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PROPERTIES D AND aD ARE DIFFERENT

DÁNIEL SOUKUP

Abstract. Under (♦∗) we construct a locally countable, lo-
cally compact, 0-dimensional T2 space X of size !1 which is
aD, but not even linearly D. This consistently answers a
question of Alexander V. Arhangel’skii, whether aD implies
D. Furthermore, we answer two problems concerning charac-
terization of linearly D-spaces, raised by Hongfeng Guo and
Heikki Junnila.

1. Introduction

The notion of a D-space was probably first introduced by Eric
K. van Douwen. See Gary Gruenhage’s paper [6], which also gives
a full review on what we know and do not know about D-spaces.
A. V. Arhangel’skii and R. Z. Buzyakova [2] defined a weakening
of property D, called aD. In [1], Arhangel’skii asked the following:

Problem 4.6. Is there a Tychonoff aD-space which
is not a D-space?

In section 5, we construct such a space under (♦∗). Before that
we consider another weakening of property D. Recently, Hongfeng
Guo and Heikki Junnila [7] introduced the notion of linearly D-
spaces and proved several nice results concerning the topic. In
sections 3 and 4, we answer the following two questions from [7] in
negative (in ZFC):
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280 D. SOUKUP

Problem 2.5. Let X be a T1 (linearly) D-space
and let A ⊆ X have uncountable regular cardinality.
Does A either have a complete accumulation point
or a subset of size ∣A∣ which is closed and discrete
in X?

Problem 2.6. Is a T1-space X linearly D provided
that, for every set A ⊆ X of uncountable regular
cardinality, either A has a complete accumulation
point or A has a subset of size ∣A∣ which is closed
and discrete in X?

As we will see, these questions arise naturally. The constructions
from sections 3 and 4 can be considered as preparation to the space
defined in section 5. Our construction to Problem 4.6 also answers
(consistently) the following from [7]:

Problem 2.12. Is every aD-space linearly D?

2. Definitions

An open neighborhood assignment (ONA) on a space (X, �) is a
map U : X → � such that x ∈ U(x) for every x ∈ X. X is said
to be a D-space if for every neighborhood assignment U , one can
find a closed discrete D ⊆ X such that X =

∪
d∈D U(d) =

∪
U [D]

(such a set D is called a kernel for U). In [2], Arhangel’skii and
Buzyakova introduced property aD :

Definition 2.1. A space (X, �) is said to be aD if and only if for
each closed F ⊆ X and for each open cover U of X, there is a closed
discrete A ⊆ F and � : A → U with a ∈ �(a) such that F ⊆ ∪�[A].

It is clear that D-spaces are aD. A space X is irreducible if
and only if every open cover U has a minimal open refinement U0,
meaning that no proper subfamily of U0 covers X. Later, in [1],
Arhangel’skii showed the following equivalence.

Theorem 2.2 ([1, Theorem 1.8]). A T1-space X is an aD-space if
and only if every closed subspace of X is irreducible.

Another generalization of property D is due to Guo and Junnila
[7]. For a space X, a cover U is monotone if and only if it is linearly
ordered by inclusion.



PROPERTIES D AND aD ARE DIFFERENT 281

Definition 2.3. A space (X, �) is said to be linearly D if and only
if for any ONA U : X → � for which {U(x) : x ∈ X} is monotone,
one can find a closed discrete set D ⊆ X such that X =

∪
U [D].

We cite two results from [7]. A set D ⊆ X is said to be U-big
for a cover U if and only if there is no U ∈ U such that D ⊆ U .

Theorem 2.4 ([7, Theorem 2.2]). The following are equivalent for
a T1-space X:

(1) X is linearly D.
(2) For every non-trivial monotone open cover U of X, there

exists a closed discrete U-big set in X.
(3) For every subset A ⊆ X of uncountable regular cardinality

�, there is a closed discrete subset B of X, such that for
every neighborhood U of B, we have ∣U ∩A∣ = �.

In Problem 2.5 the authors ask whether condition (3) can be
made stronger.

Theorem 2.5 ([7, Proposition 2.4]). A T1-space X is linearly D if,
and only if, for every set A ⊆ X of uncountable regular cardinality,
either the set A has a complete accumulation point or there exists a
closed discrete set D of size ∣A∣ and a disjoint family {Ad : d ∈ D}
of subsets of A such that d ∈ Ad for every d ∈ D.

In Problem 2.6 the authors ask whether the second condition of
this dichotomy can be weakened.

3. On Problem 2.5 from [7]

In this section, we give a negative answer to Problem 2.5. For
this, let us use the following notion for a space X. We say that X
satisfies (∗) if and only if

(∗) for every regular, uncountable cardinal � and A ∈ [X]�,
there is a complete accumulation point of A or A has a
subset of size � which is closed discrete in X.

Problem 2.5 can be rephrased as to whether property D implies
(∗). We will show

(1) there exists a locally countable T2 D-space X with cardi-
nality !1 which does not satisfy (∗);
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(2) the existence of a locally countable, locally compact, T2 D-
space X with cardinality < 2! which does not satisfy (∗) is
independent of ZFC;

(3) there exists a locally countable, locally compact T3 (even
0-dimensional) D-space X with cardinality 2! which does
not satisfy (∗).

First, let us observe the following.

Proposition 3.1. Suppose that the space X is the union of a closed
discrete set and a D-subspace. Then X is a D-space.

Proof: Let X = Y ∪ Z such that Y is closed discrete and Z is
a D-space. Let U be an ONA on X. Z0 = Z ∖

∪
{U(y) : y ∈ Y }

is a closed subspace of the D-space Z; thus, Z0 is a D-space too.
There is a closed discrete kernel D0 for the ONA U ∣Z0 on Z0. Then
D = D0 ∪ Y is a closed discrete kernel for U . □

Proposition 3.2. There exists a locally countable T2 D-space X
with cardinality !1 which does not satisfy (∗).

Proof: Let X = !1 × 2. We define the topology on X as fol-
lows. Let !1 × {0} be discrete. For � < !1, let (�, 1) have the
neighborhood base

{
{(�, 1)} ∪

(
(�, �) × {0}

)
: � < �

}
.

Clearly, X is a locally countable, T2 space. Observe that !1×{1} ⊆
X is closed discrete and !1 × {0} ⊆ X is discrete, hence D. Thus,
X is aD-space by Proposition 3.1. Let A = !1×{0}. Then, clearly,
any infinite subset of A has an accumulation point in X. Thus, X
does not satisfy (∗), since there is no full accumulation point of A
and any infinite subset of A is not closed discrete in X. □

This answers Problem 2.5 in the negative direction by a T2 coun-
terexample.

The question whether a regular space with this property exists is
natural. First, we will show that the existence of a “nice” regular
counterexample with cardinality below 2! is independent. We will
need a weakening of the axiom (t) which was introduced by István
Juhász in [9].
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Definition 3.3. The weak (t) axiom: there exists a weak (t)-
sequence {A� : � ∈ lim(!1)}, meaning that A� ⊆ � is an !-
sequence converging to �, and for every X ∈ [!1]

!1 , there is a
limit � such that ∣X ∩A�∣ = !.

The existence of such sequences is independent of ZFC. Under
MA, there is no weak (t)-sequence, and adding one Cohen real to
any model adds a (weak) (t)-sequence (see [9]).

Proposition 3.4. Suppose the weak (t)-axiom. Then there exists
a locally compact, locally countable, 0-dimensional T2 D-space X
which does not satisfy (∗).

Proof: Suppose that A = {A� : � ∈ lim(!1)} is a weak (t)-
sequence. Let X = !1 × 2. Define the topology on X as follows.
Let !1 × {0} be discrete. For � ∈ lim(!1), let (�, 1) have the
neighborhood base

{
{(�, 1)} ∪

(
(A� ∖ �)× {0}

)
: � < �

}
.

For successor � < !1, let (�, 1) be discrete. Clearly, X is a locally
countable, locally compact, 0-dimensional T2 space. Notice that
!1×{1} ⊆ X is closed discrete and !1×{0} ⊆ X is discrete, hence
D. Thus, X is a D-space by Proposition 3.1. Let A = !1 × {0}.
We prove that any uncountable B ⊆ A is not closed discrete in X;
hence, X does not satisfy (∗). Let B0 = {� < !1 : (�, 0) ∈ B} ∈
[!1]

!1 . Since A is a weak (t)-sequence, there is � ∈ lim(!1) such
that ∣A� ∩ B0∣ = !. Clearly, B accumulates to (�, 1); thus, B is
not closed discrete in X. □

Remark 3.5. In [8], Tetsuya Ishiu uses guessing sequences to refine
the standard topology on an ordinal.

Now our aim is to prove Proposition 3.8 which implies that under
MA there is no such space. The following was proved by Zoltán T.
Balogh (actually more, but we need only this).

Theorem 3.6 ([3, Theorem 2.2]). Suppose MA. Then for any lo-
cally countable, locally compact space X of cardinality < 2!, exactly
one of the following is true.

∙ X is the countable union of closed discrete subspaces.
∙ X contains a perfect preimage of !1 with the order topology.
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From this and the following observation, we can deduce Propo-
sition 3.8.

Proposition 3.7 ([4, Proposition 7]). If the space X is the count-
able union of a closed D-subspace, then X is a D-space.

Proposition 3.8. Suppose MA. Then for any locally countable, lo-
cally compact space X of cardinality < 2!, the following are equiv-
alent.

(0) X is �-closed discrete;
(1) X is a D-space;
(2) X is a linearly D-space;
(3) X satisfies (∗).

Proof: The implications (0) ⇒ (1) ⇒ (2) (by Proposition 3.7)
and (0) ⇒ (3) are straightforward.

(3) ⇒ (2) by Theorem 2.4.

We need only to show (2) ⇒ (0). Suppose that X is linearly
D; by Theorem 3.6, we need to show that X does not contain any
perfect preimage of !1.

Claim 1. (i) If the space F is a perfect preimage of !1, then F
is countably compact, non compact.

(ii) If X is first-countable and F ⊆ X is a perfect preimage of
!1, then F is closed in X.

Proof of Claim: (i) It is known that under perfect mappings, the
preimage of a compact space is compact (see [5, Theorem 3.7.2]).
Take any countably infinite A ⊆ F and perfect surjection f : F →
!1. There is some � < !1 such that f [A] ⊆ � + 1. Thus, A is the
subset of the compact set f−1[�+ 1].

(ii) is a consequence of (i).

Suppose F ⊆ X is a closed subspace. Then F is linearly D;
hence, if F is countably compact, F is compact too. By the claim,
F cannot be a perfect preimage of !1. □

Finally, we give a regular counterexample to the problem in ZFC

without any further set-theoretic assumptions.

Theorem 3.9. There exists a locally countable, locally compact,
0-dimensional T2 D-space X with cardinality 2! such that X does
not satisfy (∗).
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Proof: Let {C� : � < 2!} denote an enumeration of the closed

dense-in-itself subsets of ℝ. Let {Q�
� : � < 2!} denote an enumer-

ation of all countable subsets of ℝ such that C� ⊆ Q�
� (Euclidean

closure taken). Enumerate the pairs (�, �) from 2! × 2! in order
type 2!: {p� : � < 2!}. We define a topology on X = ℝ × 2
as follows. Let ℝ × {0} be discrete, and we define the topology
on ℝ × {1} by induction. In step � for p� = (�, �), pick a point
x� ∈ C� ∖ {x�′ : �

′ < �} and let (x�, 1) have the neighborhood base
{
{(x�, 1)} ∪ {(xn� , 0) : n ≥ m} : m < !

}

where {xn� : n < !} ⊆ Q�
� ∖ {x�} is any sequence converging to x�

in the Euclidean sense. Let the remaining points (ℝ ∖ {x� : � <
2!}) × {1} be discrete. Clearly, this gives us a locally countable,
locally compact, 0-dimensional T2 space. ℝ×{1} is closed discrete
and ℝ×{0} is discrete, hence a D-space. Thus, X is a D-space by
Proposition 3.1.

We claim that there is no uncountable subset of A = ℝ×{0} ⊆ X
such that it is closed discrete in X with this topology; this implies
that X does not satisfy (∗). Let B ∈ [A]!1 and B0 = {x ∈ ℝ :
(x, 0) ∈ B}. Then there is � < 2! such that C� ⊆ B′

0 (where
B′

0 denotes the Euclidean accumulation points of B0) and � < 2!

such that Q�
� ⊆ B0. By definition, in step �, where p� = (�, �),

we defined the topology on X in such a way that (x�, 1) is in the

closure of Q�
� × {0} and thus in the closure of B. Therefore, B is

not closed in X. □

4. On Problem 2.6 from [7]

Now our aim is to answer Problem 2.6 in the negative. For this,
we will say that a space X satisfies (∗∗) if and only if

(∗∗) for every regular, uncountable cardinal � and A ∈ [X]�,
there is a complete accumulation point of A or there is
D ∈ [A]� which is closed discrete in X.

Problem 2.6 can be rephrased as whether (∗∗) implies linearly D.
We prove that

(1) the existence of a locally countable, locally compact, non-
linearly D space X with cardinality < 2! which satisfies
(∗∗) is independent of ZFC;
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(2) there is a locally countable, locally compact, 0-dimensional
Hausdorff space X with cardinality 2! which satisfies (∗∗),
but is not linearly D.

We will use the following notations in this section. {A� : � ∈
lim(!1)} denotes a ♣-sequence: for every � < !1, A� ⊆ � is an
!-type sequence converging to �, and for every X ∈ [!1]

!1 , there
is some � < !1 such that A� ⊆ X. ♣ means that there is a ♣-
sequence. For every � ∈ !1, enumerate increasingly A� as {an� :
n ∈ !}. Let {M� : � ∈ !1} ⊆ [!]! be an arbitrary almost disjoint
family on !.

Theorem 4.1. Suppose ♣. Then there is a 0-dimensional T2 space
X of cardinality !1 such that X is not linearly D, but satisfies (∗∗).

Proof: First, we introduce some further notations for the in-
tervals between the points in the A�’s. For each � ∈ !1, let
{In� : n ∈ !} denote the disjoint open sets in !1, I

0
� = (0, a0�] and

In+1
� = (an�, a

n+1
� ] for n ∈ !. We will define a topology on X =

!1 × !1. Let {�} × !1 be discrete for successor �. For � ∈ lim(!1)
and � ∈ !1, a neighborhood base for the point (�, �) consists of
sets

U((�, �), E) = {(�, �)} ∪
∪

{In� × !1 : n ∈ M� ∖ E},

where E ∈ [!]<!. Observe that if �, �′ ∈ !1 and � ∕= �′, then

E = M� ∩ M�′

is finite; thus, U((�, �), E) ∩ U((�, �′), E) = ∅.
This way, we defined a 0-dimensional T2 topology. Note that the
set X� = {�} × !1 for � ∈ !1 is closed discrete. Let �(A) = {� ∈
!1 : A ∩X� ∕= ∅} for A ⊆ X.

�

(�, �)

!1

X�

a
n

�
a
n+1
�

I
n+1
�

× !1

Claim 1. If ∣�(A)∣ = !1 for A ⊆ X, then there are stationary
many � ∈ !1 such that X� ⊆ A′.
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Proof of Claim 1: Since {A� : � ∈ lim(!1)} is a ♣-sequence, the
set S = {� ∈ !1 : A� ⊆ �(A)} is stationary. For � ∈ S, we clearly
have X� ⊆ A′, since by definition for any U neighborhood of any
point (�, �) ∈ X�, U intersects A in infinitely many points.

This claim has the following corollaries.

Claim 2. X satisfies (∗∗).

Proof of Claim 2: Let A ∈ [X]!1 . If there is an � ∈ !1 such that
∣A ∩ X�∣ = !1, we are done. Otherwise, for all � ∈ !1, we have
∣A ∩X�∣ ≤ ! so ∣�(A)∣ = !1. By Claim 1, there is an � ∈ lim(!1)
such that X� ⊆ A and X� is closed discrete.

Claim 3. X is not linearly D.

Proof of Claim 3: Suppose that D ⊆ X is closed discrete. Then
�(D) is countable by Claim 1. Hence, there is no closed discrete
set which is big for the open cover {� × !1 : � < !1}. Thus, X is
not linearly D by Theorem 2.4.

This completes the proof of this theorem. □

Remark 4.2. If we modify the neighborhoods to be
{
{(�, �)} ∪

∪
{In� × [0, �] : n ∈ M� ∖ E} : E ∈ [!]<!

}

for (�, �) where � ∈ !1 and � ∈ lim(!1), then we obtain a topology
which is locally countable, not linearly D, satisfies (∗∗), but is not
even regular.

With some further set-theoretic assumptions, we can improve the
above construction.

Theorem 4.3. Suppose ♣ and CH (equivalently, ♦). Then there
is a locally countable, locally compact, 0-dimensional T2 space X
of cardinality !1(= 2!) such that X is not linearly D, but satisfies
(∗∗).

Proof: For our construction, we will need an enumeration of the
functions ! → !1 as {F� : � < !1}; here we used CH. Let ℎ be
an arbitrary bijection ℎ : !1 → !1 × !1. We define a topology
on X = !1 × !1. Let X� = {�} × !1, X<� = � × !1. Define
neighborhoods for points in X� by induction on �. Let (X<�, �<�)
denote the topology defined by the induction until step �. We have
the following conditions which we will preserve during each step.

(i) (X<�, �<�) is locally countable, locally compact, 0-dimensional;
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(ii) X<� is open in X<� for � < �;
(iii) for every � < � and (�, 
) ∈ X�, there is some neighborhood

G of (�, 
) such that G ∖ {(�, 
)} ⊆ X<�;
(iv) for every �′ < � < �, the set (�′, �]×!1 is clopen in (X<�, �<�).

This way, we will get a topology � on X by taking ∪{�<� : � < !1}
as a base.

For successor � < !1, just let (�, �) be a discrete point for any
� < !1. Clearly, this way, the inductional hypothesis will hold.
Suppose now that � is a limit; we define neighborhoods of (�, �)
(for any � < !1) as follows. Suppose that ℎ(�) = (�, 
). For each
n ∈ !, take a countable, compact, clopen Gn ⊆ (an−1

� , an�] × !1

such that (an�, F�(n)) ∈ Gn; this can be done by (i) and (iv). Then
define the neighborhoods of (�, �) by the base

{
{(�, �)} ∪

∪
{Gn : n ∈ M� ∖ E} : E ∈ [!]<!

}
.

It is clear that the inductional assumptions will hold for the re-
sulting topology. It follows from the construction that (X, �) is
locally countable, locally compact, and 0-dimensional. Thus, we
constructed a space (X, �) which refines the topology from the pre-
vious theorem; hence, X is T2. Let �(A) = {� ∈ !1 : A ∩X� ∕= ∅}
for A ⊆ X.

Claim 1. If ∣�(A)∣ = !1 for A ⊆ X, then there are stationary
many � ∈ !1 such that ∣X� ∩A′∣ = !1.

Proof of Claim 1: Since {A� : � ∈ lim(!1)} is a ♣-sequence, the
set S = {� ∈ !1 : A� ⊆ �(A)} is stationary. Fix an � ∈ S. Define
F : ! → !1 such that (an�, F (n)) ∈ A where A� = {an� : n ∈ !}. So
there is some � for which we have F� = F . We claim that {(�, �) ∈
X� : ∃
 < !1 : ℎ(�) = (�, 
)} ⊆ A′. Clearly, for such an (�, �),
we used F� = F in the induction to define the neighborhoods, from
which we see that the set {(an�, F (n)) : n ∈ !} ⊆ A accumulates to
(�, �).

Claim 2. X satisfies (∗∗).

Proof of Claim 2: Let A ∈ [X]!1 . If there is an � ∈ !1 such
that ∣A ∩X�∣ = !1, we are done. Otherwise, since ∣A ∩X�∣ ≤ !,
we have ∣�(A)∣ = !1. By Claim 1, A intersects (stationary) many
closed discrete sets X� in !1 many points.

Claim 3. X is not linearly D.
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Proof of Claim 3: Suppose that D ⊆ X is closed discrete. Then
�(D) is countable by Claim 1. Hence, there is no closed discrete
set which is big for the open cover {� × !1 : � < !1}. Thus, X is
not linearly D by Theorem 2.4.

This completes the proof of this theorem. □

We can further extend the equivalences of Proposition 3.8 using
Theorem 3.6.

Proposition 4.4. Suppose MA. Suppose that the space X is locally
countable, locally compact of cardinality less than 2!. Then the
following are equivalent.

(1) X is (linearly) D;
(4) X satisfies (∗∗).

Proof: (1) ⇒ (4) trivially.

Suppose (4); then a closed uncountable subspace of X cannot be
countably compact. Then by Claim 1 of the proof of Proposition
3.8, there is no perfect preimage of !1 in X. By Theorem 3.6, this
implies that X is �-closed-discrete, hence (linearly) D. □

Under ZFC, without any further set-theoretic assumptions, we
can give a counterexample.

Theorem 4.5. There is a locally countable, locally compact, 0-
dimensional T2 space X such that X is not linearly D, but satisfies
(∗∗).

Proof: We will use the following notations: let {C� : � < 2!}
be an enumeration of uncountable closed dense in itself subsets of
ℝ and enumerate {Q ∈ [ℝ ∖ ℚ]! : C� ⊆ Q} as {Q�

� : � < 2!}.

Enumerate the triples (C�, Q
�
�, 
) for �, �, 
 < 2! in order type 2!:

{t� : � < 2!}. We need an enumeration of all functions F : ! → 2!,
{F' : ' < 2!}. Fix an ℎ : 2! → 2! × 2! bijection. Furthermore, let
{M � : � < 2!} ⊆ [!]! be an almost disjoint family on !.

We define a topology on X = 2! × 2! by induction. Let X� =
{�} × 2! for � < 2!. Let (X<�, �<�) denote the topology defined
by the induction until step � < 2! where X<� =

∪
{X�′ : �

′ < �}.
In step �, we pick a point x� from the real line which will help us
define the neighborhoods of points in X�. We have the following
conditions which we preserve during the induction.
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(i) (X<�, �<�) is locally countable, locally compact, 0-dimensional;
(ii) X<�′ is open in X<� for �′ < �;
(iii) for every �′ < � and (�′, �) ∈ X�′ , there is some neighborhood

G of (�′, �) such that G ∖ {(�′, �)} ⊆ X<�′ ;
(iv) property (E): suppose �′ < � and x�′ ∈ B where B is Eu-

clidean open. If (�′, �) ∈ X�′ , then there is some compact,
countable, and clopen neighborhood G of (�′, �) such that
G ⊆

∪
{X�′′ : x�′′ ∈ B}.

This way, we will get a topology � on X if we take ∪{�<� : � < 2!}
as a base.

Suppose we are in step � ∈ 2!, where t� = (C�, Q
�
�, 
). We then

∙ pick a point x� ∈ C� ∖ ({x�′ : �
′ < �} ∪ℚ);

∙ if the set Q�
�∩{x�′ : �

′ < �} does not accumulate to x�, just
let each point of X� be discrete;

∙ if the set Q�
� ∩ {x�′ : �

′ < �} accumulates to x�, choose a

sequence {x�′
n

: n ∈ !} ⊆ Q�
� ∩ {x�′ : �

′ < �} converging to
x�;

∙ take disjoint open intervals Bn with rational endpoints con-
taining x�′

n

.

Now we are ready to define a neighborhood of a point (�, �). Sup-
pose ℎ(�) = (', �).

∙ Consider the points (�′n, F'(n)) in X�′
n

;
∙ by property (E), we can take compact, countable, and clopen
neighborhoods Gn of (�′n, F'(n)) such that Gn ⊆

∪
{X�′′ :

x�′′ ∈ Bn}. Observe that
∪
{Gn : n ∈ !} is closed in

(X<�, �<�).

Let

U((�, �), E) = {(�, �)} ∪
∪

{Gn : n ∈ M � ∖ E}

for E ∈ [!]<!, and let
{
U((�, �), E) : E ∈ [!]<!

}

be a neighborhood base for (�, �). Note that if � ∕= �′ < 2! and

E = M � ∩ M �′ , then U((�, �), E) ∩ U((�, �′), E) = ∅; this yields
that the resulting topology will be T2. We need to check that the
inductional assumptions still hold. Clearly, U((�, �), E) is countable
and compact; we need to check that it is clopen. Since U((�, �), E)∩
X<� =

∪
{Gn : n ∈ !} is closed in X<�, we need only to check that
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(�, �′) /∈ U((�, �), E) for � ∕= �′ < 2!. Let F = M � ∩ M �′ ∈ [!]<!;
then U((�, �), E) ∩ U((�, �′), F ) = ∅. Conditions (ii) and (iii) will
clearly hold. We need to check (iv) property (E). For points in X<�,
this will still hold. Consider a Euclidean open B such that x� ∈ B
and a new point: (�, �) ∈ X�. Using the notations of the definition
of a basic neighborhood for (�, �), there is some m ∈ ! such that∪
{Bn : n ≥ m} ⊆ B. So for the neighborhood

G = {(�, �)} ∪
∪

{Gn : n ∈ M �, n ≥ m},

we have that G ⊆
∪
{X�′′ : x�′′ ∈ B}, since Bn ⊆ B for n ≥ m, and

hence Gn ⊆
∪
{X�′′ : x�′′ ∈ Bn} ⊆

∪
{X�′′ : x�′′ ∈ B}.

It is clear that (X, �) is a locally countable, locally compact, and
0-dimensional space. It is straightforward by condition (iii) that
each X� is closed discrete. Let �(A) = {� < 2! : A ∩X� ∕= ∅} and
�0(A) = {x� : � ∈ �(A)} ⊆ ℝ for A ⊆ X.

Claim 1. If ∣�(A)∣ > ! for A ⊆ X, then there are 2! many
� < 2! such that ∣X� ∩A′∣ = 2!.

Proof of Claim 1: There is � < 2! such that C� ⊆ �0(A) (Eu-

clidean closure taken) and � < 2! such that Q�
� ⊆ �0(A). Let

D =
{
� < 2! : ∃
 < 2!

(
t� = (C�, Q

�
�, 
)

)

and ∀�′ < 2!(x�′ ∈ Q�
� ⇒ �′ < �)

}
.

Take a � ∈ D. Clearly, we did not define X� to be discrete since

all points in Q�
� are of the form x�′ where �′ < �. So at step � in

the induction, we chose some convergent sequence {x�′
n

: n ∈ !}

from Q�
� where �′n < �. Let F : ! → 2! such that (�′n, F (n)) ∈ A.

There is some ' ∈ 2! such that F = F'. We claim that {(�, �) ∈
X� : ∃� < 2! : ℎ(�) = (', �)} ⊆ A′. For such a point (�, �), we
used F' = F for the definition of basic neighborhoods; thus, the
set {(�′n, F (n)) : n ∈ !} ⊆ A accumulates to (�, �).

Claim 2. X satisfies (∗∗).

Proof of Claim 2: Let A ∈ [X]� such that � is an uncountable,
regular cardinal. If there is a � < 2! such that ∣A∩X�∣ = �, we are
done. Otherwise, ∣�(A)∣ > ! since ∣A ∩X�∣ < � for all � < 2!. By
Claim 1, A intersects (continuum) many closed discrete sets X� , in
2! many points.

Claim 3. X is not linearly D.
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Proof of Claim 3: Suppose that D ⊆ X is closed discrete. Then
�(D) is countable by Claim 1. Hence, there is no closed discrete
set which is big for the open cover {X<� : � < 2!}. Thus, X is not
linearly D by Theorem 2.4.

This completes the proof of this theorem. □

Remark 4.6. Peter J. Nyikos [10] gave an example of a space T
which is not a D-space; however, e(F ) = L(F ) for every closed
F ⊆ T . From [10, Theorem 1.11], one can see that T is linearly
D (use the characterization of linear D property by Theorem 2.4).
Applying Claim 1, just above, to our last construction, we get the
following corollary.

Corollary 4.7. There exists a Hausdorff space X of cardinality 2!

such that X is locally countable, locally compact, 0-dimensional, not
linearly D; however, e(F ) = L(F ) for every closed subset F ⊆ X.

5. Consistently on property D and aD

Our main goal in this section is to construct a space which is not
linearly D, but every closed subset of it is irreducible, hence aD by
Theorem 2.2.

We will use the following set-theoretical assumption.

(♦∗) There is a ♦∗-sequence, meaning that there exists an {A� :
� ∈ lim(!1)} such that A� ⊆ [�]! is countable, and for every
X ⊆ !1, there is a club C ⊆ !1 such that X ∩ � ∈ A� for all
� ∈ C.

Before proving the theorem, we need the following easy claim about
maximal almost disjoint families (MAD, in short).

Claim 5.1. If {Ni : i ∈ !} ⊆ [!]!, then there is a MAD family
ℳ ⊆ [!]! of size 2! such that for all M ∈ ℳ and i ∈ !: ∣M∩Ni∣ =
!.

Proof: We will construct the MAD family ℳ on ℚ. We can
suppose that each Ni is dense in ℚ. Let ℝ = {x� : � < 2!} and for
all � < 2!, let S� ⊆ ℚ such that S� is a convergent sequence with
limit point x�, and ∣S� ∩ Ni∣ = ! for all i ∈ !. Then S = {S� :
� < 2!} is almost disjoint. Let T = {T� : � < �} ⊆ [ℚ]! such that
S ∪ T is MAD. Then ℳ = {S� ∪ T� : � < �} ∪ {S� : � ≤ � < 2!}
is a MAD family with the desired property. □
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Theorem 5.2. Suppose (♦∗). There is a locally countable, locally
compact, 0-dimensional T2 space X of size !1 such that X is not
linearly D; however, every closed subset F ⊆ X is irreducible, and
equivalently, X is an aD-space.

Proof: We will define a topology on X = !1 × !1. Let X� =
{�} × !1 and X<� = �× !1 for � < !1. □

Definition 5.3. The set A ∈ [X]! runs up to � < !1 if and only
if A = {(�n, �n) : n ∈ !)} ⊆ X<� such that �0 ≤ ... ≤ �n ≤ ... and
sup{�n : n ∈ !} = �.

Note that if A ⊆ X runs up to some � < !1, then A ∩ X� is
finite for all � < !1.

We need the following consequence of (♦∗). Let �(A) = {� ∈
!1 : A ∩X� ∕= ∅} for A ⊆ X.

Claim 5.4. (♦∗) There exists a sequence {A� : � ∈ lim(!1)} ⊆
[X]! with A� =

∪
{An

� : n ∈ !} for all � ∈ lim(!1) such that

(1) ∣An
�∣ = ! for all n ∈ !;

(2) A� runs up to �;
(3) for all Y ⊆ X, if ∣�(Y )∣ = !1, then there exists club C ⊆

!1 such that for all � ∈ C there exists n ∈ !(An
� ⊆ Y ).

Proof: Let {A� : � ∈ lim(!1)} denote a ♦
∗-sequence. Let i : !1×

!1 → !1 denote a bijection which maps
(
(�+1)× (�+1)

)
∖ (�×�)

to ! ⋅ (�+ 1) ∖ ! ⋅ �. Let

Ã� = {i−1(A) : A ∈ A!⋅�, sup
(
�(i−1(A))

)
= �}

and let A� =
∪
{An

� : n ∈ !} such that
(1) ∣An

�∣ = ! for all n ∈ !;
(2) A� runs up to �;

(3)′ for all B ∈ Ã�, there is n ∈ ! such that An
� ⊆ B,

for all � ∈ lim(!1). We claim that the sequence {A� : � ∈ lim(!1)}
has the desired properties. Let Y ⊆ X such that ∣�(Y )∣ = !1.
There is some club C0 ⊆ !1 such that Y ∩X<� ⊆ �×� for � ∈ C0.
There is some club C1 ⊆ !1 such that � ∩ i[Y ] ∈ A� for � ∈ C1.
Let C2 = {� < !1 : ! ⋅ � ∈ C1}; clearly, C2 is a club. Let C =
C0 ∩ C2 ∩ �(Y )′. Fix some � ∈ C. Then ! ⋅ � ∩ i[Y ] = A for
some A ∈ A!⋅�; thus, i[Y ∩ X<�] = A since ! ⋅ � = i[� × �] and

Y ∩ X<� ⊆ � × �. Hence, i−1(A) = Y ∩ X<� and i−1(A) ∈ Ã�
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because � ∈ �(Y )′. Thus, there is n ∈ ! such that An
� ⊆ Y by

(3)′. □

Let {A� : � ∈ lim(!1)} ⊆ [X]! denote a sequence with A� =∪
{An

� : n ∈ !} for � ∈ lim(!1) from Claim 5.4. We want to define
the topology on X such that

∙ X� is closed discrete for all � < !1;
∙ X<� is open for all � ∈ !1,
∙ if A ∈ [X]! runs up to �, then A has an accumulation point
in X�;

∙ X� ⊆ An
� for all � ∈ lim(!1) and n ∈ !.

Let ℳ� ⊆ [A�]
! denote a MAD family on A� for � ∈ lim(!1) such

that ∣M ∩An
�∣ = ! for all M ∈ ℳ� and n ∈ !; such an ℳ� exists

by Claim 5.1. Enumerate ℳ� = {M�
� : � < !1}.

We define topologies �<� on X<� by induction on � < !1 such
that �<� ∩P(X<�) = �<� for all � < � < !1. This way, we will get
a topology � on X if we take ∪{�<� : � < !1} as a base.

Suppose � < !1 and we have defined the topology (X<�, �<�)
such that

(i) (X<�, �<�) is a locally countable, locally compact, 0-dimension-
al T2 space,

(ii) for all �′ < � and x ∈ X�′ , there is some neighborhood G of
x such that G ∩X�′ = {x},

(iii) (�0, �1]× !1 ⊆ X<� is clopen for all �0 < �1 < �.

If � ∈ !1 ∖ lim(!1), then let X� be discrete. Suppose � ∈ lim(!1)

and let us enumerate {F ⊆ X<� ∖ A� : F runs up to �} as {F �
� :

� < !1}.

Definition 5.5. A subspace A ⊆ T of a topological space T is
completely discrete if and only if there is a discrete family of open
sets {Ga : a ∈ A} such that a ∈ Ga for all a ∈ A.

The following claim will be useful later.

Claim 5.6. Suppose that A = {(�n, �n) : n ∈ !} ⊆ X runs up to
�. Then A is completely discrete in X<� , hence closed discrete.

Proof: Let G0 = (0, �0] × !1 and Gn+1 = (�n, �n+1] × !1 for
n ∈ !. Gn is open for all n ∈ ! by inductional hypothesis (iii).
Note that {Gn : n ∈ !} is a discrete family of open sets such that
A ∩ Gn is finite for all n ∈ !. Let Gn denote a finite, disjoint



PROPERTIES D AND aD ARE DIFFERENT 295

family of clopen subsets of Gn such that for all a ∈ A ∩ Gn, there
is exactly one G ∈ Gn such that a ∈ G. Then the discrete family
∪{Gn : n ∈ !} shows that A is completely discrete. □

In step � ∈ lim(!1), we define the neighborhoods of points in
X� = {(�, �) : � < !1} by induction on � < !1 such that

(a) X<�∪{(�, �′) : �′ ≤ �} is locally countable, locally compact,
and 0-dimensional T2;

(b) there is some neighborhood U of (�, �) such that U ∩A� ⊆

M�
� ;

(c) M�
� converges to (�, �);

(d) F �
� accumulates to (�, �′) for some �′ ≤ �.

We need the following lemma to carry out the induction on � <
!1.

Lemma 5.7. Suppose that (T ∪ S, �) is a locally countable, locally
compact, and 0-dimensional T2 space such that T is open and S is
countable. Let D = {dn : n ∈ !} ⊆ T be closed discrete in T∪S and
completely discrete in T . Let r /∈ T ∪S. Then there is a topology �
on R = T ∪ S ∪ {r} such that

∙ (R, �) is locally countable, locally compact, and 0-dimensional
T2,

∙ �∣(T∪S) = � ,

∙ D converges to r and r /∈ S in (R, �).

Proof: Suppose that dn ∈ Gn such that {Gn : n ∈ !} is a family
of open sets which is discrete in T . For each n ∈ !, let {Bn

i : i ∈ !}
denote a neighborhood base of dn such that

∙ Gn ⊇ Bn
0 ⊇ Bn

1 ⊇ ..., and
∙ Bn

i is countable, compact, and clopen for all n, i ∈ !.
Since S ∩ D = ∅, there is some clopen neighborhood Us of each
s ∈ S such that Us ∩D = ∅. There is gs : ! → ! such that

Us ∩Bn
gs(n)

= ∅ for all n ∈ !.

Since S is countable, there is g : ! → ! such that for all s ∈ S,
there is some N ∈ ! such that gs(n) ≤ g(n) for all n ≥ N . Define
the topology � on R as follows. Let

BN = {r} ∪
∪

{Bn
g(n)

: n ≥ N} and ℬ = {BN : N ∈ !}.

Let � be the topology on R generated by � ∪ ℬ.
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Clearly, �∣(T∪S) = � . We claim that (R, �) is locally countable,
locally compact, and 0-dimensional. Since ℬ is a neighborhood base
for r, it suffices to prove that each B ∈ ℬ is countable, compact
(trivial), and clopen. Let N ∈ !; then BN is clopen in T since∪
{Bn

g(n) : n ∈ !} is a family of clopen sets which is discrete in T

guaranteed by the discrete family {Gn : n ∈ !}. Let s ∈ S. There
is N ∈ ! such that Us ∩ Bn

g(n) = ∅ for n ≥ N . There is some

neighborhood V ∈ � of s such that V ∩
∪
{Bn

g(n) : n < N} = ∅ since

s is not in the closed set
∪
{Bn

g(n) : n < N}. Thus, (Us∩V )∩BN = ∅.

This proves that BN is clopen.
We claim that (R, �) is T2. Let s ∈ S; then there is N ∈ ! such

that Us ∩ Bn
g(n) = ∅ for n ≥ N , and thus BN ∩ Us = ∅. As noted

before, BN ∩ T is closed and clearly
∩
{BN ∩ T : N ∈ !} = ∅. This

yields that any point t ∈ T and r can be separated; thus, (R, �) is
T2.

Clearly, D converges to r and S ∩ B = ∅ for any B ∈ ℬ; thus,
r /∈ S. □

Suppose we are in step � < !1 and we defined the neighborhoods
of points in X<� ∪ {(�, �′) : �′ < �}. We use Lemma 5.7 to define
the neighborhoods of r = (�, �). Let T = X<� and S = {(�, �′) :

�′ < �} ∪ (A� ∖M�
� ). Note that F �

� ∪M�
� runs up to �, and thus

is closed and completely discrete in T by Claim 5.6. Also, M�
� is

closed discrete in T ∪ S by inductional hypothesis (b) for (�, �′)
where �′ < �.

∙ If F �
� accumulates to x�′ for some �′ < �, then let D = M�

� .

∙ If F �
� is closed discrete in T ∪ S, then let D = M�

� ∪ F �
� .

Note that D is closed discrete in T ∪ S. By Claim 5.7, we can de-
fine the neighborhoods of r = (�, �) such that the resulting space
satisfies conditions (a), (b), (c), and (d). After carrying out the
induction on �, the resulting topology on X� clearly satisfies con-
ditions (i), (ii), and (iii). This completes the induction.

As a base, the family
∪
{�<� : � ∈ lim(!1)} generates a topol-

ogy � on X which is locally countable, locally compact, and 0-
dimensional T2. Observe that X� is closed discrete, and X<� is
open for all � < !1 (by inductional hypotheses (ii) and (iii)) .



PROPERTIES D AND aD ARE DIFFERENT 297

Claim 5.8. Suppose that F ⊆ X runs up to some � ∈ lim(!1).
Then there is some � < !1 such that F accumulates to (�, �).
Equivalently, if G ⊆ X is open and X� ⊆ G, then there is some
�′ < � such that (�′, �]× !1 ⊆ G.

Proof: There is some � < !1 such that F = F �
� . Thus, by induc-

tional hypothesis (d), there is some �′ ≤ � such that F accumulates
to (�, �′). □

Claim 5.9. X is not linearly D.

Proof: If D ⊆ X is closed discrete, then �(D) is finite by Claim
5.8. Thus, there is no big closed discrete set for the cover {X<� :
� < !1}. □

Our next aim is to prove that all closed subspaces of X are
irreducible.

Claim 5.10. If ∣�(F )∣ = ! for a closed F ⊆ X, then F is a D-
space, hence irreducible.

Proof: Since F = ∪{F ∩X� : � ∈ �(F )} is a countable union of
closed discrete sets, F is a D-space by Proposition 3.7. We mention
that if the ONA U on F has closed discrete kernel D, then we get
an irreducible cover by taking the open refinement

{(U(d) ∖D) ∪ {d} : d ∈ D}. □

Claim 5.11. If ∣�(A)∣ = !1 for A ⊆ X, then there is a club C ⊆ !1

such that C ×!1 ⊆ A′. As a consequence, if �(U) is stationary for
the open U ⊆ X, then there is some � < !1 such that X ∖ U ⊆
�× !1.

Proof: There is a club C ⊆ !1 by Claim 5.4 such that for all
� ∈ C, there is n ∈ ! such that An

� ⊆ A. We will prove that

X� ⊆ A′ for � ∈ C. Take any point (�, �) ∈ X�. ∣M�
� ∩ An

�∣ = !
for all � < !1 by the construction of the MAD family ℳ�, and

M�
� converges to (�, �) by inductional hypothesis (c). Thus, An

�

accumulates to (�, �), and hence X� ⊆ A′. □

Claim 5.12. If ∣�(F )∣ = !1 for a closed F ⊆ X, then F is irre-
ducible.

Proof: Take an open cover of F , say U . We can suppose that
we refined it to the form U = {U(x) : x ∈ F}, where U(x) is a
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neighborhood of x ∈ F . From Claim 5.11, we know that there is
some club C ⊆ !1 such that C × !1 ⊆ F . For � ∈ C, define the
open set G� = ∪{U(x) : x ∈ X�}. For every � ∈ C, there is some
�(�) < � such that (�(�), �] × !1 ⊆ G�, by Claim 5.8. So there is
some � < !1 and a stationary S ⊆ C such that (�, �]×!1 ⊆ G� for
all � ∈ S. Fix some �0 > � such that X�0 ⊆ F . Let S0 = S∖(�0+1).
For all � ∈ S0, there is d� ∈ X� ⊆ F such that (�0, �) ∈ U(d�).
Let us refine the sets U0(d�) =

(
U(d�) ∖ ({�0} × S0)

)
∪ {(�0, �)}

for all � ∈ S0; let U0 = {U0(d�) : � ∈ S0}. Clearly, U0 is an open
refinement of U which is minimal and {d� : � ∈ !1} ⊆ ∪U0. Since
S0 is stationary and S0 ⊆ �[∪U0], we get that there is some 
 < !1

such that F1 = F ∖ ∪U0 ⊆ 
×!1 by Claim 5.11. So by Claim 5.10,
the closed set F1 is a D-space, hence irreducible. Take a minimal
open refinement of the cover {U(x) ∖ ({�0} × S0) : x ∈ F1}; let this
be U1. The union U0 ∪ U1 is an open refinement of U which covers
F and is minimal. □

This proves that all closed subspaces ofX are irreducible. Hence,
X is an aD-space by Theorem 2.2.

Using again the strong result of Balogh, we can observe the fol-
lowing.

Proposition 5.13. Suppose MA. Let X be a locally countable, lo-
cally compact space of cardinality < 2!. Then the following are
equivalent.

(1) X is a (linearly) D-space;
(5) X is an aD-space.

Proof: (1) ⇒ (5) trivially.
Suppose that X is an aD-space. It is enough to show that X

does not contain any perfect preimage of !1. Since property aD is
hereditary to closed sets, any closed countably compact subspace
is compact. By Claim 1 of the proof of Proposition 3.8, there is no
perfect preimage of !1 in X. □

Corollary 5.14. The existence of a locally countable, locally com-
pact space X of size !1 which is aD and nonlinearly D is indepen-
dent of ZFC .

However, the following remain open.
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Problem 5.15. (1) Is it consistent with ZFC that there exists a
locally countable, locally compact space X of cardinality < 2! such
that X is not (linearly) D, but is aD?

(2) Is there a ZFC example of a Tychonoff space X such that X
is not (linearly) D, but is aD?

(2)′ Is there a ZFC example of a locally countable, locally compact
(0-dimensional) T2 space X such that X is not (linearly) D, but is
aD?
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