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INDUCED MAPPINGS BETWEEN
THE HYPERSPACES 𝒞(𝑋) OF CONTINUA

AND UNIVERSAL MAPPINGS

ANTONIO PELÁEZ

Abstract. In 1980, Professor Sam B. Nadler, Jr., proved that
if 𝑓 : 𝑌 → 𝑋 is a surjective map from a continuum 𝑌 onto a
metrizable chainable continuum 𝑋, then the induced map 𝒞(𝑓) :
𝒞(𝑌 ) → 𝒞(𝑋) is universal. Later, in 2002, Jorge Bustamante, Raúl
Escobedo, and Fernando Macías-Romero, proved that if 𝑓 : 𝑌 → 𝑋
is a surjective map between metrizable continua, where 𝑋 has zero
surjective semispan, then the induced map 𝒞(𝑓) : 𝒞(𝑌 ) → 𝒞(𝑋) is
universal. In this paper, we extend the first result to the non-metric
case and the second one to the rim-metrizable case.

1. Preliminaries

Given the relations 𝑈 and 𝑉 on a set 𝑋, the inverse relation of 𝑈 is
the set

−𝑈 = {(𝑦, 𝑥) : (𝑥, 𝑦) ∈ 𝑈},
and the composition of 𝑈 and 𝑉 is the set

𝑈 + 𝑉 = {(𝑥, 𝑧) : there exists a 𝑦 ∈ 𝑋 such that
(𝑥, 𝑦) ∈ 𝑈 and (𝑦, 𝑧) ∈ 𝑉 }.

We also write 1𝑉 = 𝑉 and, for a positive integer 𝑛, (𝑛+ 1)𝑉 = 𝑛𝑉 + 𝑉 .
The diagonal of 𝑋 is the set Δ = {(𝑥, 𝑥) : 𝑥 ∈ 𝑋}. An entourage of

the diagonal is a set 𝑉 ⊂ 𝑋 × 𝑋 containing Δ such that 𝑉 = −𝑉 ; the
family of all entourages of the diagonal is denoted by 𝒟𝑋 . If we have
𝑥, 𝑦 ∈ 𝑋 and 𝑉 ∈ 𝒟𝑋 such that (𝑥, 𝑦) ∈ 𝑉 , then we say that the distance
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54 A. PELÁEZ

between 𝑥 and 𝑦 is less than 𝑉 and we write ∣ 𝑥− 𝑦 ∣ < 𝑉 ; otherwise, we
write ∣ 𝑥 − 𝑦 ∣ ≥ 𝑉 . If for every pair of points 𝑥, 𝑦 of a set 𝐴 ⊆ 𝑋 and
𝑉 ∈ 𝒟𝑋 , we have that ∣ 𝑥− 𝑦 ∣ < 𝑉 , i.e., if 𝐴× 𝐴 ⊆ 𝑉 , we say that the
diameter of 𝐴 is less than 𝑉 and we write 𝛿(𝐴) < 𝑉 ; otherwise, we write
𝛿(𝐴) ≥ 𝑉 .

Given a point 𝑥 ∈ 𝑋 and 𝑉 ∈ 𝒟𝑋 , the ball with center 𝑥 and radius 𝑉
(briefly, the 𝑉 -ball about 𝑥) is the set 𝐵(𝑥, 𝑉 ) = {𝑦 ∈ 𝑋 : ∣ 𝑥− 𝑦 ∣ < 𝑉 }.
For a set 𝐴 ⊆ 𝑋 and a 𝑉 ∈ 𝒟𝑋 , the 𝑉 -ball about 𝐴 is the set 𝐵(𝐴, 𝑉 ) =∪{𝐵(𝑥, 𝑉 ) : 𝑥 ∈ 𝐴}.

A uniformity on a set 𝑋 is a subfamily 𝒰 of 𝒟𝑋 such that
U1. If 𝑉 ∈ 𝒰 and 𝑉 ⊆ 𝑊 ∈ 𝒟𝑋 , then 𝑊 ∈ 𝒰 .
U2. If 𝑉,𝑊 ∈ 𝒰 , then 𝑉 ∩𝑊 ∈ 𝒰 .
U3. For every 𝑉 ∈ 𝒰 , there exists 𝑊 ∈ 𝒰 such that 2𝑊 ⊆ 𝑉 .
U4.

∩𝒰 = Δ.

Theorem 1.1 ([2, Theorem 8.1.1]). For every uniformity 𝒰 on a set 𝑋,
the family

𝒪 = {𝐺 ⊆ 𝑋 : for every 𝑥 ∈ 𝐺 there exists a 𝑉 ∈ 𝒰
such that 𝐵(𝑥, 𝑉 ) ⊆ 𝐺}

is a topology on 𝑋 and the topological space (𝑋,𝒪) is a 𝑇1-space.

The topology 𝒪 is called the topology induced by the uniformity 𝒰 .
If 𝑋 is a topological space and its topology is induced by a uniformity

𝒰 , we say that 𝒰 is a uniformity on the space 𝑋.
The following lemma is a consequence of [2, Corollary 8.1.3].

Lemma 1.2. Let 𝒰 be a uniformity on the space 𝑋. The net {𝑥𝛼}𝛼∈Λ in
𝑋 converges to 𝑥 ∈ 𝑋 if and only if, for every 𝑈 ∈ 𝒰 , there exists 𝛼0 ∈ Λ
such that ∣ 𝑥𝛼 − 𝑥 ∣ < 𝑈 for every 𝛼 ≥ 𝛼0.

Lemma 1.3. Let 𝒰 be a uniformity on the space 𝑋. Suppose that the
nets {𝑥𝛼}𝛼∈Λ, {𝑦𝛼}𝛼∈Λ in 𝑋 converge to 𝑥 and 𝑦, respectively. If, for
every 𝑈 ∈ 𝒰 , there exists 𝛼0 ∈ Λ such that ∣ 𝑥𝛼 − 𝑦𝛼 ∣ < 𝑈 for every
𝛼 ≥ 𝛼0, then 𝑥 = 𝑦.

Proof. Suppose that 𝑥 ∕= 𝑦. Let 𝑊,𝑈 ∈ 𝒰 such that 3𝑊 ⊆ 𝑈 and
∣ 𝑥− 𝑦 ∣ ≥ 𝑈 . Let 𝛼0 ∈ Λ such that ∣ 𝑥𝛼 − 𝑥 ∣ < 𝑊 , ∣ 𝑦𝛼 − 𝑦 ∣ < 𝑊 and
∣ 𝑥𝛼 − 𝑦𝛼 ∣ < 𝑊 for every 𝛼 ≥ 𝛼0. Then ∣ 𝑥− 𝑦 ∣ < 3𝑊 ⊆ 𝑈 , which is a
contradiction. □

The space (𝑋,𝒪), constructed in Theorem 1.1, is a Tychonoff space.

Theorem 1.4 ([2, Theorem 8.1.20]). The topology of a space 𝑋 can be
induced by a uniformity on the set 𝑋 if and only if 𝑋 is a Tychonoff
space.
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Theorem 1.5 ([2, Theorem 8.3.13]). For every Hausdorff compact topo-
logical space 𝑋, there exists exactly one uniformity 𝒰 on the set 𝑋 that
induces the original topology of 𝑋. All entourages of the diagonal Δ ⊆
𝑋 ×𝑋 which are open in the Cartesian product 𝑋 ×𝑋 form a base for
the uniformity 𝒰 .

Definition 1.6. A uniform space (𝑋,𝒰) is compact if 𝑋 with the topol-
ogy induced by 𝒰 is a compact space.

A mapping 𝑓 : 𝑋 → 𝑌 between the uniform spaces (𝑋,𝒰) and (𝑌,𝒱)
is uniformly continuous with respect to the uniformities 𝒰 and 𝒱 if for
every 𝑉 ∈ 𝒱 there exists 𝑈 ∈ 𝒰 such that ∣ 𝑓(𝑥)− 𝑓(𝑦) ∣ < 𝑉 whenever
∣ 𝑥 − 𝑦 ∣ < 𝑈 . In this case, we write 𝑓 : (𝑋,𝒰) → (𝑌,𝒱). It follows
from the definition and Theorem 1.1 that 𝑓 is a continuous mapping of
the space 𝑋 with the topology induced by 𝒰 to the space 𝑌 with the
topology induced by 𝒱.

Theorem 1.7 ([9, Corollary 1.8]). Let 𝒰 and 𝒱 be uniformities on the
Hausdorff compact spaces 𝑋 and 𝑌 , respectively. A mapping 𝑓 : 𝑋 → 𝑌
is continuous if and only if 𝑓 is uniformly continuous with respect to the
uniformities 𝒰 and 𝒱.

A hyperspace of a topological space 𝑋 is a family of subsets of 𝑋.
The hyperspace 2𝑋 is the family of all non-empty closed subsets of 𝑋.
The hyperspace 𝒵(𝑋) is the subfamily of 2𝑋 consisting of all non-empty
compact closed subsets of 𝑋. The hyperspace 𝒞𝑛(𝑋) is the subfamily of
𝒵(𝑋) consisting of all non-empty compact closed subsets of 𝑋 with at
most 𝑛 components. We write 𝒞(𝑋) = 𝒞1(𝑋).

The Vietoris topology 𝜏 on 2𝑋 is the topology generated by the family
of all sets of the form

⟨𝑈1, . . . , 𝑈𝑛⟩ = {𝐶 ∈ 2𝑋 : 𝐶 ⊆ 𝑈1 ∪ ⋅ ⋅ ⋅ ∪ 𝑈𝑛 and 𝐶 ∩ 𝑈𝑖 ∕= ∅
for each 1 ≤ 𝑖 ≤ 𝑛},

where 𝑈1, . . . , 𝑈𝑛 are open subsets of 𝑋 (see [2, Problem 2.7.20(a)]). The
hyperspaces 𝒵(𝑋) and 𝒞𝑛(𝑋) are considered as subspaces of 2𝑋 with the
Vietoris topology.

The weight of a topological space 𝑋 is denoted by 𝜔(𝑋).
From [2, Problem 3.12.27(a) and (b)], we have the following result.

Theorem 1.8. If 𝑋 is a Hausdorff compact space, then the hyperspace
2𝑋 is a Hausdorff compact space and 𝜔(2𝑋) = 𝜔(𝑋).

Definition 1.9. A continuum is a nonempty Hausdorff compact con-
nected topological space. A subcontinuum is a continuum contained in a
space.
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By [3, Corollary 14.10], we obtain the following theorem.

Theorem 1.10. If 𝑋 is a metrizable continuum, then the hyperspaces
2𝑋 and 𝒞(𝑋) are metrizable continua.

Given a continuous function 𝑓 : 𝑋 → 𝑌 between Hausdorff topological
spaces, the induced mapping between the hyperspaces 𝒵(𝑋) and 𝒵(𝑌 ) is
the mapping 𝒵(𝑓) : 𝒵(𝑋) → 𝒵(𝑌 ) defined by 𝒵(𝑓)(𝐶) = 𝑓 [𝐶]. The
restriction 𝒵(𝑓) ∣𝒞𝑛(𝑋) is denoted by 𝒞𝑛(𝑓). If 𝑋 is compact, then 2𝑋 =

𝒵(𝑋), and we write 2𝑓 = 𝒵(𝑓).

Proposition 1.11 ([2, Problem 3.12.27(e)]). If 𝑓 : 𝑋 → 𝑌 is a continu-
ous function and 𝒵(𝑋) and 𝒵(𝑌 ) have the Vietoris topology, then 𝒵(𝑓)
is continuous.

Let 𝒰 be a uniformity on a Tychonoff space 𝑋. Given 𝑈 ∈ 𝒰 , let

2𝑈 =
{
(𝐶,𝐷) ∈ 2𝑋 × 2𝑋 : 𝐶 ⊆ 𝐵(𝐷,𝑈) and 𝐷 ⊆ 𝐵(𝐶,𝑈)

}
.

The family
{
2𝑈 : 𝑈 ∈ 𝒰} is a base for a uniformity 2𝒰 on the hyper-

space 2𝑋 (see [2, Problem 8.5.16(a)]).
Given a Tychonoff space 𝑋, we have two topologies on 2𝑋 : the Vietoris

topology 𝜏 and the induced topology 2𝒪 by the uniformity 2𝒰 , where 𝒰 is
a uniformity on the space 𝑋. Those two topologies coincide on 𝒵(𝑋) (see
[2, Problem 8.5.16(c)]). If (𝑋,𝒰) is compact, then (2𝑋 , 2𝒰 ) is compact
(see [2, Problem 8.5.16(f)]), and 𝜏= 2𝒪.

Theorem 1.12. Let 𝒰 and 𝒱 be uniformities on the Tychonoff spaces 𝑋
and 𝑌 , respectively. If 𝑓 : 𝑋 → 𝑌 is uniformly continuous with respect
to 𝒰 and 𝒱, then 𝒵(𝑓) is uniformly continuous with respect to 2𝒰𝒵(𝑋) ={
(𝒵(𝑋)×𝒵(𝑋)) ∩ 2𝑈 : 𝑈 ∈ 𝒰} and 2𝒱𝒵(𝑌 ).

Proof. Let 𝑉 ∈ 𝒱; then there exists 𝑈 ∈ 𝒰 such that ∣ 𝑓(𝑥)− 𝑓(𝑦) ∣ < 𝑉
whenever ∣ 𝑥 − 𝑦 ∣ < 𝑈 . Let 𝐶,𝐷 ∈ 𝒵(𝑋) such that ∣ 𝐶 − 𝐷 ∣ < 2𝑈 .
Since 𝐶 ⊆ 𝐵(𝐷,𝑈) and 𝐷 ⊆ 𝐵(𝐶,𝑈), we have that 𝑓 [𝐶] ⊆ 𝐵(𝑓 [𝐷], 𝑉 )
and 𝑓 [𝐷] ⊆ 𝐵(𝑓 [𝐶], 𝑉 ). Then ∣ 𝒵(𝑓)(𝐶)−𝒵(𝑓)(𝐷) ∣ < 2𝑉 , which means
that 𝒵(𝑓) is uniformly continuous with respect to 2𝒰𝒵(𝑋) and 2𝒱𝒵(𝑌 ). □

Definition 1.13. A mapping 𝑓 : (𝑋,𝒰) → (𝑌,𝒱) is a 𝑈 -map, where
𝑈 ∈ 𝒰 , provided that 𝛿(𝑓−1(𝑦)) < 𝑈 for each 𝑦 ∈ 𝑌 .

Theorem 1.14. Let 𝒰 and 𝒱 be uniformities on the Tychonoff spaces
𝑋 and 𝑌 , respectively. If 𝑓 : (𝑋,𝒰) → (𝑌,𝒱) is a 𝑈 -map, then 𝒵(𝑓) :(
𝒵(𝑋), 2𝒰𝒵(𝑋)

)
→

(
𝒵(𝑌 ), 2𝒱𝒵(𝑌 )

)
is a 2𝑈 -map.

Proof. By Theorem 1.12, the mapping 𝒵(𝑓) is uniformly continuous. Let
𝐶,𝐷 ∈ (𝒵(𝑓))−1(𝐸), where 𝐸 ∈ 𝒵(𝑌 ). Let 𝑐 ∈ 𝐶. Since 𝑓 [𝐶] = 𝑓 [𝐷] =
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𝐸, there exists 𝑑 ∈ 𝐷 such that 𝑓(𝑐) = 𝑓(𝑑), then ∣ 𝑐 − 𝑑 ∣ < 𝑈 which
means that 𝐶 ⊆ 𝐵(𝐷,𝑈). Similarly, 𝐷 ⊆ 𝐵(𝐶,𝑈). So, ∣ 𝐶 − 𝐷 ∣ <
2𝑈 ; therefore, 𝛿

(
(𝒵(𝑓))−1(𝐸)

)
< 2𝑈 , which means that 𝒵(𝑓) is a 2𝑈 -

map. □

An inverse system is a family 𝑆 =
{
𝑋𝛼, 𝑓

𝛽
𝛼 ,Λ

}
, where (Λ,≤) is a

directed set, 𝑋𝛼 is a topological space for every 𝛼 ∈ Λ, and for any
𝛼, 𝛽 ∈ Λ satisfying 𝛼 ≤ 𝛽, 𝑓𝛽

𝛼 : 𝑋𝛽 → 𝑋𝛼 is a continuous mapping such
that

i) 𝑓𝛼
𝛼 is the identity map on 𝑋𝛼 for every 𝛼 ∈ Λ, and

ii) 𝑓𝛾
𝛼 = 𝑓𝛽

𝛼 ∘ 𝑓𝛾
𝛽 for any 𝛼, 𝛽, 𝛾 ∈ Λ satisfying 𝛼 ≤ 𝛽 ≤ 𝛾.

The maps 𝑓𝛽
𝛼 are called bonding maps and the spaces 𝑋𝛼 are called coor-

dinate spaces.
Given a point �̂� in a product

∏ {𝑋𝛼 : 𝛼 ∈ Λ}, we write �̂� = (𝑥𝛼)𝛼∈Λ.
Let 𝑆 =

{
𝑋𝛼, 𝑓

𝛽
𝛼 ,Λ

}
be an inverse system. The subspace of the prod-

uct
∏ {𝑋𝛼 : 𝛼 ∈ Λ} consisting of all points �̂� such that 𝑥𝛼 = 𝑓𝛽

𝛼 (𝑥𝛽) for
any 𝛼, 𝛽 ∈ Λ satisfying 𝛼 ≤ 𝛽 is called the inverse limit of the inverse
system 𝑆, which is denoted by lim←−𝑆 or by 𝑋Λ. We define the projection

map 𝑓Λ
𝛼 : 𝑋Λ → 𝑋𝛼 by 𝑓Λ

𝛼 (�̂�) = 𝑥𝛼.
A morphism from an inverse system 𝑆 =

{
𝑋𝛼, 𝑓

𝛽
𝛼 ,Λ

}
into the inverse

system 𝑆′ =
{
𝑌𝛼, 𝑔

𝛽
𝛼,Λ

}
is a family 𝔥 = {ℎ𝛼 : 𝛼 ∈ Λ} of continuous map-

pings ℎ𝛼 : 𝑋𝛼 → 𝑌𝛼 such that 𝑔𝛽𝛼∘ℎ𝛽 = ℎ𝛼∘𝑓𝛽
𝛼 for any 𝛼, 𝛽 ∈ Λ satisfying

𝛼 ≤ 𝛽. Every morphism 𝔥 between the inverse systems 𝑆 and 𝑆′ induces
a continuous mapping ℎΛ : 𝑋Λ → 𝑌Λ between their inverse limits such
that 𝑔Λ𝛼 ∘ ℎΛ = ℎ𝛼 ∘ 𝑓Λ

𝛼 (see [2, p. 101]).
The following is a well-known result (see [8, Theorem 2.5]).

Theorem 1.15. Let 𝑆 = {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} be an inverse system of Haus-

dorff compact spaces. Then the families 2𝑆 =
{
2𝑋𝛼 , 2𝑓

𝛽
𝛼 ,Λ

}
and 𝒞(𝑆) ={𝒞(𝑋𝛼), 𝒞(𝑓𝛽

𝛼 ),Λ
}

are inverse systems, and the continuous mapping ℎ :

2
lim←−𝑆 → lim←−2

𝑆 defined by ℎ(𝐸) =
(
𝑓Λ
𝛼 [𝐸]

)
𝛼∈Λ is a homeomorphism and

ℎ
[
𝒞
(
lim←−𝑆

)]
= lim←−𝒞(𝑆).

A subset Σ of a directed set Λ is cofinal provided that, for every 𝛼 ∈ Λ,
there exists 𝛽 ∈ Σ such that 𝛼 ≤ 𝛽. A subset Σ of a directed set Λ is
a chain provided that, for any 𝛼, 𝛽 ∈ Σ, we have that 𝛼 ≤ 𝛽 or 𝛽 ≤ 𝛼.
Let 𝜏 ≥ ℵ0 be a cardinal number. A directed set Λ is called 𝜏 -complete
provided that, for each chain Σ ⊆ Λ with ∣ Σ ∣ ≤ 𝜏 , there exists supΣ ∈ Λ.

Let 𝑆 = {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} be an inverse system and let Σ ⊆ Λ be a chain with

𝛾 = supΣ ∈ Λ. By [2, Exercise 2.5.F], the morphism {𝑓𝛾
𝛼 : 𝛼 ∈ Σ} induces
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a continuous mapping ℎ𝛾 : 𝑋𝛾 → lim←−{𝑋𝛼, 𝑓
𝛽
𝛼 ,Σ} such that 𝑓𝛾

𝛼 = 𝑓Σ
𝛼 ∘ ℎ𝛾

for every 𝛼 ∈ Σ. Note that ℎ𝛾 is defined by ℎ𝛾(𝑥𝛾) = (𝑓𝛾
𝛼(𝑥𝛾))𝛼∈Σ.

Definition 1.16. An inverse system 𝑆 = {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} is 𝜏 -continuous

provided that, for each chain Σ ⊆ Λ with ∣ Σ ∣ < 𝜏 and 𝛾 = supΣ, the
induced map ℎ𝛾 : 𝑋𝛾 → lim←−{𝑋𝛼, 𝑓

𝛽
𝛼 ,Σ}, by the morphism {𝑓𝛾

𝛼 : 𝛼 ∈ Σ},
is a homeomorphism.

From the proof of [8, Theorem 3.4], we obtain the following theorem.

Theorem 1.17. If 𝑆 = {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} is a 𝜏 -continuous inverse system

of Hausdorff compact spaces, then the inverse systems 2𝑆 and 𝒞(𝑆) are
𝜏 -continuous.

Definition 1.18. An inverse system 𝑆 = {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} is 𝜏 -complete if 𝑆

is 𝜏 -continuous and Λ is 𝜏 -complete.

From Theorem 1.17 and the definition of a 𝜏 -complete inverse system,
we obtain the following result.

Theorem 1.19. If 𝑆 = {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} is a 𝜏 -complete inverse system of

Hausdorff compact spaces, then the inverse systems 2𝑆 and 𝒞(𝑆) are 𝜏 -
complete.

Definition 1.20. An inverse system 𝑆 = {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} is an inverse 𝜏 -

system if 𝑆 is 𝜏 -complete and 𝜔(𝑋𝛼) ≤ 𝜏 for each 𝛼 ∈ Λ. If 𝜏 = ℵ0, then
inverse 𝜏 -system is called an inverse 𝜎-system.

From Theorem 1.8 and Theorem 1.19, we have the following.

Theorem 1.21. If 𝑆 = {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} is an inverse 𝜏 -system of Haus-

dorff compact spaces, then the inverse systems 2𝑆 and 𝒞(𝑆) are inverse
𝜏 -systems.

Theorem 1.22 ([6, Theorem 1.5]). Let 𝑋 be a Hausdorff compact space
with 𝜔(𝑋) ≥ ℵ1. Then for each cardinal number 𝜏 < 𝜔(𝑋), there exists an
inverse 𝜏 -system {𝑋𝛼, 𝑓

𝛽
𝛼 ,Λ} of Hausdorff compact spaces with surjective

bonding maps such that 𝑋 is homeomorphic to 𝑋Λ.

Remark 1.23. In the previous theorem, the directed set Λ is constructed
using the weight of 𝑋, and this set can be used in the inverse 𝜏 -system
satisfying Theorem 1.22 for another space 𝑌 with the same weight.

Definition 1.24. A topological space 𝑋 has the fixed point property
provided that, for every continuous mapping 𝑓 : 𝑋 → 𝑋, there exists
𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑥.
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Definition 1.25. Let 𝑋 and 𝑌 be two topological spaces. A continuous
mapping 𝑓 : 𝑋 → 𝑌 is universal if, for every continuous mapping 𝑔 :
𝑋 → 𝑌 , there exists 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑔(𝑥).

It is not difficult to see that if 𝑓 : 𝑋 → 𝑌 is universal, then 𝑓 is
surjective and 𝑌 has the fixed point property.

Theorem 1.26 ([6, Theorem 2.1]). Let 𝑆 =
{
𝑋𝛼, 𝑓

𝛽
𝛼 ,Λ

}
and 𝑆′ ={

𝑌𝛼, 𝑔
𝛽
𝛼,Λ

}
be two inverse 𝜏 -systems of Hausdorff compact spaces with

onto bonding maps. If 𝔥 = {ℎ𝛼 : 𝛼 ∈ Λ} : 𝑆 → 𝑆′ is a morphism of
universal mappings, then the induced map ℎΛ : 𝑋Λ → 𝑌Λ is universal.

Definition 1.27. A continuous mapping 𝑓 : 𝑋 → 𝑌 between topological
spaces is monotone provided that all fibers 𝑓−1(𝑦) are connected.

From the proof of [5, Theorem 3.7(1) and (3)], we have the following.

Theorem 1.28. Let 𝑆 = {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} be a 𝜏 -complete inverse system of

Hausdorff compact spaces with onto bonding maps. Then there exists a
𝜏 -complete inverse system 𝑀(𝑆) = {𝑀𝛼,𝑚

𝛽
𝛼,Λ} of Hausdorff compact

spaces with monotone surjective bonding maps such that the space lim←−𝑆

is homeomorphic to the space lim←−𝑀(𝑆).

Definition 1.29. A topological space 𝑋 is rim-metrizable if it has a basis
ℬ such that every 𝑈 ∈ ℬ has metrizable boundary.

In the previous theorem, each space 𝑀𝛼 is obtained by the monotone-
light factorization of 𝑓Λ

𝛼 . So, if 𝑋Λ is rim-metrizable, by [12, Theorem
1.2 and Theorem 3.2], we have that 𝜔(𝑋𝛼) = 𝜔(𝑀𝛼). This implies the
following result.

Theorem 1.30. Let 𝑆 = {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} be an inverse 𝜏 -system of Haus-

dorff compact spaces with onto bonding maps. If 𝑋Λ is rim-metrizable,
then there exists an inverse 𝜏 -system 𝑀(𝑆) = {𝑀𝛼,𝑚

𝛽
𝛼,Λ} of Hausdorff

compact spaces with monotone surjective bonding maps such that the space
𝑋Λ is homeomorphic to the space 𝑀Λ.

From [11, Theorem 15], we have the following result.

Theorem 1.31. Let {𝑋𝛼, 𝑓
𝛽
𝛼 ,Λ} and {𝑌𝛼, 𝑔

𝛽
𝛼,Λ} be two inverse 𝜏 -systems

of Hausdorff compact spaces with onto bonding maps. If ℎ : 𝑋Λ → 𝑌Λ

is a continuous mapping, then there exist a cofinal subset Σ of Λ and
a morphism 𝔥 = {ℎ𝛼 : 𝛼 ∈ Σ} : {𝑋𝛼, 𝑓

𝛽
𝛼 ,Σ} → {𝑌𝛼, 𝑔

𝛽
𝛼,Σ} such that

ℎΣ = 𝑔′ ∘ ℎ ∘ 𝑔−1, where 𝑔 : 𝑋Λ → 𝑋Σ and 𝑔′ : 𝑌Λ → 𝑌Σ are the homeo-
morphisms defined by 𝑔((𝑥𝛼)𝛼∈Λ) = (𝑥𝛼)𝛼∈Σ and 𝑔′((𝑦𝛼)𝛼∈Λ) = (𝑦𝛼)𝛼∈Σ
(see [2, Corollary 2.5.11]).
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2. Universal Mappings Theorems

In this section, we extend the results in [7, Theorem 2.11] and [1] to
the non-metric case. In particular, we give an easier proof of [6, Theorem
4.2] in Theorem 2.3.

Theorem 2.1. Let (𝑋,𝒰) and (𝑌,𝒱) be two compact uniform spaces and
let 𝑓 : 𝑋 → 𝑌 be a continuous mapping. If, for every 𝑉 ∈ 𝒱, there exists
a 𝑉 -map 𝑓𝑉 from 𝑌 into a space 𝑍𝑉 such that 𝑓𝑉 ∘ 𝑓 is universal, then
𝑓 is universal.

Proof. Let 𝑔 : 𝑋 → 𝑌 be a continuous mapping and let 𝑉 ∈ 𝒱. Since
𝑓𝑉 ∘𝑓 : 𝑋 → 𝑍𝑉 is universal, there exists 𝑥𝑉 ∈ 𝑋 such that 𝑓𝑉 (𝑓(𝑥𝑉 )) =
𝑓𝑉 (𝑔(𝑥𝑉 )). Then ∣ 𝑓(𝑥𝑉 ) − 𝑔(𝑥𝑉 ) ∣ < 𝑉 . By the compactness of 𝑋, we
can assume that the net {𝑥𝑉 }𝑉 ∈𝒱 converges to a point 𝑥 ∈ 𝑋. Since the
net {𝑓(𝑥𝑉 )}𝑉 ∈𝒱 converges to 𝑓(𝑥) and the net {𝑔(𝑥𝑉 )}𝑉 ∈𝒱 converges to
𝑔(𝑥), by Lemma 1.3, we have that 𝑓(𝑥) = 𝑔(𝑥). Then 𝑓 is universal. □

Definition 2.2. Let 𝒰 be a uniformity on a continuum 𝑋. The contin-
uum 𝑋 is chainable provided that for every 𝑈 ∈ 𝒰 there exists a surjective
𝑈 -map 𝑓𝑈 : 𝑋 → [0, 1] (see [9, Theorem 2.10]).

Theorem 2.3. Let 𝒰 be a uniformity on a chainable continuum 𝑋 and let
𝒱 be a uniformity on a continuum 𝑌 . For any continuous onto mapping
𝑓 : 𝑌 → 𝑋, the induced mapping 𝒞(𝑓) : 𝒞(𝑌 ) → 𝒞(𝑋) is universal.

Proof. Let 𝑈 ∈ 𝒰 and let 𝑓𝑈 : 𝑋 → [0, 1] be a surjective 𝑈 -map. By
[7, Theorem 2.11], the induced mapping 𝒞(𝑓𝑈 ∘ 𝑓) : 𝒞(𝑌 ) → 𝒞([0, 1])
is universal. It is not difficult to see that 𝒞(𝑓𝑈 ∘ 𝑓) = 𝒞(𝑓𝑈 ) ∘ 𝒞(𝑓).
By Theorem 1.14, 𝒞(𝑓𝑈 ) is a 2𝑈 -map. Then, by Theorem 2.1, 𝒞(𝑓) is
universal. □

We couldn’t translate the proof of [1, Theorem 4.1] using only unifor-
mities, so we give a generalization using inverse limits in Theorem 2.7.

Let 𝜋1 denote the projection map from 𝑋 × 𝑌 onto 𝑋.

Definition 2.4. Let 𝒰 be a uniformity on a continuum 𝑋. The surjective
semispan of 𝑋 is the set

𝜎∗0(𝑋) = {𝑉 ∈ 𝒰 : there exists a continuum 𝑍𝑉 ⊆ 𝑋 ×𝑋
such that 𝜋1[𝑍𝑉 ] = 𝑋 and 𝑍𝑉 ∩ 𝑉 = ∅}.

In the realm of metric spaces, the emptiness of the surjective semispan
is characterized with the condition of having zero surjective semispan as
A. Lelek defined in [4] (see [9, Theorem 3.2]).

From [10, Theorem 3.7], we have the following theorem.
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Theorem 2.5. Let 𝑓 : 𝑋 → 𝑌 be a monotone surjective map. If 𝜎∗0(𝑋) =
∅ then 𝜎∗0(𝑌 ) = ∅.
Theorem 2.6 ([1, Theorem 4.1]). Let 𝑋 be a metrizable continuum with
zero surjective semispan. If 𝑓 : 𝑌 → 𝑋 is a continuous map from a
metrizable continuum 𝑌 onto 𝑋, then the induced map 𝒞(𝑓) : 𝒞(𝑌 ) →
𝒞(𝑋) is universal.

The following theorem generalizes Theorem 2.6.

Theorem 2.7. If ℎ : 𝑌 → 𝑋 is a surjective continuous mapping between
rim-metrizable continua, where 𝑋 has empty surjective semispan, then
the induced map 𝒞(ℎ) : 𝒞(𝑌 ) → 𝒞(𝑋) is universal.

Proof. By [2, Theorem 3.1.22], we consider only the following two cases.
Case 1: 𝜔(𝑋) = 𝜔(𝑌 ) ≥ ℵ1. By Theorem 1.22, there exist two inverse

𝜎-systems 𝑆 =
{
𝑋𝛼, 𝑓

𝛽
𝛼 ,Λ

}
and 𝑆′ =

{
𝑌𝛼, 𝑔

𝛽
𝛼,Λ

}
of Hausdorff compact

spaces with surjective bonding maps such that 𝑋 is homeomorphic to 𝑋Λ

and 𝑌 is homeomorphic to 𝑌Λ. So, we can assume that ℎ : 𝑌Λ → 𝑋Λ. By
Theorem 1.30, we can assume that each 𝑔𝛽𝛼 and each 𝑓𝛽

𝛼 are monotone;
then 𝒞(𝑆′) and 𝒞(𝑆) have surjective bonding maps and, by Theorem 1.21,
are inverse 𝜎-systems. By [2, Problem 6.3.16(a)], each projection map
𝑓Λ
𝛼 is monotone. So, by Theorem 2.5, each 𝑋𝛼 has empty surjective

semispan. By Theorem 1.31, we can assume that ℎ is the induced map
by a morphism 𝔥 = {ℎ𝛼 : 𝛼 ∈ Λ} : 𝑆′ → 𝑆. Then 𝒞(ℎ) is the induced
mapping by the morphism {𝒞(ℎ𝛼) : 𝛼 ∈ Λ} : 𝒞(𝑆′) → 𝒞(𝑆). By Theorem
2.6, each 𝒞(ℎ𝛼) : 𝒞(𝑌𝛼) → 𝒞(𝑋𝛼) is universal. Thus, by Theorem 1.26,
𝒞(ℎ) is universal.

Case 2: 𝜔(𝑌 ) > 𝜔(𝑋) ≥ ℵ1. Let 𝜏 = 𝜔(𝑋). By Theorem 1.22, there
exists an inverse 𝜏 -system 𝑆′ =

{
𝑌𝛼, 𝑔

𝛽
𝛼,Λ

}
of Hausdorff compact spaces

with surjective bonding maps such that 𝑌 is homeomorphic to 𝑌Λ. By
Theorem 1.30, we can assume that each 𝑔𝛽𝛼 is monotone; then 𝒞(𝑆′) has
surjective bonding maps and, by Theorem 1.21, is an inverse 𝜏 -systems.
By [2, Problem 6.3.16(a)], each projection map 𝑔Λ𝛼 is monotone. So, by
[12, Theorem 3.2], each 𝑌𝛼 is rim-metrizable. Consider the inverse system
𝑆 =

{
𝑋𝛼, 𝑓

𝛽
𝛼 ,Λ

}
, where each 𝑋𝛼 = 𝑋 and each 𝑓𝛽

𝛼 is the identity map
on 𝑋. So, we can assume that ℎ : 𝑌Λ → 𝑋Λ. By Theorem 1.31, we can
assume that ℎ is the induced map by a morphism 𝔥 = {ℎ𝛼 : 𝛼 ∈ Λ} : 𝑆′ →
𝑆. Then 𝒞(ℎ) is the induced mapping by the morphism {𝒞(ℎ𝛼) : 𝛼 ∈ Λ}.
Since 𝜔(𝑋𝛼) = 𝜔(𝑌𝛼) for each 𝛼 ∈ Λ, by Case 1, each 𝒞(ℎ𝛼) : 𝒞(𝑌𝛼) →
𝒞(𝑋𝛼) is universal. Thus, by Theorem 1.26, 𝒞(ℎ) is universal. □
Question 2.8. Is Theorem 2.7 valid if we remove rim-metrizable?
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