
Volume 39, 2012

Pages 141–148

http://topology.auburn.edu/tp/

A note on separation of diagonal

by

Liang–Xue Peng and Jing Li

Electronically published on July 1, 2011

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 39 (2012)
Pages 141-148

http://topology.auburn.edu/tp/

E-Published on July 1, 2011

A NOTE ON SEPARATION OF DIAGONAL

LIANG–XUE PENG AND JING LI

Abstract. In this note, we point out that a ∆-paracompact nor-
mal space is functionally ∆-paracompact. As a corollary, we have
that regular ∆-paracompact spaces are functionally ∆-paracompact

and functionally ∆-normal. This gives a positive answer to two
questions of Burke and Buzyakova, which appear in Topology and
Applications (157 (2010), 2261–2270).

In the last part of this note, we show that a space X is a para-
compact T2-space if and only if X is a submetacompact
∆-paracompact regular space. We also introduce a concept of
∆-metacompact, and point out that ∆-metacompactness implies

neither metacompactness, nor ∆-paracompactness.

Introduction

In [2] and [1], it is investigated when and how the diagonal of a space X
can be separated from any closed subset of the square X2 that lies off the
diagonal. Let X be a space; the diagonal of X is ∆X = {(x, x) : x ∈ X}.

By conclusions which appear in [2], we know that a paracompact
T2-space is functionally ∆-paracompact, a functionally ∆-paracompact
space is regular ∆-paracompact, and a regular ∆-paracompact space is
∆-paracompact. In [2] it is also pointed out that there is a ∆-paracompact
space which is neither functionally ∆-paracompact, nor regular ∆-para-
compact. It is proved in [2] that every functionally ∆-paracompact space
is functionally ∆-normal. The following questions appear in [1].
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Question 1. Does regular ∆-paracompactness imply functional
∆-paracompactness?

Question 2. Does regular ∆-paracompactness imply functional
∆-normality?

These questions also appear in Table 1 in [2].
In fact, by some known conclusions we can prove that every ∆-para-

compact normal space is functionally ∆-paracompact, and hence regular
∆-paracompactness implies functional ∆-paracompactness and functional
∆-normality. Thus the two questions of Burke and Buzyakova are an-
swered. In last part of this note, we show that a space X is a paracompact
T2-space if and only if X is a submetacompact ∆-paracompact regular
space. In this note, we also introduce the concept of ∆-metacompact. We
point out that ∆-metacompactness implies neither metacompactness, nor
∆-paracompactness.

All spaces in this note are assumed to be T1-spaces. In notation and
terminology we will follow [3].

Main results

Definition 1. ([5]) A space X is ∆-normal if for every A ⊂ X2 \∆X

closed in X2 there exist disjoint open sets U and V in X2 such that A ⊂ U
and ∆X ⊂ V .

Definition 2. ([2]) A space X is functionally ∆-normal if for every A ⊂
X2 \∆X closed in X2 there exists a continuous function f : X2 → [0, 1]
such that f(A) ⊂ {1} and f(∆X) = {0}.

Definition 3. ([2]) A spaceX is ∆-paracompact if for everyA ⊂ X2\∆X

closed in X2 there exists a locally finite open cover U of X such that∪
{U × U : U ∈ U} does not meet A.

Definition 4. ([2]) A space X is regular ∆-paracompact if for every
A ⊂ X2 \∆X closed in X2 there exists a locally finite open cover U of X
such that

∪
{U × U : U ∈ U} does not meet A.

Definition 5. ([2]) A space X is functionally ∆-paracompact if for every
A ⊂ X2 \∆X closed in X2 there exists a locally finite open cover U of X
by functionally open sets (i.e. cozero sets) such that

∪
{U × U : U ∈ U}

does not meet A.

In [2] the author states that all spaces in that paper are Tychonoff. In
fact, to get the following Lemma 6, the T1 separation axiom is enough.

Lemma 6. ([2]) The following holds:

(1) A functionally ∆-paracompact space is functionally ∆-normal and
regular ∆-paracompact.
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(2) A regular ∆-paracompact space is ∆-normal, normal, and ∆-
paracompact.

Since every paracompact T2-space is normal, we have:

Lemma 7. ([2]) A paracompact T2-space is functionally ∆-paracompact.

Lemma 8. ([3, Theorem 1.5.18]) For every point-finite open cover
{Us : s ∈ S} of a normal space X there exists an open cover {Vs : s ∈ S}
of X such that Vs ⊂ Us for each s ∈ S.

Theorem 9. If X is a ∆-paracompact normal space, then X is func-
tionally ∆-paracompact.

Proof. Let A ⊂ X2 \ ∆X be a closed subset of X2. The space X is ∆-
paracompact, there exists a locally finite open cover U of X such that
(U × U) ∩ A = ∅ for each U ∈ U . The open cover U is locally finite,
and hence it is point-finite. If we let U = {Us : s ∈ S}, then there
is an open cover V = {Vs : s ∈ S} of X such that Vs ⊂ Us for each
s ∈ S by Lemma 8. By Urysohn’s Lemma, we have a continuous function
fs : X → [0, 1] such that fs(X \ Us) ⊂ {0} and f(Vs) ⊂ {1} for each
s ∈ S. Thus Vs ⊂ f−1

s ((0, 1]) ⊂ Us. If U∗ = {f−1
s ((0, 1]) : s ∈ S},

then U∗ is a locally finite cover of X by functionally open sets of X such
that

∪
{O × O : O ∈ U∗} does not meet A. Thus X is functionally

∆-paracompact. �
By Lemma 6 and Theorem 9, we have:

Corollary 10. A space X is functionally ∆-paracompact if and only if
X is regular ∆-paracompact.

Corollary 11. If X is regular ∆-paracompact, then X is functionally
∆-normal.

Corollary 12. Let X be a normal space. The following are equivalent.

(1) X is functionally ∆-paracompact;
(2) X is regular ∆-paracompact;
(3) X is ∆-paracompact.

By Corollary 12, the Theorem 2.15 and Corollary 2.16 which appear
in [2] are generalized.

By Theorem 2.5 in [2] we know that every generalized ordered space is
∆-paracompact. Recall that every generalized ordered space is monoton-
ically normal ([6]), and hence it is collectionwise normal. The space ω1 is
a ∆-paracompact monotonically normal space which is not paracompact.
So we would like to know what property P such that a ∆-paracompact
space which has property P is paracompact. In what follows, we will
discuss this question.
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Recall that a space is called collectionwise normal if for every discrete
family {Fs : s ∈ S} of closed subsets of X there exists a discrete collection
{Us : s ∈ S} such that Fs ⊂ Us for each s ∈ S. In [1, Theorem 2.8], it
is proved that if X is a regular ∆-paracompact space then X is collec-
tionwise normal. By Corollary 2.13 which appears in [2], we know that
∆-paracompactness neither implies normality, nor collectionwise normal-
ity.

Recall that a space X is called submetacompact if for any open cover
U of X there is an open refinement V =

∪
{Vn : n ∈ N} such that for each

x ∈ X there is nx ∈ N such that ord(x,Vnx) < ω and
∪
Vn = X for each

n ∈ N, where ord(x,Vnx) = |{V : x ∈ V and V ∈ Vnx |. We know that
metacompact spaces and subparacompact spaces are submetacompact.

Theorem 13. If X is a submetacompact ∆-paracompact regular space,
then X is collectionwise normal.

Proof. Since ∆-paracompact normal spaces are regular ∆-paracompact
by Corollary 12 and every regular ∆-paracompact space is collectionwise
normal ([1, Theorem 2.8]), it suffices to prove normality of X.

Let F1 and F2 be any two disjoint closed subsets of X. For each x ∈ F1,
there is an open neighborhood Vx of x such that x ∈ Vx ⊂ Vx ⊂ X \ F2.
If U = {Vx : x ∈ F1} ∪ {X \ F1}, then U is an open cover of X. Since
X is submetacompact, the open cover U has an open refinement V =∪
{Vn : n ∈ N} such that for each x ∈ X there is nx ∈ N such that

ord(x,Vnx) < ω and
∪
Vn = X for each n ∈ N.

For each n ∈ N, denote V∗
n = {V : V ∈ Vn and V ∩F1 ̸= ∅}∪{X \F1}.

If Bn = X2 \
∪
{V × V : V ∈ V∗

n}, then Bn is a closed subset of X2 and
Bn ∩ ∆X = ∅. Since X is ∆-paracompact, there is a locally finite open
cover Un of X such that (U × U) ∩ Bn = ∅ for each U ∈ Un. If F1n =
{x : x ∈ F1 and ord(x,V∗

n) < ω} for each n ∈ N, then F1 =
∪
{F1n :n∈N}.

Claim. Let n ∈ N. If U ∈ Un and U ∩ F1n ̸= ∅, then U ∩ F2 = ∅.
Proof of the Claim. Suppose there are some n ∈ N and U ∈ Un such that
U ∩ F1n ̸= ∅ and U ∩ F2 ̸= ∅. Let x ∈ U ∩ F1n. Thus ord(x,V∗

n) < ω.
If V ∈ V∗

n and x ∈ V , then there is some y ∈ F1 such that V ⊂ Vy.

Since Vy ∩ F2 = ∅, we have that V ∩ F2 = ∅. So U ̸⊂ V for each
V ∈ {V : x ∈ V and V ∈ V∗

n}. Since the family {V :x∈V and V ∈V∗
n} is

a finite family of X, we have
∪
{V : x ∈ V, V ∈ V∗

n} =
∪
{V : x ∈ V, V ∈

V∗
n}. Since U ∩ F2 ̸= ∅, U \

∪
{V : x ∈ V, V ∈ V∗

n} ̸= ∅ and hence

U \
∪
{V : x ∈ V, V ∈ V∗

n} ̸= ∅. So U \
∪
{V : x ∈ V, V ∈ V∗

n} ̸= ∅.
If z ∈ U \

∪
{V : x ∈ V, V ∈ V∗

n}, then (x, z) ∈ U×U and (x, z) ̸∈ V ×V
for each V ∈ V∗

n. Thus (x, z) ∈ (U × U) ∩ Bn. This is a contradiction
with (U × U) ∩Bn = ∅. So we have proved the Claim.
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If Pn =
∪
{U : U ∈ Un and U∩F1n ̸= ∅} for each n ∈ N, then F1n ⊂ Pn

and Pn ∩ F2 = ∅ by the Claim and locally finite property of Un. Thus
we have a countable family {Pn : n ∈ N} of open subsets of X such that
F1 ⊂

∪
{Pn : n ∈ N} and Pn ∩ F2 = ∅ for each n ∈ N.

Similarly, we can get a countable family {Qn : n ∈ N} of open subsets
of X such that F2 ⊂

∪
{Qn : n ∈ N} and Qn ∩ F1 = ∅ for each n ∈ N.

For each n ∈ N, we let P ∗
n = Pn \

∪
{Qm : m ≤ n} and let Q∗

n =
Qn \

∪
{Pm : m ≤ n}. If P =

∪
{P ∗

n : n ∈ N} and Q =
∪
{Q∗

n : n ∈ N},
then we can easily prove that P and Q are disjoint open subsets of X
such that F1 ⊂ P and F2 ⊂ Q. Thus X is a normal space. �

Corollary 14. If X is a metacompact (or subparacompact) ∆-paracompact
regular space, then X is collectionwise normal.

Since a submetacompact (metacompact or subparacompact) collection-
wise normal space is a paracompact space, we have the following theorem
by Theorem 13, Lemma 6 and 7.

Theorem 15. A space X is a paracompact T2-space if and only if X
is a submetacompact (metacompact or subparacompact) ∆-paracompact
regular space.

Recall that if S is the Sorgenfrey line, then the space S is a paracompact
space and hence S is ∆-paracompact.

Corollary 16. S2 is not ∆-paracompact.

Proof. The space S2 is a subparacompact regular space (cf. [7]). Since
S2 is not normal, it is not paracompact. Thus S2 is not ∆-paracompact
by Theorem 15. �

Corollary 16 shows that the product of ∆-paracompact spaces (or gen-
eralized ordered spaces) may not be ∆-paracompact.

By Theorem 15, we know that if X is a metacompact non-paracompact
regular space then X is not ∆-paracompact.

It is pointed out ([Page 266, 4]) that the following space is a metacom-
pact non-paracompact regular space:

X = {(ν, δ + 1) : ν ≤ ω ∧ δ < ω1} ∪ {(n, ω1) : n < ω}.
The space X is a regular metacompact space by Theorem 5.1 which ap-
pears in [4]. Since X is not normal, X is not paracompact. Thus the
space X is a metacompact non-paracompact regular space, and hence the
space X is not ∆-paracompact by Theorem 15.

A space X is ∆-metacompact if for every A ⊂ X2 \∆X closed in X2

there exists a point-finite open cover U of X such that
∪
{U ×U : U ∈ U}

does not meet A.
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Theorem 17. Every metacompact space is ∆-metacompact

Proof. Let A ⊂ X2 \∆X be a closed subset of X2. For each x ∈ X, let
Vx be an open neighborhood of x such that (Vx × Vx) ∩ A = ∅. Since
X is metacompact, the open cover {Vx : x ∈ X} has a point-finite open
refinement U . Thus (U × U) ∩A = ∅ for each U ∈ U . �

It is obvious that every ∆-paracompact space is ∆-metacompact. The
spaceX = {(ν, δ+1) : ν ≤ ω∧δ < ω1}∪{(n, ω1) : n < ω} is metacompact,
and hence it is ∆-metacompact. But the space X is not ∆-paracompact
by Theorem 15. We have mentioned that the space ω1 is a ∆-paracompact
and hence it is ∆-metacompact, but it is not metacompact. Thus we have:

Proposition 18. ∆-metacompactness implies neither metacompactness,
nor ∆-paracompactness.

By Lemma 8 and the proof of Theorem 9, we have:

Theorem 19. Let X be a normal space. The following are equivalent.

(1) X is a ∆-metacompact space;
(2) For every A ⊂ X2 \ ∆X closed in X2 there exists a point-finite

open cover U of X by functionally open sets such that
∪
{U ×U :

U ∈ U} does not meet A;
(3) For every A ⊂ X2 \ ∆X closed in X2 there exists a point-finite

open cover U of X such that
∪
{U ×U : U ∈ U} does not meet A.

In [1], it is proved that if X is a ∆-paracompact regular space then
X is collectionwise Hausdorff. A space is collectionwise Hausdorff ([1]) if
for every closed discrete subset A ⊂ X there exists a discrete collection
{Ua : a ∈ A} such that Ua ∩ A = {a} for each a ∈ A. We have the
following more general conclusion.

Theorem 20. Let X be a ∆-paracompact regular space. If F={Fs :s∈S}
is a discrete collection of compact sets of X, then there is a discrete col-
lection {Ws : s ∈ S} of open sets of X such that Fs ⊂ Ws for each
s ∈ S.

Proof. The proof is similar to the proof of Theorem 2.3 which appears in
[1]. To assist the reader, we give the proof.

If As =
∪
{Fs′ : s

′ ∈ S \{s}}, then As is closed in X for each s ∈ S. By
regularity of X and compactness of Fs, there is an open set Us of X such
that Fs ⊂ Us ⊂ Us ⊂ X \As. If U = {Us : s ∈ S} ∪ {X \

∪
F}, then U is

an open cover of X. Thus the set F = X2 \
∪
{U×U : U ∈ U} ⊂ X2 \∆X

is closed in X2.
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Since X is ∆-paracompact, there exists a locally finite open cover V
of X such that

∪
{V × V : V ∈ V} misses F . For each s ∈ S, we have

|{V : V ∈ V, V ∩ Fs ̸= ∅}| < ω by compactness of Fs and locally finite
property of V. For each s ∈ S, let Vs = {V : V ∈ V , V ∩ Fs ̸= ∅}.

For each V ∈ Vs, we have V ⊂ Us.
Suppose there is some V ∈ Vs such that V ̸⊂ Us. We let x ∈ V ∩ Fs

and let y ∈ V \ Us. Thus the point (x, y) ∈ V × V . Since for each
U ∈ U , x ̸∈ U if U ̸= Us, we have (x, y) ∈ F . This is a contradiction with
(V × V ) ∩ F = ∅. Thus V ⊂ Us for each V ∈ Vs, and hence V ∩ As = ∅.
So Vs1 ∩ Vs2 = ∅ if s1 ∈ S, s2 ∈ S and s1 ̸= s2.

For each s ∈ S, let Os =
∪
Vs \

∪
{
∪
Vs′ : s′ ∈ S \ {s}}. Since V is

locally finite, we have Fs ⊂ Os. We can see that Os1 ∩ Os2 = ∅ if s1 ∈
S, s2 ∈ S and s1 ̸= s2. For each x ∈ X, there is an open neighborhood
Mx of x such that {V : V ∈ V, V ∩Mx ̸= ∅}| < ω. Since Os ⊂

∪
Vs and

Vs1 ∩ Vs2 = ∅ if s1 ∈ S, s2 ∈ S and s1 ̸= s2, we have |{s : Mx ∩ Os ̸=
∅, s ∈ S}| < ω. Thus {Os : s ∈ S} is a locally finite family of open
sets of X. For each s ∈ S, there exists an open set Ws of X such that
Fs ⊂ Ws ⊂ Ws ⊂ Os by compactness of Fs and regularity of X. Thus
{Ms : s ∈ S} is a discrete collection of open sets of X such that Fs ⊂ Ws

for each s ∈ S. �

The following question which appears in [1] is still open.

Question 21. Does ∆-normality imply functional ∆-normality?
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