝑐𝑙𝜌(𝑥) ⊆ 𝑐𝑙𝜌(𝑥). On the other hand,
𝑐𝑙𝜌(𝑥) is an 𝑎𝑡(𝜌)-closed set, and thus 𝑐𝑙𝑎𝑡(𝜌)(𝑥) ⊆ 𝑐𝑙𝜌(𝑥). Since
𝑎𝑡(𝜌) ⊆ 𝜌 ⊆ 𝜌, then 𝑐𝑙𝜌(𝑥) ⊆ 𝑐𝑙𝜌(𝑥) ⊆ 𝑐𝑙𝑎𝑡(𝜌)(𝑥). From this we have
the result. □

Corollary 3.3. Let 𝜏, 𝜌 ∈ 𝐿𝑇 (𝑋). Then 𝜏 ∈ ℒ𝜌 if and only if
𝑐𝑙𝜌(𝑥) = 𝑐𝑙𝜏 (𝑥), for every 𝑥 ∈ 𝑋.

Proof: If 𝜏 ∈ ℒ𝜌 and 𝑥 ∈ 𝑋, then Lemma 3.2 implies that
𝑐𝑙𝜏 (𝑥) = 𝑐𝑙𝜌(𝑥). Conversely, suppose 𝑐𝑙𝜌(𝑥) = 𝑐𝑙𝜏 (𝑥), for every 𝑥 ∈
𝑋. It is immediate that 𝑎𝑡(𝜌) ≤ 𝜏. Note that ker𝜌(𝑥) = ker𝜏 (𝑥);
thus, if 𝑉 ∈ 𝜏 , then 𝑉 =

∪
𝑥∈𝑉 ker𝜌(𝑥) =

∪
𝑥∈𝑉 ker𝜏 (𝑥) is a 𝜌-open

set. Therefore, 𝑎𝑡(𝜌) ≤ 𝜏 ≤ 𝜌. □
Corollary 3.3 can be stated as follows: 𝜏 ∈ ℒ𝜌 if and only if 𝜏 has

the same preorder of specialization as 𝜌. Thus, when one refers to
the 𝜏 -closure of 𝑥 ∈ 𝑋, for any 𝜏 ∈ ℒ𝜌, there is no need to specify
the topology. We will often write 𝑐𝑙(𝑥) without further comment.
It is clear that the topologies on ℒ𝜌 share the topological properties
defined in terms of point closures. In particular, 𝜏 ∈ ℒ𝜌 is 𝑅0 if
and only if 𝜌 is 𝑅0. Note that the property 𝑅1 is expansive in ℒ𝜌

(i.e., if 𝜏 ∈ ℒ𝜌 is 𝑅1, then 𝜏 ′ is 𝑅1 for all 𝜏 ′ ∈ ℒ𝜌 finer than 𝜏).
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In [6], it was proved that the properties 𝑅0, 𝑅1, and regularity
coincide for 𝐴𝑇 topologies. Thus, 𝜌 is 𝑅0 if and only if 𝜌 is 𝑅1 if
and only if 𝜌 is regular. If we start with an 𝑅0-topology 𝜌 on 𝑋,
it is immediate that there exists at least a regular topology (so at
least an 𝑅1-topology) in ℒ𝜌. Our goal is to characterize minimal
𝑅1 and minimal regular topologies in ℒ𝜌. Note that if 𝜌 is 𝑅0 and
𝑋 can be written as a finite union of disjoint point closures, then,
for each 𝑥 ∈ 𝑋, the set 𝑐𝑙(𝑥) is the complement of a finite union of
point closures; thus, 𝑐𝑙(𝑥) ∈ 𝑎𝑡(𝜌). It follows that 𝑎𝑡(𝜌) = 𝜌 = 𝜌,
and therefore ℒ𝜌 = {𝜌}. To avoid triviality, from now on we assume
that 𝜌 ∈ 𝐿𝑇 (𝑋) is an 𝑅0-topology such that 𝑋 can be written as
an infinite union of disjoint point closures (in particular, this is the
case for any 𝑇1-topology on an infinite set). It is worth noticing
that 𝑎𝑡(𝜌) cannot be 𝑅1; thus, it cannot be regular, since any pair
of non-empty 𝑎𝑡(𝜌)-open sets intersects. We give an example of an
𝑅0 (not 𝑇0) topology satisfying the above conditions.

Example 3.4. Let 𝑋 be the set of all positive integers 𝑁, and let
𝜌 be the topology generated by the subbase {∅, 𝑁∖{1}}∪ {𝑁∖{2𝑛,
2𝑛+ 1}, 𝑛 ≥ 1}. It is easy to see that 𝜌 is an 𝑅0-topology which is
not 𝑇0, and that 𝑁 can be written as the infinite disjoint union of
the odd integers point closure. Note that 𝑎𝑡(𝜌) = 𝜌, and 𝜌 is the
topology generated by the sets {1} and {2𝑛, 2𝑛+ 1}, 𝑛 ≥ 1.

For 𝑥 ∈ 𝑋, let ℰ(𝑥) denote the family of all the subsets of 𝑋 not
containing 𝑥. If ℱ is any filter on 𝑋, then ℰ(𝑥)∪ℱ is a topology on
𝑋. Given 𝜏 ∈ 𝐿𝑇 (𝑋), we consider the topology 𝛽 = 𝜏 ∩ (ℰ(𝑥)∪ℱ).
Note that 𝛽 ≤ 𝜏 and 𝛽 = 𝜏 if and only if ℱ = 𝒩𝜏 (𝑥).

Now, if 𝜌 is 𝑅0 and 𝜏 ∈ ℒ𝜌, a local base for the topology 𝛽 can
be described as follows:

𝒩𝛽(𝑦) = 𝒩𝜏 (𝑦) ∩ ℰ(𝑥), for every 𝑦 /∈ 𝑐𝑙(𝑥);
𝒩𝛽(𝑦) = 𝒩𝜏 (𝑥) ∩ ℱ , for every 𝑦 ∈ 𝑐𝑙(𝑥).

A set 𝐴 ⊆ 𝑋 is 𝛽-closed if and only if 𝐴 is 𝜏 -closed and either
𝑥 ∈ 𝐴 or 𝑋∖𝐴 ∈ ℱ . Thus, 𝑐𝑙𝜏 (𝐴) ⊆ 𝑐𝑙𝛽(𝐴) ⊆ 𝑐𝑙𝜏 (𝐴) ∪ 𝑐𝑙(𝑥) for all
𝐴 ⊆ 𝑋. In particular, 𝑐𝑙𝛽(𝑥) = 𝑐𝑙(𝑥).

Lemma 3.5. Let 𝜏 ∈ ℒ𝜌. Given 𝑥 ∈ 𝑋 and a filter ℱ on 𝑋, let
𝛽 = 𝜏 ∩ (ℰ(𝑥) ∪ ℱ). Then

(i) 𝛽 is 𝑅0 if and only if ℱ ⊇ 𝒩𝑎𝑡(𝜌)(𝑥) if and only if 𝛽 ∈ ℒ𝜌.
(ii) If 𝑎𝑑ℎ𝜏ℱ = 𝑐𝑙(𝑥), then 𝛽 ∈ ℒ𝜌.
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Proof: (i) It is immediate that ℱ ⊇ 𝒩𝑎𝑡(𝜌)(𝑥) if and only if
𝛽 ∈ ℒ𝜌, and that if 𝛽 ∈ ℒ𝜌, then 𝛽 is 𝑅0. On the other hand, if 𝛽
is 𝑅0 and 𝑦 /∈ 𝑐𝑙(𝑥) = 𝑐𝑙𝛽(𝑥), then 𝑥 /∈ 𝑐𝑙𝛽(𝑦). Thus, 𝑋∖𝑐𝑙𝛽(𝑦) ∈ ℱ ,
and this implies that 𝑋∖𝑐𝑙(𝑦) ∈ ℱ . Since this holds for every
𝑦 /∈ 𝑐𝑙(𝑥), it follows that ℱ ⊇ 𝒩𝑎𝑡(𝜌)(𝑥).

(ii) If 𝑎𝑑ℎ𝜏ℱ = 𝑐𝑙(𝑥) and 𝑦 /∈ 𝑐𝑙(𝑥), then 𝑦 /∈ 𝑎𝑑ℎ𝜏ℱ , and thus,
there exist 𝐹 ∈ ℱ and 𝑉 ∈ 𝒩𝜏 (𝑦) such that 𝑉 ∩ 𝐹 = ∅. Since
𝑐𝑙(𝑦) ⊆ 𝑉, then 𝐹 ⊆ 𝑋∖𝑐𝑙(𝑦), and thus 𝑋∖𝑐𝑙(𝑦) ∈ ℱ . Hence, ℱ ⊇
𝒩𝑎𝑡(𝜌)(𝑥). □
Proposition 3.6. Let 𝜏 ∈ ℒ𝜌 be 𝑅1. Given 𝑥 ∈ 𝑋 and a filter ℱ
on 𝑋, then the topology 𝛽 = 𝜏 ∩(ℰ(𝑥)∪ℱ) is 𝑅1 if and only if there
exists a 𝜏 -open filter ℱ0 ⊆ ℱ such that 𝑎𝑑ℎ𝜏ℱ0 = 𝑐𝑙(𝑥).

Proof: (⇒) If 𝛽 = 𝜏 ∩ (ℰ(𝑥) ∪ ℱ) is 𝑅1, then 𝑎𝑑ℎ𝛽𝒩𝛽(𝑥) =
𝑐𝑙(𝑥). By Lemma 3.5(i), 𝛽 ∈ ℒ𝜌. Now, since 𝛽 ≤ 𝜏, then 𝑐𝑙(𝑥) ⊆
𝑎𝑑ℎ𝜏𝒩𝛽(𝑥) ⊆ 𝑎𝑑ℎ𝛽𝒩𝛽(𝑥) = 𝑐𝑙(𝑥). Let ℱ0 = 𝒩𝛽(𝑥) = 𝒩𝜏 (𝑥)∩ℱ . It
is clear that ℱ0 is a 𝜏 -open filter contained in ℱ such that 𝑎𝑑ℎ𝜏ℱ0 =
𝑐𝑙(𝑥).

(⇐) Suppose there exists a 𝜏 -open filter ℱ0 ⊆ ℱ such that
𝑎𝑑ℎ𝜏ℱ0 = 𝑐𝑙(𝑥). By Lemma 3.5(i), 𝛽 ∈ ℒ𝜌. To prove that 𝛽 =
𝜏 ∩ (ℰ(𝑥)∪ℱ) is 𝑅1, let 𝑦, 𝑧 ∈ 𝑋 such that 𝑦 /∈ 𝑐𝑙(𝑧). We will show
that 𝑦 and 𝑧 can be separated by 𝛽-open sets. Since 𝜏 is 𝑅1, there
exist 𝑊𝑦 ∈ 𝒩𝜏 (𝑦) and 𝑊𝑧 ∈ 𝒩𝜏 (𝑧) such that 𝑊𝑦 ∩ 𝑊𝑧 = ∅. We
consider two possible cases.

Case 1: If 𝑥 /∈ 𝑐𝑙(𝑦) and 𝑥 /∈ 𝑐𝑙(𝑧), then 𝑦, 𝑧 /∈ 𝑐𝑙(𝑥). Choose
𝑉𝑦 ∈ 𝒩𝜏 (𝑦) and 𝑉𝑧 ∈ 𝒩𝜏 (𝑧) such that 𝑥 /∈ 𝑉𝑦 and 𝑥 /∈ 𝑉𝑧. Let
𝑂𝑦 = 𝑊𝑦 ∩ 𝑉𝑦 and 𝑂𝑧 = 𝑊𝑧 ∩ 𝑉𝑧. Then 𝑂𝑦, 𝑂𝑧 ∈ 𝜏 ∩ ℰ(𝑥) ≤ 𝛽 and
𝑂𝑦 ∩𝑂𝑧 = ∅.

Case 2: If 𝑥 ∈ 𝑐𝑙(𝑦), then 𝑐𝑙(𝑦) = 𝑐𝑙(𝑥) = 𝑎𝑑ℎ𝜏ℱ0. Since 𝑧
/∈ 𝑐𝑙(𝑦), there exists 𝑈 ∈ 𝒩𝜏 (𝑧) and 𝐹 ∈ ℱ0 such that 𝑈 ∩ 𝐹 = ∅.
Take 𝑂𝑦 = 𝑊𝑦 ∪ 𝐹 and 𝑂𝑧 = 𝑊𝑧 ∩ 𝑈. Then it is immediate that
𝑂𝑦 ∈ 𝜏 ∩ ℱ and 𝑂𝑧 ∈ 𝜏 ∩ ℰ(𝑥). Thus, 𝑂𝑦 and 𝑂𝑧 are disjoint
𝛽-neighborhoods of 𝑦 and 𝑧, respectively. □
Remark 3.7. For any 𝑥 ∈ 𝑋, the open filter ℱ = 𝒩𝑎𝑡(𝜌)(𝑥) satisfies
𝑎𝑑ℎ𝜌ℱ = 𝑐𝑙(𝑥). In fact, 𝑐𝑙(𝑦) = ker(𝑦) ∈ 𝒩𝜌(𝑦) for each 𝑦 ∈ 𝑋.
Then 𝑦 ∈ 𝑐𝑙(𝑥) implies that 𝑥 ∈ 𝑉 , for all 𝑉 ∈ 𝒩𝜌(𝑦), and thus
𝑦 ∈ 𝑎𝑑ℎ𝜌𝒩𝑎𝑡(𝜌)(𝑥). On the other hand, if 𝑦 /∈ 𝑐𝑙(𝑥), then the dis-
joint sets 𝑐𝑙(𝑦) ∈ 𝒩𝜌(𝑦) and 𝑋∖ 𝑐𝑙(𝑦) ∈ 𝒩𝑎𝑡(𝜌)(𝑥) witness that
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𝑦 /∈ 𝑎𝑑ℎ𝜌𝒩𝑎𝑡(𝜌)(𝑥). Since 𝜌 is 𝑅1, the above proposition implies
that 𝛽 = 𝜌∩ (ℰ(𝑥)∪𝒩𝑎𝑡(𝜌)(𝑥)) is 𝑅1, and hence 𝛽 ∈ ℒ𝜌. Moreover,
𝛽 is strictly weaker than 𝜌 since 𝑐𝑙(𝑥) ∈ 𝜌 , but 𝑐𝑙(𝑥) /∈ 𝒩𝑎𝑡(𝜌)(𝑥).
Therefore, 𝜌 is not the minimal 𝑅1 topology in ℒ𝜌.

We are now ready to prove a characterization of minimal 𝑅1 in
ℒ𝜌.

Theorem 3.8. Let 𝜏 ∈ ℒ𝜌 be 𝑅1. Then 𝜏 is minimal 𝑅1 if and
only if, given any open filter ℱ on 𝑋 such that 𝑎𝑑ℎ𝜏ℱ = 𝑐𝑙(𝑥) for
some 𝑥 ∈ 𝑋, then ℱ is convergent (necessarily to every point of
𝑐𝑙(𝑥)).

Proof: Suppose 𝜏 is minimal 𝑅1, and let ℱ be an open filter on
𝑋 such that 𝑎𝑑ℎ𝜏ℱ = 𝑐𝑙(𝑥) for some 𝑥 ∈ 𝑋. Let 𝛽 = 𝜏 ∩(ℰ(𝑥)∪ℱ).
By Lemma 3.5(i), 𝛽 ∈ ℒ𝜌, and by Proposition 3.6, 𝛽 is 𝑅1. Since
𝜏 is minimal 𝑅1 in ℒ𝜌, we have that 𝛽 = 𝜏 , and thus ℱ ⊇ 𝒩𝜏 (𝑥).

Conversely, suppose every open filter ℱ on 𝑋 such that 𝑎𝑑ℎ𝜏ℱ =
𝑐𝑙(𝑥) for some 𝑥 ∈ 𝑋, is 𝜏 -convergent, and let 𝜏 ′ ∈ ℒ𝜌 be an
𝑅1-topology such that 𝜏 ′ ≤ 𝜏. Let 𝑉 ∈ 𝜏 and 𝑥 ∈ 𝑉. Since
𝑎𝑑ℎ𝜏 ′𝒩𝜏 ′(𝑥) = 𝑐𝑙(𝑥), the hypothesis implies that the 𝜏 -open fil-
ter 𝒩𝜏 ′(𝑥) is 𝜏 -convergent to 𝑥. Thus, 𝒩𝜏 ′(𝑥) ⊇ 𝒩𝜏 (𝑥), and hence
𝑉 ∈ 𝒩𝜏 ′(𝑥). Since this happens for all 𝑥 ∈ 𝑉, then 𝑉 ∈ 𝜏 ′. There-
fore, 𝜏 = 𝜏 ′, and this implies that 𝜏 is minimal 𝑅1. □

Since 𝜏 is minimal 𝑇2 if and only if 𝜏 ∈ ℒ1 and is minimal 𝑅1,
then Theorem 3.8 applied to any 𝑇1-topology 𝜌 yields the following
well-known result on minimal 𝑇2.

Corollary 3.9. Let 𝑋 be an infinite set and let 𝜏 ∈ 𝐿𝑇 (𝑋) be 𝑇2.
Then 𝜏 is minimal 𝑇2 if and only if every open filter on 𝑋 with a
unique adherent point is convergent (to that point).

Recall that 𝜏 ∈ 𝐿𝑇 (𝑋) is said to be compact if every open cover
of 𝑋 has a finite subcover. Equivalently, 𝜏 is compact if and only if
every filter on𝑋 has an adherent point if and only if every ultrafilter
on 𝑋 converges [20]. It is known that if 𝜏 is minimal 𝑇2, then 𝜏
is regular if and only if it is compact [20]. We will show that
this last equivalence holds for minimal 𝑅1 topologies in ℒ𝜌. The
results given in the following lemma are well known. For the sake
of completeness, we include the proofs.

Lemma 3.10. Let 𝜏 ∈ 𝐿𝑇 (𝑋).
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(i) If 𝜏 is 𝑅1 and compact, then 𝜏 is regular.
(ii) If 𝜏 is regular and every open filter on 𝑋 has an adherent

point, then 𝜏 is compact.

Proof: (i) Let 𝜏 be 𝑅1 and compact and let 𝑥 ∈ 𝑉 ∈ 𝜏 . Then for
each 𝑦 ∈ 𝑋∖𝑉, there exist 𝑈𝑦 ∈ 𝒩𝜏 (𝑥) and 𝑉𝑦 ∈ 𝒩𝜏 (𝑦) such that
𝑈𝑦 ∩ 𝑉𝑦 = ∅. Now the family {𝑉𝑦}𝑦∈𝑋∖𝑉 is an open cover of 𝑋∖𝑉 ,

a closed set, and hence a compact set. Thus, 𝑋∖𝑉 ⊆ ∪𝑛
𝑖=1 𝑉𝑦𝑖

for some finite collection {𝑦1, ..., 𝑦𝑛} of points in 𝑋∖𝑉 . Let 𝑈 =∩𝑛
𝑖=1 𝑈

𝑦𝑖 . It is immediate that 𝑈 ∈ 𝒩𝜏 (𝑥) and 𝑐𝑙(𝑈) ⊆ 𝑉, which
show that 𝜏 is regular.

(ii) Let 𝜏 be regular and such that every open filter on 𝑋 has
an adherent point. Given an ultrafilter ℛ on 𝑋, consider the open
filter ℱ = ℛ∩ 𝜏. Then ℱ has an adherent point 𝑥 ∈ 𝑋. Now, if ℛ
does not converge to 𝑥, there exists 𝑉 ∈ 𝒩𝜏 (𝑥) such that 𝑉 /∈ ℛ,
and hence 𝑋∖𝑉 ∈ ℛ since ℛ is ultrafilter. By regularity of 𝜏, one
can choose 𝑈 ∈ 𝒩𝜏 (𝑥) with 𝑐𝑙𝜏 (𝑈) ⊆ 𝑉. Then 𝑋∖𝑐𝑙𝜏 (𝑈) ⊇ 𝑋∖𝑉 ,
and thus 𝑋∖𝑐𝑙𝜏 (𝑈) ∈ ℛ ∩ 𝜏 = ℱ . But since 𝑥 ∈ 𝑎𝑑ℎ𝜏ℱ , it must be
that 𝑈 ∩𝑋∖𝑐𝑙𝜏 (𝑈) ∕= ∅, a contradiction. Thus, ℛ converges to 𝑥,
and therefore 𝜏 is compact. □

Proposition 3.11. Let 𝜏 ∈ ℒ𝜌. If 𝜏 is minimal 𝑅1, then every
open filter on 𝑋 has an adherent point.

Proof: Suppose there is an open filter ℱ on𝑋 such that 𝑎𝑑ℎ𝜏ℱ =
∅. For each 𝑥 ∈ 𝑋, there exist 𝑉 ∈ 𝒩𝜏 (𝑥) and 𝐹 ∈ ℱ such that
𝑉 ∩ 𝐹 = ∅. In particular, 𝑉 /∈ ℱ . On the other hand, since 𝑐𝑙(𝑥) ⊆
𝑉 , 𝑋∖𝑐𝑙(𝑥) ⊇ 𝑋∖𝑉 ⊇ 𝐹, and thus 𝑋∖𝑐𝑙(𝑥) ∈ ℱ . This shows that
ℱ ⊇ 𝒩𝑎𝑡(𝜌)(𝑥) and ℱ ⊉ 𝒩𝜏 (𝑥) for each 𝑥 ∈ 𝑋. Now, fix 𝑥 ∈ 𝑋
and let 𝛽 = 𝜏 ∩ (ℰ(𝑥) ∪ ℱ). Then 𝛽 is a topology in ℒ𝜌 which is
strictly weaker than 𝜏. We will prove that 𝛽 is 𝑅1, and thus 𝜏 is
not minimal 𝑅1.

By Proposition 3.6, it suffices to show that ℱ contains an open
filter ℱ0 such that 𝑎𝑑ℎ𝜏ℱ0 = 𝑐𝑙(𝑥). Let ℱ0 = {𝐹 ∈ ℱ : 𝐹 ∩ 𝑉 ∕= ∅,
for all 𝑉 ∈ 𝒩𝜏 (𝑥)}. It is clear that ℱ0 is an open non-empty proper
sub-filter of ℱ and that 𝑐𝑙(𝑥) ⊆ 𝑎𝑑ℎ𝜏ℱ0. Now, let 𝑦 /∈ 𝑐𝑙(𝑥). Since 𝜏
is 𝑅1, there exist 𝑉 ∈ 𝒩𝜏 (𝑥) and 𝑊 ∈ 𝒩𝜏 (𝑦) such that 𝑉 ∩𝑊 = ∅.
On the other hand, since 𝑦 /∈ 𝑎𝑑ℎ𝜏ℱ , there exist 𝑈 ∈ 𝒩𝜏 (𝑦) and
𝐹 ∈ ℱ such that 𝑈 ∩ 𝐹 = ∅. If 𝑂 = 𝑊 ∩ 𝑈 and 𝐺 = 𝑉 ∪ 𝐹, then
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𝑂 ∈ 𝒩𝜏 (𝑦), 𝐺 ∈ ℱ0, and 𝑂 ∩ 𝐺 = ∅. Thus, 𝑦 /∈ 𝑎𝑑ℎ𝜏ℱ0, and
therefore 𝑎𝑑ℎ𝜏ℱ0 = 𝑐𝑙(𝑥). □

The next result follows immediately from Lemma 3.10 and Propo-
sition 3.11.

Theorem 3.12. Let 𝜏 ∈ ℒ𝜌 be minimal 𝑅1. Then 𝜏 is compact if
and only if it is regular.

We end this section with the characterization of minimal regular
topologies in ℒ𝜌, announced in the introduction of this paper.

Theorem 3.13. Let 𝜏 ∈ ℒ𝜌 be regular. Then 𝜏 is minimal regular
if and only if every regular filter ℱ on 𝑋, such that 𝑎𝑑ℎ𝜏ℱ = 𝑐𝑙(𝑥),
for some 𝑥 ∈ 𝑋, is convergent (necessarily to every point of 𝑐𝑙(𝑥)).

Proof: (⇒) Let ℱ be a 𝜏 -regular filter on 𝑋 such that 𝑎𝑑ℎ𝜏ℱ =
𝑐𝑙(𝑥) for some 𝑥 ∈ 𝑋, and suppose ℱ does not converge. Then there
exists 𝑈 ∈ 𝒩𝜏 (𝑥) such that 𝑈 /∈ ℱ , and hence 𝛽 = 𝜏 ∩((ℰ(𝑥)∪ℱ) ∈
ℒ𝜌 is strictly weaker than 𝜏. Note that 𝑥 ∈ 𝐹 for all 𝐹 ∈ ℱ .
Otherwise, 𝑥 /∈ 𝑐𝑙𝜏 (𝐹

′) for some 𝐹 ′ ∈ ℱ , and hence 𝑥 /∈ 𝑎𝑑ℎ𝜏ℱ ,
which contradicts the hypothesis that 𝑎𝑑ℎ𝜏ℱ = 𝑐𝑙(𝑥). We prove
that 𝛽 is regular, and therefore 𝜏 is not minimal regular.

Let 𝑉 ∈ 𝛽 and 𝑦 ∈ 𝑉. If 𝑦 ∈ 𝑐𝑙(𝑥), then 𝑉 ∈ 𝒩𝜏 (𝑥) ∩ ℱ = ℱ , a
regular filter, and thus there exists 𝑈 ∈ ℱ such that 𝑐𝑙𝜏 (𝑈) ⊆ 𝑉.
Since 𝑥 ∈ 𝑈, then 𝑐𝑙𝛽(𝑈) = 𝑐𝑙𝜏 (𝑈) ⊆ 𝑉. Now, if 𝑦 /∈ 𝑐𝑙(𝑥) = 𝑎𝑑ℎ𝜏ℱ ,
there exist 𝑈 ′ ∈ 𝒩𝜏 (𝑦) and 𝐹 ∈ ℱ such that 𝑈 ′ ∩ 𝐹 = ∅. Choose
𝑈 ∈ 𝒩𝜏 (𝑦) such that 𝑐𝑙𝜏 (𝑈) ⊆ 𝑉 (this is possible since 𝜏 is regular).
If 𝑊 = 𝑈 ∩ 𝑈 ′, then 𝑐𝑙𝜏 (𝑊 ) ∩ 𝐹 = ∅, and thus 𝑋∖𝑐𝑙𝜏 (𝑊 ) ∈ ℱ . It
follows that 𝑐𝑙𝛽(𝑊 ) = 𝑐𝑙𝜏 (𝑊 ) ⊆ 𝑐𝑙𝜏 (𝑈) ⊆ 𝑉.

(⇐) Suppose that every 𝜏 -regular filter on 𝑋 for which the set
of adherent points coincides with a point closure is 𝜏 -convergent.
Let 𝜏 ′ ∈ ℒ𝜌 be a regular topology such that 𝜏 ′ ≤ 𝜏. Fix 𝑉 ∈ 𝜏
and 𝑥 ∈ 𝑉. It is clear that 𝑐𝑙(𝑥) = 𝑎𝑑ℎ𝜏𝒩𝜏 (𝑥) ⊆ 𝑎𝑑ℎ𝜏𝒩𝜏 ′(𝑥) ⊆
𝑎𝑑ℎ𝜏 ′𝒩𝜏 ′(𝑥) = 𝑐𝑙(𝑥). Since 𝒩𝜏 ′(𝑥) is a 𝜏 ′-regular filter, then 𝒩𝜏 ′(𝑥)
is a 𝜏 -regular filter. By hypothesis, 𝒩𝜏 ′(𝑥) is 𝜏 -convergent, i.e.,
𝒩𝜏 (𝑥) ⊆ 𝒩𝜏 ′(𝑥). Since this holds for every 𝑥 ∈ 𝑉, then 𝑉 ∈ 𝜏 ′, and
thus 𝜏 ′ = 𝜏. Therefore, 𝜏 is minimal regular in ℒ𝜌. □
Corollary 3.14. A regular and 𝑇1-topology on 𝑋 is minimal reg-
ular if and only if every regular filter on 𝑋 with a unique adherent
point is convergent.
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Proof: Apply Theorem 3.13 to any 𝑇1-topology 𝜌. □

4. Presober topologies in ℒ𝜌

In this last section, we consider a topological property known
as presobriety, which is strictly weaker than 𝑅1, and show that
there are no minimal presober topologies in ℒ𝜌. As in the previous
section, we assume 𝜌 ∈ 𝐿𝑇 (𝑋) is any 𝑅0-topology such that 𝑋 can
be written as an infinite union of disjoint point closures.

Definition 4.1. A non-empty closed subset 𝐶 of 𝑋 is said to be
reducible if there are non-empty proper closed subsets 𝐶1 and 𝐶2

of 𝐶, such that 𝐶 = 𝐶1 ∪ 𝐶2. Otherwise, 𝐶 is irreducible. By
convention, ∅ is neither reducible nor irreducible.

Every point closure is irreducible. If 𝐶 is an irreducible closed
set, then it may be the case that it is the point closure of some
point 𝑥. If so, 𝑥 is called a generic point of 𝐶.

Definition 4.2. A topology is said to be presober if and only if
each irreducible closed set has at least one generic point.

In case that every irreducible closed subset of a space has a
unique generic point, the topology is said to be 𝑠𝑜𝑏𝑒𝑟. Sobriety
is thus a combination of two properties: the existence of generic
points and their uniqueness. It is straightforward to see that the
generic points in a topological space are unique if and only if the
space satisfies the 𝑇0 separation axiom. Thus, a topology is sober
precisely when it is 𝑇0 and presober.

In any 𝑇2-topology, the irreducible closed sets are the singleton,
so 𝑇2 implies sobriety. The cofinite topology on an infinite set is
an example of a 𝑇1-topology which is not sober, so it is also an
example of a 𝑇0 and not presober topology.

Proposition 4.3. Every 𝑅1-topology 𝜏 ∈ 𝐿𝑇 (𝑋) is presober.

Proof: Let 𝜏 ∈ 𝐿𝑇 (𝑋) be 𝑅1 and let 𝐶 ⊆ 𝑋 be closed. Let
𝑥, 𝑦 ∈ 𝐶 with 𝑥 ∕= 𝑦. Then 𝑐𝑙𝜏 (𝑥) and 𝑐𝑙𝜏 (𝑦) ⊆ 𝐶. If 𝑦 /∈ 𝑐𝑙𝜏 (𝑥),
there exist disjoint open sets 𝑈 ∈ 𝒩𝜏 (𝑥) and 𝑉 ∈ 𝒩𝜏 (𝑦) such that
𝑐𝑙𝜏 (𝑥) ⊆ 𝑈 and 𝑐𝑙𝜏 (𝑦) ⊆ 𝑉. Let 𝐶1 = 𝐶 ∩𝑋∖𝑈 and 𝐶2 = 𝐶 ∩𝑋∖𝑉.
Then 𝐶1 and 𝐶2 are non-empty proper closed subsets of 𝐶 such that
𝐶1∪𝐶2 = 𝐶, and thus 𝐶 is reducible. It follows that an irreducible
closed set must be a point closure, and hence 𝜏 is presober. □
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Presobriety does not imply 𝑅1, as the next example shows.

Example 4.4. Let𝑋 be a set with cardinality ≥ 3, and let 𝑎, 𝑏 ∈ 𝑋
with 𝑎 ∕= 𝑏. Let 𝜏 be the topology {𝐺 ⊆ 𝑋 : {𝑎, 𝑏} ⊆ 𝐺} ∪ {∅}.
Then a set 𝐶 is closed if and only if 𝐶 ∩ {𝑎, 𝑏} = ∅ or 𝐶 = 𝑋.
It is clear that for every 𝑥 /∈ {𝑎, 𝑏}, the set {𝑥} is closed. If 𝐶
is a non-empty closed proper subset of 𝑋, then 𝐶 is irreducible if
and only if it is a singleton {𝑥}, with 𝑥 /∈ {𝑎, 𝑏}, since otherwise,
𝐶 = {𝑦} ∪ (𝐶∖{𝑦}) for any 𝑦 ∈ 𝐶, and both {𝑦} and 𝐶∖{𝑦} are
closed and non-empty. Also, 𝑋 is itself irreducible since it is a point
closure, 𝑋 = 𝑐𝑙𝜏 (𝑎) = 𝑐𝑙𝜏 (𝑏). Thus, the irreducible closed sets are
the point closures, and so 𝜏 is presober. But 𝜏 is not 𝑅1 since given
any 𝑥 /∈ {𝑎, 𝑏}, then 𝑐𝑙𝜏 (𝑥) ∕= 𝑐𝑙𝜏 (𝑎), but 𝑐𝑙𝜏 (𝑥) and 𝑐𝑙𝜏 (𝑎) can not
be separated by disjoint open sets. Note that 𝜏 is an Alexandroff
topology on 𝑋 which is not 𝑇0.

Proposition 4.5. The presober property is expansive in ℒ𝜌 (i.e.,
if 𝜏 ∈ ℒ𝜌 is presober, then 𝜏 ′ is presober for all 𝜏 ′ ∈ ℒ𝜌 finer than
𝜏).

Proof: Let 𝜏 ∈ ℒ𝜌 be presober and let 𝜏 ′ ∈ ℒ𝜌 with 𝜏 ≤ 𝜏 ′.
Let 𝐴 be a non-empty, 𝜏 ′-irreducible, 𝜏 ′-closed subset of 𝑋, and let
𝐵 = 𝑐𝑙𝜏 (𝐴). Then 𝐵 is 𝜏 -irreducible. In fact, if 𝐵 is 𝜏 -reducible
and 𝐹 and 𝐺 are two non-empty, 𝜏 -closed, proper subsets of 𝐵 such
that 𝐵 = 𝐹 ∪ 𝐺, then 𝐹1 = (𝐴 ∩ 𝐹 ) and 𝐺1 = (𝐴 ∩ 𝐺) are two
non-empty, 𝜏 ′-closed, proper subsets of 𝐴 such that 𝐴 = 𝐹1 ∪ 𝐺1.
Hence, 𝐴 would be 𝜏 ′-reducible, which contradicts the hypothesis.
However, if 𝐵 is 𝜏 -irreducible, then since 𝜏 is presober, there is
some 𝑏 ∈ 𝐵 such that 𝑐𝑙𝜏 (𝑏) = 𝐵. Suppose that no point 𝑎 ∈ 𝐴 is
such that 𝑐𝑙𝜏 (𝑎) = 𝐵, then since 𝜏 is 𝑅0, 𝑐𝑙𝜏 (𝑎) ∩ 𝑐𝑙𝜏 (𝑏) = ∅ for
all 𝑎 ∈ 𝐴, which is a contradiction since 𝐴 ⊆ 𝐵. Thus, we may
assume that 𝑏 ∈ 𝐴. However, since 𝜏 ′ ∈ ℒ𝜌, it follows that 𝑐𝑙𝜏 ′(𝑏) =
𝑐𝑙𝜏 (𝑏) = 𝐵 ⊇ 𝐴, and hence 𝐴 is a point closure in the topology 𝜏 ′.
Therefore, 𝜏 ′ is presober. □

Since 𝜌 is 𝑅0, then 𝜌 is 𝑅1, and thus it is presober. Therefore,
there exists at least a presober member of ℒ𝜌. On the other hand,
𝑎𝑡(𝜌) is not presober since a proper subset of 𝑋 is 𝑎𝑡(𝜌)-closed if
and only if it is a finite union of disjoint point closure sets, and
hence 𝑋 is 𝑎𝑡(𝜌)-irreducible, but 𝑋 is not a point closure. Thus,
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𝑎𝑡(𝜌) is an example of an 𝑅0-topology which is not presober. We
will prove that there are no minimal presober topologies in ℒ𝜌.

Given 𝜏 ∈ ℒ𝜌, 𝑥 ∈ 𝑋, and ℱ a filter on 𝑋, consider the topology
𝛽 = 𝜏 ∩ (ℰ(𝑥) ∪ ℱ).

Lemma 4.6. Let 𝜏 ∈ ℒ𝜌 be presober and let 𝐴 ⊆ 𝑋 be 𝛽-closed. If
𝐴 is 𝜏 -reducible, then it is also 𝛽-reducible.

Proof: Let 𝐴 ⊆ 𝑋 be 𝛽-closed and 𝜏 -reducible, and let 𝐹 and 𝐺
be non-empty, 𝜏 -closed, proper subsets of 𝐴 such that 𝐴 = 𝐹 ∪𝐺.
Then either 𝑥 ∈ 𝐴 or 𝑋∖𝐴 ∈ ℱ . If 𝑋∖𝐴 ∈ ℱ or 𝑥 ∈ 𝐹 ∩𝐺, then 𝐹
and 𝐺 are 𝛽-closed, and therefore 𝐴 is 𝛽-reducible. Thus, we just
need to consider the case when 𝑥 belongs to only one of the sets 𝐹
or 𝐺.

Suppose 𝑥 ∈ 𝐹∖𝐺 (the case 𝑥 ∈ 𝐺∖𝐹 is similar). Then it is clear
that 𝐹 is 𝛽-closed. Moreover, since 𝑥 /∈ 𝐺 and since 𝜏 is 𝑅0, it
must be that 𝑐𝑙(𝑥) ∩𝐺 = ∅ (if 𝑦 ∈ 𝑐𝑙(𝑥) ∩𝐺, then 𝑥 ∈ 𝑐𝑙(𝑦) ⊆ 𝐺).
Write 𝐴 = 𝐹 ∪ {𝑐𝑙(𝑥) ∪ 𝐺}. If 𝐹∖ {𝑐𝑙(𝑥) ∪ 𝐺} ∕= ∅, then 𝐹 and
𝑐𝑙(𝑥)∪𝐺 are non-empty, 𝛽-closed, proper subsets of 𝐴, and thus 𝐴
is 𝛽-reducible. If 𝐹∖ {𝑐𝑙(𝑥) ∪𝐺} = ∅, we distinguish the following
cases.

Case 1: 𝐺 is 𝜏 -irreducible. In this case, 𝐺 = 𝑐𝑙(𝑔) for some
𝑔 ∈ 𝐺, since 𝜏 is presober. Thus, 𝐴 = 𝑐𝑙(𝑥) ∪ 𝑐𝑙(𝑔), and therefore
𝐴 is 𝛽-reducible.

Case 2: 𝐺 is 𝜏 -reducible. Then there exist 𝐺1 and 𝐺2, non-
empty, 𝜏 -closed, proper subsets of 𝐺, such that 𝐺 = 𝐺1∪𝐺2. Write
𝐴 = (𝑐𝑙(𝑥)∪𝐺1)∪ (𝑐𝑙(𝑥)∪𝐺2). It is clear that 𝐴 is 𝛽-reducible. □

The following result is an immediate consequence of Lemma 4.6.

Corollary 4.7. Let 𝜏 ∈ ℒ𝜌 be presober. Then every 𝛽-irreducible
subset of 𝑋 is also 𝜏 -irreducible.

Proposition 4.8. Let 𝜏 ∈ ℒ𝜌 be presober, 𝑥 ∈ 𝑋, and ℱ a filter
on 𝑋. If ℱ ⊇ 𝑁𝑎𝑡(𝜌)(𝑥), then 𝛽 = 𝜏 ∩ (ℰ(𝑥) ∪ ℱ) is presober.

Proof: If ℱ ⊇ 𝑁𝑎𝑡(𝜌)(𝑥), then 𝛽 ∈ ℒ𝜌 (Lemma 3.5(i)). Given
a 𝛽-irreducible set 𝐴, then 𝐴 is 𝜏 -irreducible (Corollary 4.7), and
hence 𝐴 is the 𝜏 -closure of a point, and thus the 𝛽-closure of a
point. Therefore, 𝛽 is presober. □

Proposition 4.9. There are no minimal presober members of ℒ𝜌.
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Proof: Let 𝜏 ∈ ℒ𝜌 be a presober topology. Since 𝑎𝑡(𝜌) can
not be presober, there is 𝑉 ∈ 𝜏∖ 𝑎𝑡(𝜌). Let 𝑦 ∈ 𝑉 and let 𝛽 =
𝜏 ∩ (ℰ(𝑦) ∪ 𝑁𝑎𝑡(𝜌)(𝑦)). By Proposition 4.8, 𝛽 is a presober topol-
ogy which is obviously strictly weaker than 𝜏. Therefore, 𝜏 is not
minimal presober. □

Corollary 4.10. There are no minimal (sober and 𝑇1) topologies
on an infinite set.

Proof: Follows from Proposition 4.9 with 𝜌 any 𝑇1-topology. □
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