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PRODUCTS OF R-FACTORIZABLE GROUPS

M. TKACHENKO

Abstract. We consider the Dieudonné and Hewitt–Nachbin com-
pletions, R-factorizability, and pseudo-ℵ1-compactness in products

of spaces and topological groups in the case when one of the factors
is a P -space. We prove that if X is a P -space and Y is a weakly
Lindelöf space, then the formula µ(X × Y ) = µX × µY holds.

We also show that the product G × K of a non-discrete R-
factorizable P -group G with an R-factorizable group K is R-factor-
izable iff the space G × K is pseudo-ℵ1-compact. This theorem
is complemented by the fact that the product of an R-factoriz-
able P -group with a space Y is pseudo-ℵ1-compact provided that
every locally countable family of open sets in Y is countable. As a
corollary, we deduce that the product of an R-factorizable P -group
with an R-factorizable weakly Lindelöf group is R-factorizable.

1. Introduction

A topological group G is called R-factorizable [2, 16, 17] if for every
continuous function f : G→ R, one can find a continuous homomorphism
p : G→ H onto a second countable topological group H and a continuous
function h : H → R such that f = h◦p. The class of R-factorizable groups
includes all precompact groups, all Lindelöf groups, arbitrary subgroups
of σ-compact groups and dense subgroups of topological products of σ-
compact groups [18, Theorem 5.10], pseudo-ℵ1-compact P -groups and
their products (see Theorems 8.6.12 and 8.6.18 of [2]), and many others.
As usual, we call a space X pseudo-ℵ1-compact if every locally finite
family of open sets in X is countable.
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It is not known, however, whether the class of R-factorizable groups is
productive, i.e., contains arbitrary products of its elements. The problem
is open even for products of two factors [18, Problem 5.7]. The following
three facts (corresponding to Theorems 8.6.12, 8.5.5, and Exercise 8.5.a
of [2], respectively) indicate that this problem is intimately related to the
notion of pseudo-ℵ1-compactness:

Fact 1.1. A P -group is R-factorizable iff it is pseudo-ℵ1-compact.

Fact 1.2. The product G × K of an R-factorizable group G with the
compact group K = Z(2)ω1 is R-factorizable iff G is pseudo-ℵ1-compact.

Fact 1.3. If the product group G ×H is R-factorizable, then one of the
factors is pseudo-ℵ1-compact (and both G and H are R-factorizable).

It is an open problem whether every R-factorizable group is pseudo-
ℵ1-compact (see [17, Problem 3.6]). Hence Fact 1.1 solves the problem in
the affirmative in the case of P -groups, i.e., topological groups in which
Gδ-sets are open. Clearly, Fact 1.3 implies that G is pseudo-ℵ1-compact
under the stronger assumption that G×G is R-factorizable.

A topological group G is m-factorizable [2, Section 8.5] if for every
continuous mapping f of G to a metrizable space M , one can find a
continuous homomorphism p of G onto a second countable group H and
a continuous mapping h : H → M such that f = h ◦ p. According to [2,
Theorem 8.5.2], a group G is m-factorizable iff it is R-factorizable and
pseudo-ℵ1-compact. Therefore, we can reformulate the above problem by
asking whether every R-factorizable group is m-factorizable.

It is clear that the projections of the product G × K of topological
groups to the factors are open continuous homomorphisms. Since open
continuous surjective homomorphisms preserve R-factorizability [2, The-
orem 8.4.2], the product group G × K is R-factorizable only if both G
and K are as well. Another necessary condition for R-factorizability of
products, involving the Hewitt–Nachbin completion υX of a space X, can
be obtained as a combination of Theorem 8.3.6 and Corollary 6.7.6 of [2]:

Fact 1.4. If the product group G×K is R-factorizable, then υ(G×K) =
υG× υK and, therefore, G×K is C-embedded in υG× υK.

The R-factorizability of the product G×K of R-factorizable groups G
and K has been established in each of the following cases:

a) K is a compact group of countable weight [2, Corollary 8.5.6];
b) G is weakly Lindelöf andK is pseudocompact [2, Theorem 8.5.13];
c) G is a weakly Lindelöf ω-stable group and K is an arbitrary sub-

group of a Lindelöf Σ-group [2, Theorem 8.5.17];
d) G is a pseudo-ℵ1-compact group of countable o-tightness and K

is pseudocompact [2, Exercise 8.5.d].
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It is worth mentioning that the groups G and K in item c) are auto-
matically R-factorizable by virtue of [2, Proposition 8.1.20] and [2, Propo-
sition 8.1.13], respectively. We will show in Corollary 3.2 that in each of
items b)–d), the product G × K is pseudo-ℵ1-compact and, hence, m-
factorizable. This complements the results from [2, Section 8.5].

Our aim is to continue this study in several directions, paying spe-
cial attention to P -groups. In Section 2 we present several observations
regarding the formula µ(X × Y ) = µX × µY in a purely topological situ-
ation. We show in Proposition 2.3 that if X is a P -space and Y is weakly
Lindelöf, then for every zero-set F ⊆ X × Y , the projection of F to the
first factor is clopen in X. Under the same assumptions about X and Y ,
we show in Proposition 2.4 that the equality µ(X × Y ) = µX × µY is
valid.

In Section 3 we consider products of R-factorizable groups. After a
series of auxiliary lemmas, we prove in Theorem 3.9 that the product
G × K of a non-discrete P -group G with an R-factorizable group K is
R-factorizable if and only if G × K is pseudo-ℵ1-compact. This result
generalizes Fact 1.1 (see also [19, Theorem 4.16]).

In Proposition 3.12 we find conditions under which the product
G × Y of a P -group G and a space Y is pseudo-ℵ1-compact—it suffices
to assume that G is pseudo-ℵ1-compact (equivalently, R-factorizable) and
that every locally countable family of open sets in Y is countable. Since,
by Lemma 3.11, every locally countable family of open sets in a weakly
Lindelöf space is countable, we conclude in Corollary 3.13 that the prod-
uct of an R-factorizable P -group with a weakly Lindelöf space is pseudo-
ℵ1-compact. Combining Theorem 3.9 and Corollary 3.13, we deduce in
Corollary 3.14 that the product of an R-factorizable P -group with an
R-factorizable weakly Lindelöf group is m-factorizable.

In Section 4 we collect several open problems regarding pseudo-ℵ1-
compactness and R-factorizability in products of topological groups.

1.1. Notation and terminology. All spaces are assumed to be Tych-
onoff. We consider only Hausdorff topological groups.

A space X is called weakly Lindelöf (abbreviation: wL(X) ≤ ω) if
every open cover γ of X contains a countable subfamily γ0 such that

∪
γ0

is dense in X [13, p. 37]. It is clear that Lindelöf spaces and spaces of
countable cellularity are weakly Lindelöf.

We say that a space X has countable o-tightness if for every family
γ of open sets in X and every point x ∈

∪
γ, there exists a countable

subfamily µ of γ such that x ∈
∪
µ (see [15] or [2, Section 5.5]).

Given an infinite cardinal κ, we say that a space X is pseudo-κ-compact
if every locally finite family of open sets in X has cardinality strictly less
than κ. Clearly, every weakly Lindelöf space is pseudo-ℵ1-compact, but
the converse is false.
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If every Gδ-set in X is open, then X is called a P -space. It is clear that
every regular P -space has a base of clopen sets. Abusing terminology, we
say that a topological group G is a P -group if it is topologically a P -space.

A subset Z of a spaceX isGδ-dense in a subspace Y ofX if Z intersects
every nonempty Gδ-set in Y . The biggest set Y ⊆ X containing Z as a
Gδ-dense subset is called the Gδ-closure of Z in X.

The Dieudonné and Hewitt–Nachbin completions of a Tychonoff space
X are denoted by µX and υX, respectively. It is well known that µX ⊆
υX ⊆ βX, where βX is the Čech–Stone compactification of X, and that
X is Gδ-dense in υX. According to [10], the equality µX = υX holds
if and only if X is pseudo-m1-compact, where m1 is the first measurable
cardinal.

A continuous mapping f : X → Y is called z-closed if the image f(F )
is closed in Y , for every zero-set F in X.

The Răıkov completion of a topological group H is denoted by ϱH,
and ϱωH is the Gδ-closure of H in ϱH. It is clear that H is Gδ-dense in
ϱωH and ϱωH is a dense subgroup of ϱH.

A topological group H is precompact if it is topologically isomorphic
to a subgroup of a compact group. Clearly, H is precompact iff the group
ϱH is compact.

The kernel of a homomorphism π : K → L is kerπ. A topological group
H is ω-narrow if it can be covered by countably many translates of every
neighborhood of the identity [2, 18].

For the definition and properties of Lindelöf Σ-spaces and Lindelöf
Σ-groups, see [2, Section 5.3].

As usual, we denote by w(X), nw(X), χ(X), and ψ(X) the weight,
network weight, character, and pseudocharacter of X, respectively.

The set of all positive integers is N+ and c = 2ω is the power of the
continuum.

2. Some remarks about the formula υ(X × Y ) = υX × υY

Since we will discuss several cases when the equalities υ(X × Y ) =
υX × υY and µ(X × Y ) = µX ×µY hold, the following folklore fact is in
order:

Lemma 2.1. For completely regular spaces X and Y , the following im-
plications are valid:

β(X ×Y ) = βX ×βY ⇒ υ(X ×Y ) = υX ×υY ⇒ µ(X ×Y ) = µX ×µY.

Proof. It follows from β(X ×Y ) = βX ×βY that X ×Y is C∗-embedded
in βX × βY . Since X and Y are Gδ-dense in υX and υY , respectively,
we see that X × Y is Gδ-dense in υX × υY . It also follows from X ⊆
υX ⊆ βX and Y ⊆ υY ⊆ βY that X × Y ⊆ υX × υY ⊆ βX × βY .
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Therefore, X ×Y is a Gδ-dense, C
∗-embedded subspace of υX ×υY . We

now apply [6, Theorem 1.18] to conclude that X × Y is C-embedded in
P = υX×υY . Since the space P is realcompact, the equality υ(X×Y ) =
υX × υY is immediate.

Similarly, the equality υ(X × Y ) = υX × υY implies that X × Y is a
dense C-embedded subspace of the space υX×υY . Since X ⊆ µX ⊆ υX
and Y ⊆ µY ⊆ υY , we see that X × Y is a dense C-embedded subspace
of the Dieudonné complete space µX×µY . Hence µ(X×Y ) ⊆ µX×µY .
It is well known that a unique Dieudonné complete space Z satisfying
X×Y ⊆ Z ⊆ µX×µY is the product µX×µY (see [2, Proposition 6.7.4]).
Hence µ(X × Y ) = µX × µY . �

It is known that the product X × Y of a P -space X with a weakly
Lindelöf space Y is C-embedded in X × υY (see [14, Theorem 7.5]). It
also follows from [7, 8] that under the same assumptions about X and
Y , the projection p : X × Y → X is z-closed. We will strengthen this
conclusion in Proposition 2.3 below. First we need a lemma which follows
directly from [2, Lemma 8.5.12]:

Lemma 2.2. Let f : X × Y → R be a continuous function, where X is a
P -space and Y is a weakly Lindelöf space. Then for every x ∈ X, there
exists an open neighborhood U of x such that f(x′, y) = f(x, y) for all
x′ ∈ U and y ∈ Y .

Proposition 2.3. Suppose that X is a P -space, Y is a weakly Lindelöf
space, and p : X × Y → X is the projection. Then the image p(F ) is
clopen in X, for every zero-set F in X ×Y . In particular, p is a z-closed
mapping.

Proof. Let F be a zero-set in X × Y . Choose a continuous function
f : X × Y → R such that F = f−1(0). If x ∈ X \ p(F ), then F ∩ ({x} ×
Y ) = ∅. By Lemma 2.2, there exists an open neighborhood U of x in X
such that f(x′, y) = f(x, y) for all x′ ∈ U and y ∈ Y . We claim that
U ∩p(F ) = ∅. Indeed, otherwise there exist points x′ ∈ U and y ∈ Y such
that (x′, y) ∈ F . Hence f(x′, y) = 0, while f(x, y) ̸= 0. This contradiction
proves the claim and shows that p(F ) is closed in X.

To finish the proof, it suffices to verify that p(F ) is open in X. Take
any point x ∈ p(F ) and, again, choose an open neighborhood U of x in
X such that f(x′, y) = f(x, y) for all x′ ∈ U and y ∈ Y . Clearly, there
exists y0 ∈ Y such that (x, y0) ∈ F , that is, f(x, y0) = 0. Our choice of
U implies that f(x′, y0) = f(x, y0) = 0 for each x′ ∈ U , and we see that
U ⊆ p(F ). Hence p(F ) is open in X. �
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According to [14, Theorem 5.4], the following conditions are equivalent
for a Tychonoff space Y :

(1) |Y | < m1 and every point y ∈ υY has a neighborhood U in υY
such that U ∩ Y is weakly Lindelöf.

(2) The equality υ(X × Y ) = υX × υY holds for every P -space X.

In what follows we will deal with weakly Lindelöf spaces which obvi-
ously satisfy the second part of the above condition (1). In the case of
the Dieudonné completion, the restriction on the cardinality of Y in (1)
can be omitted:

Proposition 2.4. Let X be a P -space and Y a weakly Lindelöf space.
Then µ(X × Y ) = µX × µY .

Proof. The projection p : X × Y → X is z-closed by Proposition 2.3.
Hence it follows from [12] (see also [5, 3.12.20 (a)]) that X × Y is C∗-
embedded in X × βY . Since βY is compact, a Comfort–Negrepontis
theorem from [4] implies that X×βY is C-embedded in µX×βY . Hence
X × Y is C∗-embedded in µX × βY .

Since X × Y is Gδ-dense in µX × µY , we apply [6, Theorem 1.18]
to conclude that X × Y is C-embedded in µX × µY . Now a standard
argument (see for example [2, Proposition 6.7.4]) implies the equality
µ(X × Y ) = µX × µY . �

We know that every pseudo-m1-compact space Z satisfies µZ = υZ
and that weakly Lindelöf spaces are pseudo-ℵ1-compact (hence, pseudo-
m1-compact). Hence the following corollary to Proposition 2.4 is now im-
mediate since, under conditions of Proposition 2.4, X×Y is C-embedded
in µX × µY .

Corollary 2.5. Let X be a pseudo-m1-compact P -space and Y a weakly
Lindelöf space. Then υ(X × Y ) = υX × υY .

It turns out that “weakly Lindelöf” in Corollary 2.5 cannot be replaced
with “countably compact” or “ω-bounded” (meaning that the countable
sets have compact closures) even if the P -space X is Lindelöf. This fact
can be deduced from [14, Section 6]. Here we give, however, a simple
example that does not depend on techniques from [14].

Let us recall that a subspace Y of a space X is z-embedded in X if
every zero-set in Y is the intersection of a zero-set in X with Y . Clearly,
every C∗-embedded subspace of X is z-embedded, but not vice versa. If,
however, a z-embedded subspace Y of X is Gδ-dense in X, then Y is
C-embedded in X (this fact follows from [3, 3.6]).
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Example 2.6. There exist a normal Lindelöf P -space X and a first
countable locally compact ω-bounded space Y , both of cardinality ℵ1, such
that X×Y is neither C∗-embedded nor z-embedded in X×µY = X×υY .

Indeed, let X = ω1 + 1. We introduce a topology in X be declaring
each point α ∈ ω1 isolated in X and taking the sets X \ α with α ∈ ω1

as a local base for X at the element ω1. Clearly, X is a Lindelöf P -space
with the single non-isolated point ω1, so X is normal. The space Y = ω1

carries the usual interval topology generated by the well-ordering of ω1.
Then Y is first countable, locally compact, and ω-bounded. It is easy to
see that µY = υY is the compact space ω1+1 with the interval topology.

Let us verify that X × Y is not C∗-embedded in X × υY . To this end,
we define a function f : X × Y → {0, 1} by

f(α, β) =

{
0 if β ≤ α;

1 if α < β.

We leave to the reader a simple verification of the continuity of f .
Suppose to the contrary that f admits an extension to a continuous func-
tion g : X × µY → R. Since X × Y is dense in X × µY , it is clear that g
takes values in {0, 1}. It follows from the definition of f and the continu-
ity of g that g(ω1, α) = f(ω1, α) = 0 and g(α, ω1) = limβ→ω1 f(α, β) = 1
for each α < ω1. Since the point p = (ω1, ω1) is in the closure of the sets
{ω1} × Y and X × {ω1}, the function g is discontinuous at p.

Since Y is Gδ-dense in µY , we see that X × Y is Gδ-dense in X × µY .
If X × Y were z-embedded in X × µY , it would follow from [3, 3.6] that
X ×Y is also C-embedded in X ×µY , which is not the case. In fact, one
can verify directly that the zero-set {(α, β) ∈ X × Y : α < β} in X × Y
does not admit an extension to a zero-set in X × µY .

It is clear that the space Y in Example 2.6 does not satisfy the second
part of condition (1) that appears before Proposition 2.4.

3. R-factorizability and pseudo-ℵ1-compactness

In the introduction we mentioned several cases when the product G×H
of topological groups G and H is R-factorizable. Here we show that in
almost all of them the space G×H is necessarily pseudo-ℵ1-compact.

Let us say that a class P of spaces (or topological groups) is k-stable if
X ×Dω1 ∈ P for each X ∈ P, where D = {0, 1} is the discrete two-point
space (two-element group). It is clear that the classes of separable spaces
and spaces of countable cellularity are k-stable. The same conclusion
remains valid for the classes of Lindelöf, weakly Lindelöf, and pseudo-ℵ1-
compact spaces (topological groups).



174 M. TKACHENKO

Proposition 3.1. Let P and Q be classes of topological groups, and sup-
pose that the product group G × H is R-factorizable, for all G ∈ P and
H ∈ Q. If P is k-stable, then the product G × H is pseudo-ℵ1-compact
(equivalently, m-factorizable), for all G ∈ P and H ∈ Q.

Proof. We can assume that the classes P and Q are nonempty. Take any
G ∈ P and H ∈ Q, and let K = Z(2)ω1 be the power of the discrete
two-element group Z(2). Then the group (G ×H) ×K ∼= (G ×K) ×H
is R-factorizable since G × K ∈ P and H ∈ Q. By [2, Theorem 8.5.5],
the R-factorizability of (G × H) × K implies that the group G × H is
pseudo-ℵ1-compact and, hence, m-factorizable. �

We say that a space X is ω-stable if every continuous image Y of
X admitting a coarser regular topology with a countable base satisfies
nw(Y ) ≤ ω (see [1]). According to [2, Proposition 5.6.8], every Tychonoff
ω-stable space is pseudo-ℵ1-compact.

Items 1) and 2) of the following corollary strengthen Theorems 8.5.13
and 8.5.17 of [2], respectively, where the R-factorizability of G × H was
established only.

Corollary 3.2. The product G×H of an R-factorizable group G with a
group H is m-factorizable in each of the following cases:

1) the group G is weakly Lindelöf and H is pseudocompact;
2) G is a weakly Lindelöf ω-stable group and H is an arbitrary sub-

group of a Lindelöf Σ-group;
3) G is a pseudo-ℵ1-compact group of countable o-tightness and H

is pseudocompact.

Proof. It is clear that every weakly Lindelöf space is pseudo-ℵ1-compact.
Therefore, the group G in items 1)–3) is m-factorizable. In each of items
1)–3), H is a subgroup of a Lindelöf Σ-group (or even of a compact group
since pseudocompact groups are precompact), so H is R-factorizable by
[2, Proposition 8.1.13].

It is easy to see that the classes of pseudocompact groups as well as of
Lindelöf Σ-groups are k-stable. Since a topological group ism-factorizable
iff it is R-factorizable and pseudo-ℵ1-compact, the required conclusion
follows from Proposition 3.1 combined with Theorems 8.5.13, 8.5.17, and
Exercise 8.5.d of [2]. �

We will show in Theorem 3.9 that the R-factorizability of the product
G×K of R-factorizable groups G and K is equivalent to the pseudo-ℵ1-
compactness of the product in the case when G is a non-discrete P -group.
This requires a series of lemmas.
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For a topological group G, denote by Cf (G) the family of all continuous
real-valued functions on G which admit a factorization via a continuous
homomorphism onto a second countable group. Equivalently, g ∈ Cf (G)
if there exist a continuous homomorphism π : G→ H onto a second count-
able topological group H and a continuous function h : H → R such that
g = h ◦ π. In the next lemma, the uniform convergence in Cf (G) is con-
sidered with respect to the sup-norm (we do not assume the functions in
Cf (G) to be bounded).

Lemma 3.3. The family Cf (G) contains limits of uniformly convergent
sequences, for every topological group G.

Proof. Suppose that {gn : n ∈ ω} ⊆ Cf (G) is a sequence of functions uni-
formly converging to a function g on G. Clearly g is continuous. For every
n ∈ ω, there exist a continuous homomorphism pn : G → Hn onto a sec-
ond countable groupHn and a continuous function hn : Hn → R such that
gn = hn◦pn. Denote by p the diagonal product of the homomorphisms pn
and put H = p(G). Then H is a subgroup of the direct product

∏
n∈ωHn

and, hence, w(H) ≤ ω. It is clear that for every n ∈ ω, we can find a

continuous real-valued function h̃n on H satisfying gn = h̃n ◦p (it suffices

to put h̃n = hn ◦ πn, where πn is the restriction to H of the projection∏
k∈ωHk → Hn). This equality implies that the sequence {h̃n : n ∈ ω}

converges uniformly to a continuous function h̃ on H. One easily verifies

that g = h̃ ◦ p, so g ∈ Cf (G). �
Lemma 3.4. Let G and K be ω-narrow groups. If p : G × K → H is
a continuous homomorphism to a second countable group H, then there
exist continuous homomorphisms π1 : G→ G0, π2 : K → K0 onto second
countable groups G0 and K0, respectively, and a continuous homomor-
phism q : G0 × K0 → H such that p = q ◦ (π1 × π2). Similarly, if the
group H satisfies the weaker condition ψ(G) ≤ ω, then G0 and K0 can be
chosen to satisfy ψ(G0) ≤ ω and ψ(K0) ≤ ω. In this case, one can take
the homomorphisms π1 and π2 to be open.

Proof. Suppose that the group H is second countable and take a count-
able base {Un : n ∈ ω} at the identity of H. Since the homomor-
phism p is continuous, for every n ∈ ω there exist open neighborhoods
Vn and Wn of the identity in G and K, respectively, such that Vn ×
Wn ⊆ p−1(Un). Then the families γ1 = {Vn : n ∈ ω} and γ2 = {Wn :
n ∈ ω} are countable. By [18, Lemma 3.7], we can find continuous
homomorphisms π1 : G → G0 and π2 : K → K0 onto second count-
able topological groups G0 and K0 and countable families µ1 and µ2

of open neighborhoods of the identity in G0 and K0, respectively, such
that for every O ∈ γi, there exists O′ ∈ µi with π−1

i (O′) ⊆ O, i = 1, 2.
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We claim that if (xi, yi) ∈ G × K for i = 1, 2, and (π1(x1), π2(y1)) =
(π1(x2), π2(y2)), then p(x1, y1) = p(x2, y2). Indeed, if π1(x1) = π1(x2)
and π2(y1) = π2(y2), then (x−1

1 x2, y
−1
1 y2) ∈ Vn ×Wn for each n ∈ ω and,

hence, p(x−1
1 x2, y

−1
1 y2) = eH . But then p(x1, y1) = p(x2, y2), as required.

Therefore, there exists a homomorphism q : G0 × K0 → H such that
p = q ◦ (π1 × π2). It remains to verify that q is continuous at the identity
of G0 × K0. Let n ∈ ω be arbitrary. By the choice of the families µ1

and µ2, we can find V ′ ∈ µ1 and W ′ ∈ µ2 such that π−1
1 (V ′) ⊆ Vn and

π−1
2 (W ′) ⊆Wn. Then

q(V ′ ×W ′) = p(π−1
1 (V ′)× π−1

2 (W ′)) ⊆ p(Vn ×Wn) ⊆ Un.

This proves the continuity of q, whence the first part of the lemma follows.
The second part is immediate from [2, Lemma 5.6.2]. �

For a space X, a subfamily A of the family C(X) of continuous real-
valued function on X is called an algebra on X if A is a subring of
C(X) which contains constants, separates points and closed sets in X,
and is closed under inversion and taking limits of uniformly convergent
sequences. We say that X has the approximation property if every algebra
on X coincides with C(X) (see [9]).

Lemma 3.5. The product G × K of R-factorizable groups G and K is
R-factorizable iff G×K has the approximation property.

Proof. Denote by A the minimal algebra in C(G×K) which contains the
functions depending on one coordinate only.

Suppose that the product G×K has the approximation property. Since
the factors G and K are R-factorizable, from Lemma 3.3 it follows that
A ⊆ Cf (G × K). In addition, the approximation property of G × K
implies that A = C(G ×K), so C(G ×K) = Cf (G ×K) and the group
G×K is R-factorizable.

Conversely, suppose that the product group G × K is R-factorizable,
and let f : G × K → R be a continuous function. Then we can find
a continuous homomorphism p : G × K → H onto a second countable
group H and a continuous function h : H → R such that f = h ◦ p.
By Lemma 3.4, there exist continuous homomorphisms π1 : G → G0 and
π2 : K → K0 onto second countable groups G0 and K0 and a contin-
uous homomorphism q : G0 × K0 → H such that p = q ◦ (π1 × π2).
Then h0 = h ◦ q is a continuous function on the product G0 × K0 of
second countable groups. Since G0 × K0 has the approximation prop-
erty by [9, Proposition 1.2], the function f = h0 ◦ (π1 × π2) is in A.
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G×K

p

��

π1×π2
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q //

h0

::H
h // R

We have thus proved that C(G×K) = A, i.e., G×K has the approx-
imation property. �

Here is another simple fact that will be used soon:

Lemma 3.6. Let G be a non-discrete ω-narrow group. Then there exists
a family λ of open neighborhoods of the neutral element e in G such that∩
λ has empty interior and |λ| ≤ ℵ1.

Proof. The conclusion of the lemma is evident if G has pseudocharacter
less than or equal to ℵ1. Suppose that ψ(G) > ℵ1. Since the group
G is ω-narrow, it follows from [2, Theorem 3.4.23] that G is topologi-
cally isomorphic to a subgroup H of a product Π =

∏
i∈I Gi of second

countable topological groups. Using the inequality ψ(H) > ℵ1, we can
find a set J ⊆ I with |J | = ℵ1 such that πJ(H) is uncountable, where
πJ : Π → ΠJ =

∏
i∈J Gi is the projection. It is clear that the group

ΠJ satisfies ψ(ΠJ) ≤ ℵ1, so the subgroup N = H ∩ π−1
J (eJ) of H is the

intersection of at most ℵ1 open sets in H, where eJ is the neutral element
of ΠJ . Since the quotient group H/N ∼= πJ (H) is uncountable and H
is ω-narrow, the closed subgroup N cannot be open in H. Hence N is
nowhere dense in H. This finishes the proof. �

The following fact is proved in [2, Proposition 8.5.7].

Lemma 3.7. Let G be an R-factorizable group such that every continuous
homomorphic image H of G with ψ(H) ≤ ω is pseudo-ℵ1-compact. Then
G is pseudo-ℵ1-compact and, hence, m-factorizable.

It is worth noting that the lemma below is a part of Theorem 3.9.

Lemma 3.8. Suppose that the product G×K is an R-factorizable group,
where G is a P -group. If K is pseudo-ℵ1-compact, so is the group G×K
and, hence, G×K is m-factorizable.

Proof. The group G is R-factorizable as an open continuous homomor-
phic image of G×K (see [17, Theorem 3.10]). Since G is a P -group, it is
pseudo-ℵ1-compact by [19, Lemma 2.6]. Suppose that G ×K fails to be



178 M. TKACHENKO

pseudo-ℵ1-compact. Then, by Lemma 3.7, there exists a homomorphism
φ : G×K → T onto a topological group T satisfying ψ(T ) ≤ ω such that
T is not pseudo-ℵ1-compact. By Lemma 3.4, we can find continuous open
homomorphisms πG : G → G0, πK : K → K0 onto topological groups G0

and K0 of countable pseudocharacter and a continuous homomorphism
q : G0 ×K0 → T such that φ = q ◦ (πG × πK). Let π : G×K → G0 ×K0

be the product of the homomorphisms πG and πK . Then π is an open
continuous homomorphism. It follows from the continuity of q and the
choice of the group T that the product group G0 ×K0 is not pseudo-ℵ1-
compact.

Since πG : G→ G0 is an open continuous homomorphism of a P -group
G onto the group G0 of countable pseudocharacter, we see that the kernel
of πG is an open subgroup ofG andG0 is discrete. Further, every R-factor-
izable group is ω-narrow according to [2, Proposition 8.1.3]. Hence the
group G and the continuous homomorphic image G0 of G are ω-narrow.
Since G0 is discrete, we conclude that |G0| ≤ ω.

Using the facts that G0 is discrete and G0 × K0 is not pseudo-ℵ1-
compact, we can find a discrete family {Uα × Vα : α < ω1} of nonempty
open sets in G0 × K0, where Uα = {xα} and xα ∈ G0 for each α ∈ ω1.
Since G0 is countable, there exist g ∈ G0 and an uncountable set A ⊆ ω1

such that Uα = {g} for each α ∈ A. Hence {Vα : α ∈ A} is a discrete
family of nonempty open sets in K0, and so is the family {Wα : α ∈ A}
in K, where Wα = π−1

K (Vα) for each α ∈ A. Thus K fails to be pseudo-
ℵ1-compact. This contradiction completes the proof. �

The next result can be considered as a complement to [19, Theo-
rem 4.16].

Theorem 3.9. The following conditions are equivalent for a non-discrete
P -group G and an R-factorizable group K:

(a) the group G×K is R-factorizable;
(b) the space G×K is pseudo-ℵ1-compact;
(c) the group G×K is m-factorizable.

Proof. We know that a topological group is m-factorizable iff it is R-
factorizable and pseudo-ℵ1-compact [2, Theorem 8.5.2]. Hence (c) is
equivalent to the combination of (a) and (b). Therefore, it suffices to
prove that (a) and (b) are equivalent as well.

We start with the implication (b) ⇒ (a). Suppose that the product
G × K is pseudo-ℵ1-compact. Then G is also pseudo-ℵ1-compact as a
continuous image of G ×K. Hence [19, Theorem 4.16] implies that G is
R-factorizable.
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Let C(G × K) be the algebra of continuous real-valued functions on
G×K. Denote by A the minimal subalgebra of C(G×K) which contains
the functions depending on one coordinate only and the limits of uniformly
convergent sequences lying in A. Since the factors G and K are R-factor-
izable, Lemma 3.3 implies that A ⊆ Cf (G×K). By our assumption, the
product G × K is pseudo-ℵ1-compact, so [9, Theorem 1.6] implies that
A = C(G×K). Therefore, Cf (G×K) = C(G×K), so the group G×K
is R-factorizable. This proves that (b) implies (a).

Let us show that (a) ⇒ (b). Suppose that the product group G ×K
is R-factorizable. Then, by [17, Theorem 3.10], G is R-factorizable as an
open continuous homomorphic image of G ×K. Therefore, the P -group
G is pseudo-ℵ1-compact by virtue of [19, Lemma 2.6]. Suppose to the
contrary that G × K is not pseudo-ℵ1-compact. Then, by Lemma 3.8,
neither is K. Let {Vα : α < ω1} be a discrete family of nonempty open
sets in K. Since G is a P -group, we use Lemma 3.6 to choose a strictly
decreasing family {Uα : α < ω1} of clopen neighborhoods of the neutral
element eG in G whose intersection has empty interior in G. It is clear
that the family γ = {Uα × Vα : α < ω1} is discrete in G×K.

For every α < ω1, pick a point yα ∈ Vα and denote by fα a continuous
function on G ×K with values in [0, 1] such that fα(x, yα) = 1 for each
x ∈ Uα, and fα(x, y) = 0 if (x, y) /∈ Uα × Vα. Since the family γ is
discrete, the function F =

∑
α<ω1

fα is continuous on G × K. We now
use the R-factorizability of G × K to find a continuous homomorphism
φ : G×K → T onto a second countable group T and a continuous function
g on T such that F = g ◦φ. By Lemma 3.4, we can find open continuous
homomorphisms πG : G→ G0 and πK : K → K0 onto groups G0 and K0

of countable pseudocharacter and a continuous homomorphism q : G0 ×
K0 → T satisfying φ = q ◦ π, where π = πG × πK . Put h = g ◦ q. Then
h is a continuous homomorphism which satisfies F = h ◦ π. Clearly, the
group G0 is countable and discrete.

G×K

φ

��

π
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G0 ×K0
q //

h

::T
g // R

The kernel N of πG is an open subgroup of G. Since the intersection∩
α<ω1

Uα has empty interior in G, there exists β < ω1 such that the com-

plement N \ Uβ is nonempty. Pick a point x ∈ N \ Uβ . Clearly, πG(x) =
πG(eG) = e0, where e0 is the neutral element of G0. It follows from the
choice of x that the point (x, yβ) is not in

∪
α<ω1

Uα × Vα, so F (x, yβ) =
0. It is also clear that (eG, yβ) ∈ Uβ × Vβ , whence F (eG, yβ) = 1.
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However, we have that F = h◦π and π(eG, yβ) = (e0, πK(yβ)) = π(x, yβ).
Therefore,

1 = F (eG, yβ) = hπ(eG, yβ) = hπ(x, yβ) = F (x, yβ) = 0.

This contradiction shows that the product group G × K is pseudo-ℵ1-
compact. Hence (a) implies (b) and the proof is complete. �

Here we present sufficient conditions for the preservation of pseudo-ℵ1-
compactness in a product of two spaces.

Lemma 3.10. Let X be a Lindelöf P -space with χ(X) ≤ ℵ1 and Y a
space in which every locally countable family of open sets is countable.
Then the product X × Y is pseudo-ℵ1-compact.

Proof. It is well known that every Lindelöf P -space satisfying the T2 sep-
aration axiom is regular. Therefore, the space X is zero-dimensional and
has a base of clopen sets. Suppose to the contrary that there exists a
discrete family ξ = {Uα × Vα : α < ω1} of nonempty open rectangular
sets in X × Y , where each Uα is clopen in X. Put

F =
∩

α<ω1

∪
α≤β<ω1

Uβ .

Since the space X is Lindelöf, the set F is nonempty. Pick a point x∗ ∈ F
and note that x∗ is not isolated in X. Indeed, otherwise x∗ ∈ Uα for
uncountably many α < ω1, and since Y is evidently pseudo-ℵ1-compact,
the intersections of the elements of ξ with the copy {x∗} × Y of Y have
an accumulation point in {x∗} × Y , thus contradicting our choice of the
family ξ. Since X is a P -space, we conclude that χ(x∗, X) = ℵ1. Let
{Wν : ν < ω1} be a decreasing family of clopen neighborhoods of x∗ in X
which forms a local base for X at x∗.

By recursion define a strictly increasing sequence A = {αν : ν < ω1}
of countable ordinals and a family {Oν : ν < ω1} of nonempty clopen sets
in X satisfying the following conditions for each ν < ω1:

(i) x∗ /∈ Oν ;
(ii) Oν ⊆ Uαν ∩Wν .

This is possible because of our choice of the point x∗ ∈ F . By (ii),
the family γ = {Oν × Vαν : ν < ω1} is discrete in X × Y . Since every
locally countable family of open sets in Y is countable, there exists a point
y∗ ∈ Y such that every neighborhood of y∗ in Y intersects uncountably
many elements of the family {Vαν : ν < ω1}.

To obtain a contradiction it suffices to show that the family γ accu-
mulates at the point z∗ = (x∗, y∗). Let U × V be an open neighbor-
hood of z∗ in X × Y and δ a countable ordinal. Then x∗ ∈ U , so there
exists µ < ω1 such that Wµ ⊆ U . By the choice of y∗ ∈ Y , there ex-
ists an ordinal ν satisfying max{δ, µ} ≤ ν < ω1 such that V ∩ Vαν ̸= ∅.
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It follows from (ii) that Oν ⊆ Wν and, since Wν ⊆ Wµ ⊆ U , we see
that Oν ⊆ U . Hence (U × V ) ∩ (Oν × Vαν ) ̸= ∅. Since ν ≥ δ, it follows
that U × V intersects uncountably many elements of the family γ. This
shows that γ accumulates at z∗ and contradicts the discreteness of γ in
X × Y . �

The next result is almost evident.

Lemma 3.11. Let X be a weakly Lindelöf space. Then every locally
countable family of open sets in X is countable.

Proof. Suppose that γ is a locally countable family of open sets in X.
For every x ∈ X, take an open neighborhood Ux of x which intersects at
most countably many elements of γ. Then {Ux : x ∈ X} is an open cover
of X and since X is weakly Lindelöf, there exists a countable set C ⊆ X
such that the union W =

∪
x∈C Ux is dense in X. Since every element of

γ intersects the set W , we conclude that γ is countable. �

In contrast with Lemma 3.10, we do not impose any bounds upon the
character of the group G in the proposition below:

Proposition 3.12. Let G be an R-factorizable P -group and Y a space
in which every locally countable family of open sets is countable. Then
the product G× Y is pseudo-ℵ1-compact.

Proof. Suppose to the contrary that the product G×Y contains a discrete
family γ = {Uα × Vα : α < ω1} of nonempty open sets. Clearly, the P -
group G is zero-dimensional, so we can assume without loss of generality
that every set Uα is clopen. Since G is R-factorizable, for every α < ω1

there exist a continuous homomorphism pα of G onto a second countable
group Gα and a clopen set Wα ⊆ Gα such that Uα = p−1

α (Wα). It is easy
to see that the kernel of each homomorphism pα is an open subgroup of
G, so we can additionally assume that each group Gα is discrete and,
hence, countable. Therefore, according to [19, Lemma 4.13], there exists
an open continuous homomorphism p of G onto a P -group H satisfying
w(H) ≤ ℵ1 such that ker p ⊆ ker pα for each α < ω1. In particular, each
set Oα = p(Uα) is open in H and Uα = p−1(Oα).

We claim that the family {Oα × Vα : α < ω1} is discrete in H × Y .
Indeed, take an arbitrary point (x, y) ∈ H × Y and choose x′ ∈ G such
that p(x′) = x. Since the family γ is discrete in G × Y , there exists
an open neighborhood U × V of (x′, y) in G × Y which intersects at
most one element of γ. If α < ω1 and the sets U × V and Uα × Vα are
disjoint, then either U ∩ Uα = ∅ or V ∩ Vα = ∅. In the former case,
the equality Uα = p−1p(Uα) implies that p(U) ∩Oα = p(U) ∩ p(Uα) = ∅.
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This implies that (p(U)×V )∩(p(Uα)×Vα) = ∅, and the same happens in
the latter case. Hence, p(U)× V is an open neighborhood of (x, y) which
meets at most one element of the family {Oα × Vα : α < ω1}, and our
claim follows.

The group H is R-factorizable as a quotient of the R-factorizable group
G. Since w(H) ≤ ℵ1, it follows from [19, Corollary 3.32] that H is a
Lindelöf P -group. Hence Lemma 3.10 implies that the product H × Y is
pseudo-ℵ1-compact. This yields that the family {Oα × Vα : α < ω1} has
an accumulation point, which contradicts the above claim. Therefore, the
product G× Y is pseudo-ℵ1-compact. �

The next result follows from Proposition 3.12 and Lemma 3.11:

Corollary 3.13. The product G×Y of an R-factorizable P -group G with
a weakly Lindelöf space Y is pseudo-ℵ1-compact.

Applying Theorem 3.9 and Corollary 3.13, we obtain:

Corollary 3.14. The product G ×K of an R-factorizable P -group with
a weakly Lindelöf R-factorizable group K is m-factorizable.

The above corollary generalizes [17, Corollary 4.18], where the second
factor was assumed precompact.

Since all Lindelöf groups as well as countably cellular groups are weakly
Lindelöf, and Lindelöf groups are R-factorizable by [16, Assertion 1.1],
Corollary 3.14 implies the following facts:

Corollary 3.15. The product of an R-factorizable P -group with a Lin-
delöf group is m-factorizable.

Corollary 3.16. The product of an R-factorizable P -group with an R-
factorizable group of countable cellularity is m-factorizable.

4. Problem section

Several results of Section 2 appeared as an attempt to resolve the fol-
lowing problem:

Problem 4.1. Let G be a Lindelöf P -group. Will the product group
G×H be R-factorizable (equivalently, m-factorizable) for every m-factor-
izable group H? What if, additionally, H is ω-stable?

Problem 4.2. Let G be a Lindelöf group and H a precompact group. Is
the product G×H R-factorizable, pseudo-ℵ1-compact, or weakly Lindelöf?

Problem 4.3. Is every locally countable disjoint family of open sets in
an R-factorizable pseudo-ℵ1-compact (or ω-stable) group countable?
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If the answer to Problem 4.3 is “yes”, then Corollary 3.12 and Theo-
rem 3.9 together will imply that the product G×K of an R-factorizable
P -group G and every m-factorizable group K is m-factorizable.

Problem 4.4. Must the product G × Rω be R-factorizable for any R-
factorizable group G, where R is the real line?

Proposition 2.4 and Corollary 3.15 make it natural to ask the following:

Problem 4.5. Let K be a C-embedded subgroup of a Lindelöf group.

(a) Is the group K pseudo-ω1-compact?
(b) Will the product G × K be R-factorizable for any R-factorizable

P -group G?

Problem 4.6. Let G be an R-factorizable group. It is true that every
countable locally finite family of open sets in G is locally finite in υG?
What if G is weakly Lindelöf or ω-stable?
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