

http://topology.auburn.edu/tp/

INDUCED MAPPINGS BETWEEN THE HYPERSPACES $\mathcal{C}(X)$ OF CONTINUA AND UNIVERSAL MAPPINGS

 $\mathbf{b}\mathbf{y}$

Antonio Peláez

Electronically published on May 2, 2011

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on May 2, 2011

INDUCED MAPPINGS BETWEEN THE HYPERSPACES $\mathcal{C}(X)$ OF CONTINUA AND UNIVERSAL MAPPINGS

ANTONIO PELÁEZ

ABSTRACT. In 1980, Professor Sam B. Nadler, Jr., proved that if $f: Y \to X$ is a surjective map from a continuum Y onto a metrizable chainable continuum X, then the induced map $\mathcal{C}(f)$: $\mathcal{C}(Y) \to \mathcal{C}(X)$ is universal. Later, in 2002, Jorge Bustamante, Raúl Escobedo, and Fernando Macías-Romero, proved that if $f: Y \to X$ is a surjective map between metrizable continua, where X has zero surjective semispan, then the induced map $\mathcal{C}(f): \mathcal{C}(Y) \to \mathcal{C}(X)$ is universal. In this paper, we extend the first result to the non-metric case and the second one to the rim-metrizable case.

1. **Preliminaries**

Given the relations U and V on a set X, the inverse relation of U is the set

$$-U = \{(y, x) : (x, y) \in U\},\$$

and the composition of U and V is the set

$$U + V = \{(x, z) : \text{there exists a } y \in X \text{ such that} \\ (x, y) \in U \text{ and } (y, z) \in V \}.$$

We also write 1V = V and, for a positive integer n, (n + 1)V = nV + V.

The diagonal of X is the set $\Delta = \{(x, x) : x \in X\}$. An *entourage* of the diagonal is a set $V \subset X \times X$ containing Δ such that V = -V; the family of all entourages of the diagonal is denoted by \mathcal{D}_X . If we have $x, y \in X$ and $V \in \mathcal{D}_X$ such that $(x, y) \in V$, then we say that the *distance*

²⁰¹⁰ Mathematics Subject Classification. Primary 54H25; Secondary 54B20, 54E15.

Key words and phrases. Hausdorff continua, induced mappings, surjective semi-span, universal mappings.

^{©2011} Topology Proceedings.

between x and y is less than V and we write |x - y| < V; otherwise, we write $|x - y| \geq V$. If for every pair of points x, y of a set $A \subseteq X$ and $V \in \mathcal{D}_X$, we have that |x - y| < V, i.e., if $A \times A \subseteq V$, we say that the diameter of A is less than V and we write $\delta(A) < V$; otherwise, we write $\delta(A) \geq V$.

Given a point $x \in X$ and $V \in \mathcal{D}_X$, the ball with center x and radius V(briefly, the V-ball about x) is the set $B(x, V) = \{y \in X : |x - y| < V\}$. For a set $A \subseteq X$ and a $V \in \mathcal{D}_X$, the V-ball about A is the set $B(A, V) = \bigcup \{B(x, V) : x \in A\}$.

A uniformity on a set X is a subfamily \mathcal{U} of \mathcal{D}_X such that

U1. If $V \in \mathcal{U}$ and $V \subseteq W \in \mathcal{D}_X$, then $W \in \mathcal{U}$.

U2. If $V, W \in \mathcal{U}$, then $V \cap W \in \mathcal{U}$.

U3. For every $V \in \mathcal{U}$, there exists $W \in \mathcal{U}$ such that $2W \subseteq V$. U4. $\bigcap \mathcal{U} = \Delta$.

Theorem 1.1 ([2, Theorem 8.1.1]). For every uniformity \mathcal{U} on a set X, the family

$$\mathcal{O} = \{ G \subseteq X : \text{for every } x \in G \text{ there exists } a \ V \in \mathcal{U} \\ \text{such that } B(x, V) \subseteq G \}$$

is a topology on X and the topological space (X, \mathcal{O}) is a T_1 -space.

The topology \mathcal{O} is called the *topology induced by the uniformity* \mathcal{U} .

If X is a topological space and its topology is induced by a uniformity \mathcal{U} , we say that \mathcal{U} is a *uniformity on the space* X.

The following lemma is a consequence of [2, Corollary 8.1.3].

Lemma 1.2. Let \mathcal{U} be a uniformity on the space X. The net $\{x_{\alpha}\}_{\alpha \in \Lambda}$ in X converges to $x \in X$ if and only if, for every $U \in \mathcal{U}$, there exists $\alpha_0 \in \Lambda$ such that $|x_{\alpha} - x| < U$ for every $\alpha \geq \alpha_0$.

Lemma 1.3. Let \mathcal{U} be a uniformity on the space X. Suppose that the nets $\{x_{\alpha}\}_{\alpha \in \Lambda}, \{y_{\alpha}\}_{\alpha \in \Lambda}$ in X converge to x and y, respectively. If, for every $U \in \mathcal{U}$, there exists $\alpha_0 \in \Lambda$ such that $|x_{\alpha} - y_{\alpha}| < U$ for every $\alpha \geq \alpha_0$, then x = y.

Proof. Suppose that $x \neq y$. Let $W, U \in \mathcal{U}$ such that $3W \subseteq U$ and $|x - y| \geq U$. Let $\alpha_0 \in \Lambda$ such that $|x_\alpha - x| < W$, $|y_\alpha - y| < W$ and $|x_\alpha - y_\alpha| < W$ for every $\alpha \geq \alpha_0$. Then $|x - y| < 3W \subseteq U$, which is a contradiction.

The space (X, \mathcal{O}) , constructed in Theorem 1.1, is a Tychonoff space.

Theorem 1.4 ([2, Theorem 8.1.20]). The topology of a space X can be induced by a uniformity on the set X if and only if X is a Tychonoff space.

Theorem 1.5 ([2, Theorem 8.3.13]). For every Hausdorff compact topological space X, there exists exactly one uniformity \mathcal{U} on the set X that induces the original topology of X. All entourages of the diagonal $\Delta \subseteq X \times X$ which are open in the Cartesian product $X \times X$ form a base for the uniformity \mathcal{U} .

Definition 1.6. A uniform space (X, \mathcal{U}) is *compact* if X with the topology induced by \mathcal{U} is a compact space.

A mapping $f: X \to Y$ between the uniform spaces (X, \mathcal{U}) and (Y, \mathcal{V}) is uniformly continuous with respect to the uniformities \mathcal{U} and \mathcal{V} if for every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that |f(x) - f(y)| < V whenever |x - y| < U. In this case, we write $f: (X, \mathcal{U}) \to (Y, \mathcal{V})$. It follows from the definition and Theorem 1.1 that f is a continuous mapping of the space X with the topology induced by \mathcal{U} to the space Y with the topology induced by \mathcal{V} .

Theorem 1.7 ([9, Corollary 1.8]). Let \mathcal{U} and \mathcal{V} be uniformities on the Hausdorff compact spaces X and Y, respectively. A mapping $f: X \to Y$ is continuous if and only if f is uniformly continuous with respect to the uniformities \mathcal{U} and \mathcal{V} .

A hyperspace of a topological space X is a family of subsets of X. The hyperspace 2^X is the family of all non-empty closed subsets of X. The hyperspace $\mathcal{Z}(X)$ is the subfamily of 2^X consisting of all non-empty compact closed subsets of X. The hyperspace $\mathcal{C}_n(X)$ is the subfamily of $\mathcal{Z}(X)$ consisting of all non-empty compact closed subsets of X with at most n components. We write $\mathcal{C}(X) = \mathcal{C}_1(X)$.

The Vietoris topology τ on 2^X is the topology generated by the family of all sets of the form

$$\langle U_1, \dots, U_n \rangle = \{ C \in 2^X : C \subseteq U_1 \cup \dots \cup U_n \text{ and } C \cap U_i \neq \emptyset$$

for each $1 \le i \le n \},$

where U_1, \ldots, U_n are open subsets of X (see [2, Problem 2.7.20(a)]). The hyperspaces $\mathcal{Z}(X)$ and $\mathcal{C}_n(X)$ are considered as subspaces of 2^X with the Vietoris topology.

The weight of a topological space X is denoted by $\omega(X)$.

From [2, Problem 3.12.27(a) and (b)], we have the following result.

Theorem 1.8. If X is a Hausdorff compact space, then the hyperspace 2^X is a Hausdorff compact space and $\omega(2^X) = \omega(X)$.

Definition 1.9. A *continuum* is a nonempty Hausdorff compact connected topological space. A *subcontinuum* is a continuum contained in a space.

By [3, Corollary 14.10], we obtain the following theorem.

Theorem 1.10. If X is a metrizable continuum, then the hyperspaces 2^X and $\mathcal{C}(X)$ are metrizable continua.

Given a continuous function $f: X \to Y$ between Hausdorff topological spaces, the *induced mapping between the hyperspaces* $\mathcal{Z}(X)$ and $\mathcal{Z}(Y)$ is the mapping $\mathcal{Z}(f): \mathcal{Z}(X) \to \mathcal{Z}(Y)$ defined by $\mathcal{Z}(f)(C) = f[C]$. The restriction $\mathcal{Z}(f)|_{\mathcal{C}_n(X)}$ is denoted by $\mathcal{C}_n(f)$. If X is compact, then $2^X = \mathcal{Z}(X)$, and we write $2^f = \mathcal{Z}(f)$.

Proposition 1.11 ([2, Problem 3.12.27(e)]). If $f : X \to Y$ is a continuous function and $\mathcal{Z}(X)$ and $\mathcal{Z}(Y)$ have the Vietoris topology, then $\mathcal{Z}(f)$ is continuous.

Let \mathcal{U} be a uniformity on a Tychonoff space X. Given $U \in \mathcal{U}$, let

 $2^{U} = \left\{ (C, D) \in 2^{X} \times 2^{X} : C \subseteq B(D, U) \text{ and } D \subseteq B(C, U) \right\}.$

The family $\{2^U : U \in \mathcal{U}\}$ is a base for a uniformity $2^{\mathcal{U}}$ on the hyperspace 2^X (see [2, Problem 8.5.16(a)]).

Given a Tychonoff space X, we have two topologies on 2^X : the Vietoris topology τ and the induced topology $2^{\mathcal{O}}$ by the uniformity $2^{\mathcal{U}}$, where \mathcal{U} is a uniformity on the space X. Those two topologies coincide on $\mathcal{Z}(X)$ (see [2, Problem 8.5.16(c)]). If (X,\mathcal{U}) is compact, then $(2^X, 2^{\mathcal{U}})$ is compact (see [2, Problem 8.5.16(f)]), and $\tau = 2^{\mathcal{O}}$.

Theorem 1.12. Let \mathcal{U} and \mathcal{V} be uniformities on the Tychonoff spaces X and Y, respectively. If $f : X \to Y$ is uniformly continuous with respect to \mathcal{U} and \mathcal{V} , then $\mathcal{Z}(f)$ is uniformly continuous with respect to $2^{\mathcal{U}}_{\mathcal{Z}(X)} = \{(\mathcal{Z}(X) \times \mathcal{Z}(X)) \cap 2^{\mathcal{U}} : \mathcal{U} \in \mathcal{U}\}$ and $2^{\mathcal{V}}_{\mathcal{Z}(Y)}$.

Proof. Let $V \in \mathcal{V}$; then there exists $U \in \mathcal{U}$ such that |f(x) - f(y)| < Vwhenever |x - y| < U. Let $C, D \in \mathcal{Z}(X)$ such that $|C - D| < 2^U$. Since $C \subseteq B(D, U)$ and $D \subseteq B(C, U)$, we have that $f[C] \subseteq B(f[D], V)$ and $f[D] \subseteq B(f[C], V)$. Then $|\mathcal{Z}(f)(C) - \mathcal{Z}(f)(D)| < 2^V$, which means that $\mathcal{Z}(f)$ is uniformly continuous with respect to $2^{\mathcal{U}}_{\mathcal{Z}(X)}$ and $2^{\mathcal{V}}_{\mathcal{Z}(Y)}$. \Box

Definition 1.13. A mapping $f : (X, \mathcal{U}) \to (Y, \mathcal{V})$ is a *U*-map, where $U \in \mathcal{U}$, provided that $\delta(f^{-1}(y)) < U$ for each $y \in Y$.

Theorem 1.14. Let \mathcal{U} and \mathcal{V} be uniformities on the Tychonoff spaces X and Y, respectively. If $f : (X, \mathcal{U}) \to (Y, \mathcal{V})$ is a U-map, then $\mathcal{Z}(f) : \left(\mathcal{Z}(X), 2^{\mathcal{U}}_{\mathcal{Z}(X)}\right) \to \left(\mathcal{Z}(Y), 2^{\mathcal{V}}_{\mathcal{Z}(Y)}\right)$ is a 2^{U} -map.

Proof. By Theorem 1.12, the mapping $\mathcal{Z}(f)$ is uniformly continuous. Let $C, D \in (\mathcal{Z}(f))^{-1}(E)$, where $E \in \mathcal{Z}(Y)$. Let $c \in C$. Since f[C] = f[D] =

E, there exists $d \in D$ such that f(c) = f(d), then |c - d| < U which means that $C \subseteq B(D,U)$. Similarly, $D \subseteq B(C,U)$. So, |C - D| < C 2^{U} ; therefore, $\delta\left((\mathcal{Z}(f))^{-1}(E)\right) < 2^{U}$, which means that $\mathcal{Z}(f)$ is a 2^{U} map.

An inverse system is a family $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$, where (Λ, \leq) is a directed set, X_{α} is a topological space for every $\alpha \in \Lambda$, and for any $\alpha, \beta \in \Lambda$ satisfying $\alpha \leq \hat{\beta}, f_{\alpha}^{\beta} : X_{\beta} \to X_{\alpha}$ is a continuous mapping such that

i) f^{α}_{α} is the identity map on X_{α} for every $\alpha \in \Lambda$, and ii) $f^{\gamma}_{\alpha} = f^{\beta}_{\alpha} \circ f^{\gamma}_{\beta}$ for any $\alpha, \beta, \gamma \in \Lambda$ satisfying $\alpha \leq \beta \leq \gamma$.

The maps f_{α}^{β} are called *bonding maps* and the spaces X_{α} are called *coor*dinate spaces.

Given a point \hat{x} in a product $\prod \{X_{\alpha} : \alpha \in \Lambda\}$, we write $\hat{x} = (x_{\alpha})_{\alpha \in \Lambda}$. Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be an inverse system. The subspace of the prod-

uct $\prod \{X_{\alpha} : \alpha \in \Lambda\}$ consisting of all points \hat{x} such that $x_{\alpha} = f_{\alpha}^{\beta}(x_{\beta})$ for any $\alpha, \beta \in \Lambda$ satisfying $\alpha \leq \beta$ is called the *inverse limit* of the inverse system S, which is denoted by $\lim S$ or by X_{Λ} . We define the projection

 $\begin{array}{l} \mathrm{map} \ f^{\Lambda}_{\alpha}: X_{\Lambda} \to X_{\alpha} \ \mathrm{by} \ f^{\Lambda}_{\alpha}(\hat{x}) = x_{\alpha}. \\ \mathrm{A} \ morphism \ \mathrm{from \ an \ inverse \ system \ } S = \left\{ X_{\alpha}, f^{\beta}_{\alpha}, \Lambda \right\} \ \mathrm{into \ the \ inverse \ } \end{array}$ system $S' = \{Y_{\alpha}, g_{\alpha}^{\beta}, \Lambda\}$ is a family $\mathfrak{h} = \{h_{\alpha} : \alpha \in \Lambda\}$ of continuous mappings $h_{\alpha}: X_{\alpha} \to Y_{\alpha}$ such that $g_{\alpha}^{\beta} \circ h_{\beta} = h_{\alpha} \circ f_{\alpha}^{\beta}$ for any $\alpha, \beta \in \Lambda$ satisfying $\alpha \leq \beta$. Every morphism \mathfrak{h} between the inverse systems S and S' induces a continuous mapping $h_{\Lambda} : X_{\Lambda} \to Y_{\Lambda}$ between their inverse limits such that $g^{\Lambda}_{\alpha} \circ h_{\Lambda} = h_{\alpha} \circ f^{\Lambda}_{\alpha}$ (see [2, p. 101]).

The following is a well-known result (see [8, Theorem 2.5]).

Theorem 1.15. Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be an inverse system of Hausdorff compact spaces. Then the families $2^S = \left\{ 2^{X_{\alpha}}, 2^{f_{\alpha}^{\beta}}, \Lambda \right\}$ and $\mathcal{C}(S) =$ $\{\mathcal{C}(X_{\alpha}), \mathcal{C}(f_{\alpha}^{\beta}), \Lambda\}$ are inverse systems, and the continuous mapping h: $2 \stackrel{\lim S}{\longleftarrow} \rightarrow \lim_{K \to \infty} 2^S$ defined by $h(E) = (f^{\Lambda}_{\alpha}[E])_{\alpha \in \Lambda}$ is a homeomorphism and $h\left[\mathcal{C}\left(\lim S\right)\right] = \lim \mathcal{C}(S).$

A subset Σ of a directed set Λ is *cofinal* provided that, for every $\alpha \in \Lambda$, there exists $\beta \in \Sigma$ such that $\alpha \leq \beta$. A subset Σ of a directed set Λ is a *chain* provided that, for any $\alpha, \beta \in \Sigma$, we have that $\alpha \leq \beta$ or $\beta \leq \alpha$. Let $\tau \geq \aleph_0$ be a cardinal number. A directed set Λ is called τ -complete provided that, for each chain $\Sigma \subseteq \Lambda$ with $|\Sigma| \leq \tau$, there exists $\sup \Sigma \in \Lambda$.

Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be an inverse system and let $\Sigma \subseteq \Lambda$ be a chain with $\gamma = \sup \Sigma \in \Lambda$. By [2, Exercise 2.5.F], the morphism $\{f_{\alpha}^{\gamma} : \alpha \in \Sigma\}$ induces

a continuous mapping $h_{\gamma}: X_{\gamma} \to \lim_{\leftarrow} \{X_{\alpha}, f_{\alpha}^{\beta}, \Sigma\}$ such that $f_{\alpha}^{\gamma} = f_{\alpha}^{\Sigma} \circ h_{\gamma}$ for every $\alpha \in \Sigma$. Note that h_{γ} is defined by $h_{\gamma}(x_{\gamma}) = (f_{\alpha}^{\gamma}(x_{\gamma}))_{\alpha \in \Sigma}$.

Definition 1.16. An inverse system $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ is τ -continuous provided that, for each chain $\Sigma \subseteq \Lambda$ with $|\Sigma| < \tau$ and $\gamma = \sup\Sigma$, the induced map $h_{\gamma} : X_{\gamma} \to \lim_{\leftarrow} \{X_{\alpha}, f_{\alpha}^{\beta}, \Sigma\}$, by the morphism $\{f_{\alpha}^{\gamma} : \alpha \in \Sigma\}$, is a homeomorphism.

From the proof of [8, Theorem 3.4], we obtain the following theorem.

Theorem 1.17. If $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ is a τ -continuous inverse system of Hausdorff compact spaces, then the inverse systems 2^{S} and $\mathcal{C}(S)$ are τ -continuous.

Definition 1.18. An inverse system $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ is τ -complete if S is τ -continuous and Λ is τ -complete.

From Theorem 1.17 and the definition of a τ -complete inverse system, we obtain the following result.

Theorem 1.19. If $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ is a τ -complete inverse system of Hausdorff compact spaces, then the inverse systems 2^{S} and $\mathcal{C}(S)$ are τ -complete.

Definition 1.20. An inverse system $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ is an *inverse* τ -system if S is τ -complete and $\omega(X_{\alpha}) \leq \tau$ for each $\alpha \in \Lambda$. If $\tau = \aleph_0$, then inverse τ -system is called an inverse σ -system.

From Theorem 1.8 and Theorem 1.19, we have the following.

Theorem 1.21. If $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ is an inverse τ -system of Hausdorff compact spaces, then the inverse systems 2^{S} and $\mathcal{C}(S)$ are inverse τ -systems.

Theorem 1.22 ([6, Theorem 1.5]). Let X be a Hausdorff compact space with $\omega(X) \geq \aleph_1$. Then for each cardinal number $\tau < \omega(X)$, there exists an inverse τ -system $\{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ of Hausdorff compact spaces with surjective bonding maps such that X is homeomorphic to X_{Λ} .

Remark 1.23. In the previous theorem, the directed set Λ is constructed using the weight of X, and this set can be used in the inverse τ -system satisfying Theorem 1.22 for another space Y with the same weight.

Definition 1.24. A topological space X has the *fixed point property* provided that, for every continuous mapping $f : X \to X$, there exists $x \in X$ such that f(x) = x.

Definition 1.25. Let X and Y be two topological spaces. A continuous mapping $f : X \to Y$ is *universal* if, for every continuous mapping $g : X \to Y$, there exists $x \in X$ such that f(x) = g(x).

It is not difficult to see that if $f : X \to Y$ is universal, then f is surjective and Y has the fixed point property.

Theorem 1.26 ([6, Theorem 2.1]). Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ and $S' = \{Y_{\alpha}, g_{\alpha}^{\beta}, \Lambda\}$ be two inverse τ -systems of Hausdorff compact spaces with onto bonding maps. If $\mathfrak{h} = \{h_{\alpha} : \alpha \in \Lambda\} : S \to S'$ is a morphism of universal mappings, then the induced map $h_{\Lambda} : X_{\Lambda} \to Y_{\Lambda}$ is universal.

Definition 1.27. A continuous mapping $f : X \to Y$ between topological spaces is *monotone* provided that all fibers $f^{-1}(y)$ are connected.

From the proof of [5, Theorem 3.7(1) and (3)], we have the following.

Theorem 1.28. Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be a τ -complete inverse system of Hausdorff compact spaces with onto bonding maps. Then there exists a τ -complete inverse system $M(S) = \{M_{\alpha}, m_{\alpha}^{\beta}, \Lambda\}$ of Hausdorff compact spaces with monotone surjective bonding maps such that the space limS is homeomorphic to the space limM(S).

Definition 1.29. A topological space X is *rim-metrizable* if it has a basis \mathcal{B} such that every $U \in \mathcal{B}$ has metrizable boundary.

In the previous theorem, each space M_{α} is obtained by the monotonelight factorization of f_{α}^{Λ} . So, if X_{Λ} is rim-metrizable, by [12, Theorem 1.2 and Theorem 3.2], we have that $\omega(X_{\alpha}) = \omega(M_{\alpha})$. This implies the following result.

Theorem 1.30. Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be an inverse τ -system of Hausdorff compact spaces with onto bonding maps. If X_{Λ} is rim-metrizable, then there exists an inverse τ -system $M(S) = \{M_{\alpha}, m_{\alpha}^{\beta}, \Lambda\}$ of Hausdorff compact spaces with monotone surjective bonding maps such that the space X_{Λ} is homeomorphic to the space M_{Λ} .

From [11, Theorem 15], we have the following result.

Theorem 1.31. Let $\{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ and $\{Y_{\alpha}, g_{\alpha}^{\beta}, \Lambda\}$ be two inverse τ -systems of Hausdorff compact spaces with onto bonding maps. If $h : X_{\Lambda} \to Y_{\Lambda}$ is a continuous mapping, then there exist a cofinal subset Σ of Λ and a morphism $\mathfrak{h} = \{h_{\alpha} : \alpha \in \Sigma\} : \{X_{\alpha}, f_{\alpha}^{\beta}, \Sigma\} \to \{Y_{\alpha}, g_{\alpha}^{\beta}, \Sigma\}$ such that $h_{\Sigma} = g' \circ h \circ g^{-1}$, where $g : X_{\Lambda} \to X_{\Sigma}$ and $g' : Y_{\Lambda} \to Y_{\Sigma}$ are the homeomorphisms defined by $g((x_{\alpha})_{\alpha \in \Lambda}) = (x_{\alpha})_{\alpha \in \Sigma}$ and $g'((y_{\alpha})_{\alpha \in \Lambda}) = (y_{\alpha})_{\alpha \in \Sigma}$ (see [2, Corollary 2.5.11]).

2. Universal Mappings Theorems

In this section, we extend the results in [7, Theorem 2.11] and [1] to the non-metric case. In particular, we give an easier proof of [6, Theorem 4.2] in Theorem 2.3.

Theorem 2.1. Let (X, \mathcal{U}) and (Y, \mathcal{V}) be two compact uniform spaces and let $f : X \to Y$ be a continuous mapping. If, for every $V \in \mathcal{V}$, there exists a V-map f_V from Y into a space Z_V such that $f_V \circ f$ is universal, then f is universal.

Proof. Let $g: X \to Y$ be a continuous mapping and let $V \in \mathcal{V}$. Since $f_V \circ f: X \to Z_V$ is universal, there exists $x_V \in X$ such that $f_V(f(x_V)) = f_V(g(x_V))$. Then $|f(x_V) - g(x_V)| < V$. By the compactness of X, we can assume that the net $\{x_V\}_{V \in \mathcal{V}}$ converges to a point $x \in X$. Since the net $\{f(x_V)\}_{V \in \mathcal{V}}$ converges to f(x) and the net $\{g(x_V)\}_{V \in \mathcal{V}}$ converges to g(x), by Lemma 1.3, we have that f(x) = g(x). Then f is universal. \Box

Definition 2.2. Let \mathcal{U} be a uniformity on a continuum X. The continuum X is *chainable* provided that for every $U \in \mathcal{U}$ there exists a surjective U-map $f_U: X \to [0, 1]$ (see [9, Theorem 2.10]).

Theorem 2.3. Let \mathcal{U} be a uniformity on a chainable continuum X and let \mathcal{V} be a uniformity on a continuum Y. For any continuous onto mapping $f: Y \to X$, the induced mapping $\mathcal{C}(f): \mathcal{C}(Y) \to \mathcal{C}(X)$ is universal.

Proof. Let $U \in \mathcal{U}$ and let $f_U : X \to [0,1]$ be a surjective U-map. By [7, Theorem 2.11], the induced mapping $\mathcal{C}(f_U \circ f) : \mathcal{C}(Y) \to \mathcal{C}([0,1])$ is universal. It is not difficult to see that $\mathcal{C}(f_U \circ f) = \mathcal{C}(f_U) \circ \mathcal{C}(f)$. By Theorem 1.14, $\mathcal{C}(f_U)$ is a 2^U -map. Then, by Theorem 2.1, $\mathcal{C}(f)$ is universal.

We couldn't translate the proof of [1, Theorem 4.1] using only uniformities, so we give a generalization using inverse limits in Theorem 2.7. Let π_1 denote the projection map from $X \times Y$ onto X.

Definition 2.4. Let \mathcal{U} be a uniformity on a continuum X. The *surjective* semispan of X is the set

 $\sigma_0^*(X) = \{ V \in \mathcal{U} : \text{there exists a continuum } Z_V \subseteq X \times X \\ \text{such that } \pi_1[Z_V] = X \text{ and } Z_V \cap V = \emptyset \}.$

In the realm of metric spaces, the emptiness of the surjective semispan is characterized with the condition of having zero surjective semispan as A. Lelek defined in [4] (see [9, Theorem 3.2]).

From [10, Theorem 3.7], we have the following theorem.

Theorem 2.5. Let $f : X \to Y$ be a monotone surjective map. If $\sigma_0^*(X) = \emptyset$ then $\sigma_0^*(Y) = \emptyset$.

Theorem 2.6 ([1, Theorem 4.1]). Let X be a metrizable continuum with zero surjective semispan. If $f : Y \to X$ is a continuous map from a metrizable continuum Y onto X, then the induced map $C(f) : C(Y) \to C(X)$ is universal.

The following theorem generalizes Theorem 2.6.

Theorem 2.7. If $h: Y \to X$ is a surjective continuous mapping between rim-metrizable continua, where X has empty surjective semispan, then the induced map $C(h): C(Y) \to C(X)$ is universal.

Proof. By [2, Theorem 3.1.22], we consider only the following two cases.

Case 1: $\omega(X) = \omega(Y) \geq \aleph_1$. By Theorem 1.22, there exist two inverse σ -systems $S = \{X_\alpha, f_\alpha^\beta, \Lambda\}$ and $S' = \{Y_\alpha, g_\alpha^\beta, \Lambda\}$ of Hausdorff compact spaces with surjective bonding maps such that X is homeomorphic to X_Λ and Y is homeomorphic to Y_Λ . So, we can assume that $h: Y_\Lambda \to X_\Lambda$. By Theorem 1.30, we can assume that each g_α^β and each f_α^β are monotone; then $\mathcal{C}(S')$ and $\mathcal{C}(S)$ have surjective bonding maps and, by Theorem 1.21, are inverse σ -systems. By [2, Problem 6.3.16(a)], each projection map f_α^Λ is monotone. So, by Theorem 2.5, each X_α has empty surjective semispan. By Theorem 1.31, we can assume that h is the induced map by a morphism $\mathfrak{h} = \{h_\alpha: \alpha \in \Lambda\}: S' \to S$. Then $\mathcal{C}(h)$ is the induced mapping by the morphism $\{\mathcal{C}(h_\alpha): \alpha \in \Lambda\}: \mathcal{C}(S') \to \mathcal{C}(S)$. By Theorem 2.6, each $\mathcal{C}(h_\alpha): \mathcal{C}(Y_\alpha) \to \mathcal{C}(X_\alpha)$ is universal. Thus, by Theorem 1.26, $\mathcal{C}(h)$ is universal.

Case 2: $\omega(Y) > \omega(X) \ge \aleph_1$. Let $\tau = \omega(X)$. By Theorem 1.22, there exists an inverse τ -system $S' = \{Y_\alpha, g_\alpha^\beta, \Lambda\}$ of Hausdorff compact spaces with surjective bonding maps such that Y is homeomorphic to Y_Λ . By Theorem 1.30, we can assume that each g_α^β is monotone; then $\mathcal{C}(S')$ has surjective bonding maps and, by Theorem 1.21, is an inverse τ -systems. By [2, Problem 6.3.16(a)], each projection map g_α^Λ is monotone. So, by [12, Theorem 3.2], each Y_α is rim-metrizable. Consider the inverse system $S = \{X_\alpha, f_\alpha^\beta, \Lambda\}$, where each $X_\alpha = X$ and each f_α^β is the identity map on X. So, we can assume that $h: Y_\Lambda \to X_\Lambda$. By Theorem 1.31, we can assume that h is the induced map by a morphism $\mathfrak{h} = \{h_\alpha : \alpha \in \Lambda\} : S' \to$ S. Then $\mathcal{C}(h)$ is the induced mapping by the morphism $\{\mathcal{C}(h_\alpha) : \alpha \in \Lambda\}$. Since $\omega(X_\alpha) = \omega(Y_\alpha)$ for each $\alpha \in \Lambda$, by Case 1, each $\mathcal{C}(h_\alpha) : \mathcal{C}(Y_\alpha) \to$ $\mathcal{C}(X_\alpha)$ is universal. Thus, by Theorem 1.26, $\mathcal{C}(h)$ is universal.

Question 2.8. Is Theorem 2.7 valid if we remove rim-metrizable?

References

- Jorge Bustamante, Raúl Escobedo, and Fernando Macías-Romero, A fixed point theorem for Whitney blocks, Topology Appl. 125 (2002), no. 2, 315–321.
- [2] Ryszard Engelking, General Topology. Translated from the Polish by the author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.
- [3] Alejandro Illanes and Sam B. Nadler, Jr., Hyperspaces: Fundamentals and Recent Advances. Monographs and Textbooks in Pure and Applied Mathematics, 216. New York: Marcel Dekker, Inc., 1999.
- [4] A. Lelek, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), no. 1, 35–45.
- [5] Ivan Lončar, Non-metric rim-metrizable continua and unique hyperspace, Publ. Inst. Math. (Beograd) (N.S.) 73(87) (2003), 97–113.
- [6] _____, A note on universal mappings, Int. J. Math. Sci. 4 (2005), no. 1, 79–86.
- [7] Sam B. Nadler, Jr., Universal mappings and weakly confluent mappings, Fund. Math. 110 (1980), no. 3, 221–235.
- [8] Antonio Peláez, On the uniqueness of the hyperspaces 2^X and $C_n(X)$ of rimmetrizable continua, Topology Proc. **30** (2006), no. 2, 565–576.
- [9] _____, The surjective semispan for Hausdorff continua, Topology Appl. 157 (2010), no. 6, 1086–1090.
- [10] _____, The span for Hausdorff continua, Proc. Amer. Math. Soc. 138 (2010), no. 3, 1113–1120.
- [11] E. V. Ščepin, Functors and uncountable degrees of compacta, Russian Math. Surveys 36 (1981), no. 3, 1–71.
- [12] H. Murat Tuncali, Concerning continuous images of rim-metrizable continua, Proc. Amer. Math. Soc. 113 (1991), no. 2, 461–470.

Universidad Autónoma de la Ciudad de México; Plantel Cuautepec; Avenida la Corona 320; Gustavo A. Madero; C.P. 07160, México D. F.

E-mail address: pelaez@matem.unam.mx