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PFA(S)[S] AND THE ARHANGEL’SKII-TALL PROBLEM

FRANKLIN D. TALL

ABsTrACT. We discuss the Arhangel’skii-Tall problem and related
questions in models obtained by forcing with a coherent Souslin
tree.

1. INTRODUCTION
Around 1965, A. V. Arhangel’skii proved the following.

Proposition 1.1. Every locally compact, perfectly normal, metacompact
space is paracompact.

In 1971, in Prague, when asked if this statement were true, Arhangel’skii
responded that he had proved it, but his mentor P. S. Alexandrov had
not thought it worth publishing! Arhangel’skii subsequently published it
in [2]. Neither of us could answer the question of what happened if the
“closed sets are G’s” requirement was dropped. I raised this in [30] and
it became known as the “Arhangel’skii-Tall” problem. A partial solution

was achieved in [38], where W. Stephen Watson proved the following.

Proposition 1.2. V = L implies every locally compact normal metacom-
pact space is paracompact.

Then Gary Gruenhage and Piotr Koszmider [17] proved the next propo-
sition.
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Proposition 1.3. If ZFC is consistent, it is consistent with the existence
of a locally compact, normal, metacompact space which is not paracom-
pact.

In 2003, using results announced by Stevo Todor¢evi¢ (which have
now been written up in [37] and [10]), Paul Larson and I [21] proved the
following.

Theorem 1.4. If the existence of a supercompact cardinal is consistent
with ZFC, then so is the assertion that every locally compact, perfectly
normal space is paracompact.

The question remained as to whether one could obtain the paracom-
pactness of locally compact, normal, metacompact spaces as well as the
conclusion of Theorem 1.4 in the same model; i.e., could we change
Arhangel’skil’s “and” to “or”? That is what we shall do here, subject
to the same large cardinal assumption as in Theorem 1.4. We conjecture
that that assumption can be eliminated.

Theorem 1.5. If the existence of a supercompact cardinal is consistent
with ZFC, then so is the assertion that every locally compact normal space
that either is metalindeldf or has all closed sets Gs’s is paracompact.

2. PFA(S)[S]

The model that we use first is the same one as for Theorem 1.4. We
use the convention that “PFA(S)[S] implies ®” stands for the assertion
that in any model constructed by starting with a coherent Souslin tree S,
forcing to obtain PFA(S) (i.e., PFA restricted to proper posets preserving
S) and then forcing with S, ® holds. We analogously use “MA,,, (S)[S].”
For a discussion of such models and the definition of coherent, see [23].
The model of Theorem 1.4 is a model constructed in that fashion but over
a particular ground model. We shall later discuss modifications of that
model.

That the model of Theorem 1.4 suffices to prove Theorem 1.5 follows
immediately from the next two results.

Theorem 2.1 ([32]). PFA(S)[S] implies locally compact normal spaces
are Wi -collectionwise Hausdorff.

Lemma 2.2 ([16]). Locally compact normal X;-collectionwise Hausdorff
metalindeldf spaces are paracompact.

Gruenhage and Koszmider [16] proved the following.

Proposition 2.3. MA,,, implies every locally compact, normal, metalin-
deldf space is paracompact.
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Their only use of MA,,, was to prove the following proposition.

Proposition 2.4. Assume MA,,. Let {By : @ < w1} be a collection
of sets such that whenever {F, : a < w1} is a disjoint collection of finite
subsets of w1, {{UBg: 8 € Fa,a < w1} is not centered. Let {Y, : o < w1}
be a collection of countable sets such that |Yo, —|J{Bp : f € F}| =R, for
every finite ' C wy — {a}. Then wy = {J, ., An, where for each n € w
and o € wy, |Yo —U{Bs : B € A, — {a}}]| = No.

In fact, analyzing Gruenhage and Koszmider’s use of Proposition 2.4 in
their proof, we observe that they only needed that each stationary S C w;
included a stationary T such that for every a € T, |Y, — U{Bs : 8 €
T — {a}}| = Ng. This follows from there being a closed unbounded C
such that for « € C, |Y, — U{Bs : 8 € C — {a}}| = Ny. We conjecture
this follows from PFA(S)[S].

Watson [39] constructed a locally compact, perfectly normal, metalin-
del6f, non-paracompact space from MA,, (o-centered) plus the existence
of a Souslin tree. It is certainly consistent that there are no locally com-
pact, perfectly normal, metalindel6f spaces that are not paracompact. It
follows from Proposition 2.3, and, in fact, I showed that MA,,, implied
there weren’t any a long time ago in [30].

3. WEAKENING THE MODEL OF THEOREM 1.4

One wonders whether all of the requirements of the model of Theorem
1.4 are necessary. Whether large cardinals are necessary has not yet
been investigated. I conjecture that they are not, except possibly for an
inaccessible. Avoiding that issue, two others remain:

(1) Is the preliminary forcing used in [21] before forcing PFA(S)[S]
necessary?

(2) Do we just need PFA(S)[S], or do we need a model of PFA(S)[S]
constructed by the usual iteration, i.e., following the usual proof
of the consistency of PFA, but using only those partial orders that
preserve S [25]7

We can answer the first question negatively; our particular answer,
however, requires the second alternative for the second question. The pre-
liminary forcing in [21]—adding AT Cohen subsets of A for every regular
A > a supercompact k—was done so as to assure we could get full collec-
tionwise Hausdorffness from the N;-collectionwise Hausdorffness provided
by the Souslin tree forcing. An old consistency result of Saharon Shelah
[28] recast as a proof from a reflection axiom (see [13], [8], [14]) tells us that
under such an axiom, locally separable, first countable, N;-collectionwise
Hausdorff spaces are collectionwise Hausdorff. However, such reflection
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axioms do not follow from PFA(S)[S], but require a stronger principle
holding in the usual iteration model for PFA(S)[S]. Now for the details.

First of all, the relevance of “local separability” is found in the following
lemma.

Lemma 3.1. If every first countable, hereditarily Lindeldf, reqular space
is hereditarily separable, then locally compact, perfectly normal spaces are
locally separable.

Proof. To see this, note that locally compact, perfectly normal spaces are
first countable. |

Lemma 3.2 ([24]). MA,, (S)[S] implies every first countable, hereditarily
Lindeldf, reqular space is hereditarily separable.

MA,, (S)[S], of course, follows from PFA(S)[S]. There are two reflec-
tion axioms in the literature we want to focus on, but we will not actually
need their complicated definitions. “Axiom R’ was introduced by William
G. Fleissner [13], who proved it implied “locally separable, first countable,
N;-collectionwise Hausdorfl spaces are collectionwise Hausdorfl.” In [14],
the authors interpolated a new axiom, F'RP, obtaining the following.

Lemma 3.3 ([14], [15]). Aziom R implies FRP, which implies every
locally separable, first countable, W1 -collectionwise Hausdorff space is col-
lectionwise Hausdorff.

Definition 3.4 ([5]). MA,,, (countably closed, ) is the assertion that if
P is a countably closed partial order, D is a family of at most N; dense
subsets of P, and {S, : @ < k} is a family of cardinality x of P-terms,
each forced by every condition in P to denote a stationary subset of wq,
then there is a D-generic filter G on P so that for every a < k, S, (G) is
stationary, where

S, (G)={B<w :(FpeGplebl,}.

MA,,, (proper, k) is defined analogously. James E. Baumgartner [4] de-
notes MA_, (proper, ;) by PFAT; some authors use PFA*™ for “MA,,
(proper, N;)” and “PFAT” for “MA,, (proper, 1).” We shall use Baum-
gartner’s notation.

The following lemmas are known.

Lemma 3.5 ([4]). PFAT holds in the usual iteration model for PFA.
Lemma 3.6 ([5]). MA,,, (countably closed, 1) implies Aziom R.

Since countably closed partial orders preserve Souslin trees, we see that
MA,,, (countably closed, 1)(S) also implies Axiom R, and so does PFAT
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as well. It is not known whether MA,, (proper, 1)(S)[S] implies Axiom
R, but PFAT(S9)[S] implies Axiom R [22].

For FRP, there is a less specialized result.

Lemma 3.7 ([14]). FRP is preserved by countable chain condition forc-
mng.

Corollary 3.8. MA,,, (countably closed, 1) (S)[S] implies FRP.
We cannot, however, drop the one remaining stationary set.

Theorem 3.9. PFA(S)[S] does not imply first countable, locally separable,
N1 -collectionwise Hausdorff spaces are collectionwise Hausdorff.

Proof. Robert E. Beaudoin [5, p. 217] notes that he and Magidor have
independently shown that PFA is consistent with the existence of a non-
reflecting stationary E C {o < wy : ¢f (o) = w}. It is well known that
such a set yields a ladder system space which is first countable, locally
separable, Nj-collectionwise Hausdorff but not collectionwise Hausdorff
(see [11]). Thus, it remains only to show that such a space is preserved
by the adjunction of a Souslin tree. The first two properties are “basis
properties” and are clearly preserved. For the space to become collection-
wise Hausdorfl, the stationarity of F would have to be destroyed, which
countable chain condition forcing cannot do. It remains to show that
N;-collectionwise Hausdorffness is preserved. The reason is that, by a
standard argument, every subset Y of size N; of a ground model set X
in a c.c.c. extension is included in a ground model subset Z of X of size
N;. The ground model separation of Z then restricts to a separation of
Y. |

Note, however, that we have not proved that PFA(S)[S] does not imply
locally compact, perfectly normal spaces are collectionwise Hausdorff. We
conjecture that this can be accomplished by proving that a finite condition
variant of the partial order which Shelah uses in [28] to force the ladder
system space mentioned above to be normal is proper and preserves S.
Ladder system spaces are locally compact Moore spaces and hence have
closed sets GG, so that would suffice.

In addition to needing that first countable, hereditarily Lindelof, regu-
lar spaces are hereditarily separable, and that locally compact, perfectly
normal spaces are collectionwise Hausdorff, the proof in [21] of the con-
sistency of locally compact, perfectly normal spaces being paracompact
needed the following lemma.

Lemma 3.10 ([10], [37]). PFA(S)[S] implies ).
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Definition 3.11. Balogh’s Y, is the assertion that if Y is a subset of size
N; of a compact, countably tight space X, and there is a family V of ¥;
open sets covering Y such that for every V' € V there is an open Uy C X
such that V C Uy and Uy NY is countable, then Y is o-discrete.

The status of Todorcevié¢’s proof is as follows. Todordevi¢ announced
the result in a seminar in Toronto in 2002 and in a lecture in Prague in
2006. He sketched the proof of the hardest part—that PFA(S)[S] implies
that compact, countably tight spaces are sequential—in his lectures in
Erice in 2008 [36]. He sketched a proof of a weaker version of Balogh’s
3" restricted to compact sequential spaces in notes in 2002 [35]. A proof
of a stronger version of Y that avoids the necessity for proving compact
countably tight spaces are sequential now exists in the union of [37] and
[10].

4. MA,, (S)[S] DoEs NoT IMPLY THERE ARE
No FirsT COUNTABLE S-SPACES

The following material deals with a question analogous to what we
have considered so far: Does a result proved to hold in a particular model
of MA,,, (5)[S] actually follow from MA,,, (S)[S]?

A key unresolved question is, Does PFA(S)[S] imply there are no first
countable S-spaces? I had incorrectly claimed this at a couple of confer-
ences in 2006. If this is true, it would follow that PFA(S)[S] implies there
are no first countable, hereditarily normal, separable Dowker spaces. This
is because of the following proposition.

Proposition 4.1 ([21]). MA,,,(S)[S] implies first countable hereditarily
normal spaces satisfying the countable chain condition are hereditarily
separable.

We shall now show that MA,,,(S)[S] is not sufficient to prove there are
no first countable S-spaces.

Theorem 4.2. Assume 28t = Ry. There is a c.c.c. poset Q of size Ny
such that after forcing with @ and then any c.c.c. poset P, there is a
first countable, perfectly normal, hereditarily separable space which is not
Lindeldf.

This does it, since one can start with, for example, L, and, in the @
extension, let P = P; % (Pg x S), where P; is the forcing for adding a
Cohen real, which forces a coherent Souslin tree S [33], and P, forces
MA,,,(S). Since P, preserves S, P, x S and hence P is c.c.c. In order to
force MA,,(S), we need 2%t < R,, but @ * P; preserves this.

To see that Theorem 4.2 holds, we need to assemble others’ results.
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Lemma 4.3 ([20]). MA,,(S)[S] implies b > ¥y.

Lemma 4.4 ([7]). b > Ry implies that in a first countable regular space of
size Ny, two disjoint closed sets, one of which is countable, have disjoint
open sets around them.

Lemma 4.5 ([29]). 2% = Xy implies there is a c.c.c. poset Q of size
Ny such that after forcing with Q@ and then any c.c.c. poset P, there is a
first countable 0-dimensional space of size Ny in which every open set is
countable or cocountable.

It just remains to show that the space of L. Soukup has the desired
properties in our model. He notes it is hereditarily separable but not
Lindel6f [29]; by Lemma 4.4, it is hereditarily normal. Without loss of
generality, by passing to a subspace if necessary, we may assume the space
is locally countable. But as Judy Roitman notes [27, p. 314], “a countable
subset of a locally countable space is a GG5.” Since cocountable sets are
also Gy’s, we see that the space is perfectly normal.

5. A PROBLEM OF NYIKOS

Next, we deal with a tangentially related problem. In [26], Peter J.
Nyikos raises the question of whether there is a separable, hereditarily nor-
mal, locally compact space of cardinality N;. He observes that a model in
which there are no @-sets and no locally compact first countable S-spaces
would have no such space. In [9], such a model is produced. PFA(S)[S]
also implies these two assertions, so it also implies that there is no such
space. To see this, note that a (Q-set enables the construction of a locally
compact normal space which is not Rj-collectionwise Hausdorff, while }
implies there are no (locally) compact S-spaces.

6. SOME PROBLEMS

The referee has asked whether the Product Measure Extension Ax-
iom (PMEA) implies locally compact perfectly normal spaces are para-
compact, noting that PMEA implies locally compact normal metalin-
delof spaces are paracompact [6]. I do not know the answer to this.
However, the reason PMEA implies locally compact normal metalindelf
spaces are paracompact is simply that it implies normal spaces of char-
acter < 280 are collectionwise normal, whence one gets locally compact
normal spaces are Nj-collectionwise Hausdorff by the usual Watson re-
duction [38]. As noted earlier, that is enough to make locally compact
normal metalindel6f spaces paracompact. What one would need in addi-
tion to Wj-collectionwise Hausdorffness in order to make locally compact
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perfectly normal spaces paracompact is the non-existence of compact L-
spaces plus . It is not known if the former holds under PMEA, although
both it and PMEA will hold if one adds strongly compact many random
reals over a model of MA,,,. (The latter is a well-known result of Kunen
(see [12]), while the former is in [34].) The question of whether ) holds in
this model is a stronger version of the unsolved problem of whether there
are compact S-spaces in the model obtained by adjoining X5 random reals
to a model of MA,,,. For several years, this was the preferred approach
toward solving Katétov’s problem, before MA,, (5)[S] turned out to be
the way to go [24].

The referee also asked whether the example of U. Abraham and S.
Todor¢evic [1] of a first countable S-space indestructible under countable
chain condition forcing exists under MA,,, (S)[S]. Indeed, they start with
a model of GCH and do a countable chain condition iteration to construct
their example. One can then force with a countable chain condition poset
to get MA,,, (S)[S], so this gives another proof that MA,,, (S)[S] does not
imply there are no first countable S-spaces. I conjecture, however, that
PFA(S)[S] implies there are no S-spaces.
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