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RETRACTS AND NON-NORMALITY POINTS

ANDRZEJ SZYMANSKI

Abstract. We discuss the existence of non-normality points in
compact zero-dimensional F -spaces. We show that non-normality
points can be found inside some retracts of such spaces. We apply
our general results to find non-normality points of ω∗.

1. Introduction

A point p in a space X is called a non-normality point of X if the space
X is normal and the subspace X −{p} is not normal. A general question
asks to find non-normality points in non-metrizable compact spaces. Some
(partial) solutions to that problem have found applications in group the-
ory and functional analysis. Recently, Jun Terasawa [13] showed that any
point in the remainder of the Čech-Stone compactification of a metrizable
crowded space is a non-normality point of that compactification. (See [9],
[10], [12] for other related results.)

A particular problem of this sort is to determine non-normality points
of ω∗— the remainder of the Čech-Stone compactification of a countable
discrete space. The problem itself can be attributed to Leonard Gillman
and it was stated around 1960 (see [7] or [5]). Despite its basic significance
to understanding the topological structure of ω∗, not much has been eluci-
dated since the problem’s inception. We mean here the situation in ZFC,
for the situation, when ZFC is amended by additional consistent axioms,
has already been clarified. In 1972, Nancy M. Warren [14] proved, under
the Continuum Hypothesis (CH) that each point in ω∗ is a non-normality
point of ω∗. That was followed by other CH proofs (e.g. [11]) and then, in
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1990, Amer Bešlagić and Eric K. van Douwen [2] gave a Martin’s Axiom
proof.

In 1980, A. Błaszczyk and the author [3] showed in ZFC that if p is an
accumulation point of a countable discrete subset of ω∗, then p is a non-
normality point of ω∗. Friedrich Wehrung [15] utilized it in his solution to
a Goodearl problem from group theory. The aim of this note is to expand
that ZFC result to points that belong to special retracts of ω∗.

2. π−open retractions

All spaces considered in the paper are completely regular. A space is
crowded if it has no isolated points. A subset of a space is called clopen
if it is both open and closed. If X is a space, then βX is the Čech-
Stone compactification of the space X and the subspace X∗ = βX − X
is the remainder of βX. ω denotes the first infinite ordinal as well as the
countable discrete space. A space X is an F -space if each cozero subset
of X is C∗-embedded (see [8]).

Let us recall two easy and known facts.
• If K and L are two σ-compact subsets in an F -space X such that

clK ∩ L = ∅ = K∩ clL, then clK∩ clL = ∅.
• If E ⊆ F ⊆ X, where X is a zero-dimensional space and E is a

clopen and compact subset in the subspace F , then there exists
a clopen set U in X such that U ∩ F = E. In particular, if ∅ ̸=
E ⊆ F ⊆ ω∗, where E is a clopen set in a closed subspace F , then
there exists an infinite subset A of ω such that clβωA ∩ F = E.

A function r : X → X is called a retraction on X if r is a continuous
function and r (x) = x for each x ∈ r(X).

A subspace F of X is called a retract of X if there exists a retraction
r on X such that r(X) = F .

A function f : X → X is called a π-open function if, for each non-
empty open subset W of f (X) and for each open set V in X that contains
f (X), there exists an open set G in X such that clG ⊆ f−1 (W ) ∩ V and
clG ∩ f (X) = ∅, and intf(X)f(G) ̸= ∅.

Theorem 2.1. Let X be a compact zero-dimensional F-space and let
r : X → X be a retraction. If r is a π-open function, Y = r(X) is a
ccc subspace of X, and p is a non-isolated point of Y , then p is a non-
normality point of X.

Proof. We are going to show that Y −{p} and r−1(p)−{p} witness that
the space X − {p} is not normal. Clearly, the two sets are closed and
disjoint in X − {p}. We have to show that they cannot be separated by
open sets.
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Towards this goal, fix an open set V in X that contains Y − {p}.
Now, consider all the sets Z made up of triplets (W,G,H), satisfying the
following conditions.

(1) W is a clopen and compact set in Y − {p}; G and H are disjoint
clopen sets in X.

(2) If (W1, G1, H1) and (W2, G2, H2) are distinct elements of Z, then
W1 ∩W2 = ∅.

(3) G ∪H ⊆ V , H ∩ Y = W , G ∩ Y = ∅, and r (G) = W = r (H).

By the Kuratowski-Zorn lemma, among all such sets Z, there exists a
maximal (with respect to inclusion) one, Zmax. Let us show that D =∪
{W : (W,G,H) ∈ Zmax} is dense in the subspace Y .
Suppose not. Let K be a non-empty clopen and compact set in Y −{p}

such that K ∩D = ∅. Since r is π-open, we can find a clopen set L in X
such that L ⊆ r−1 (K)∩ V , L∩ Y = ∅, and intY r (L) ̸= ∅. Finally, let M
be a clopen set in X such that M ⊆ V , ∅ ̸= M ∩ Y ⊆ K ∩ intY r (L), and
M ∩ L = ∅.

Consider the following triple (W0, G0,H0), where W0 = M ∩ Y , G0 =
r−1 (W0) ∩ L, and H0 = r−1 (W0) ∩M . If we show that the set Zmax ∪
{(W0, G0, H0)} satisfies (1), (2), and (3) , we will get a contradiction with
maximality of the set Zmax which, in turn, will prove the density of D in
Y .

The first two conditions are obviously satisfied. Let us verify the third.
G0 ∪H0 ⊆ L ∪M ⊆ V ;
H0 ∩ Y = r−1 (W0) ∩ M ∩ Y = r−1 (W0) ∩ W0 = W0 (since W0 ⊆

r−1 (W0));
G0 ∩ Y = ∅ because G0 ⊆ L;
r (G0) = r

(
r−1 (W0) ∩ L

)
= W0 ∩ r (L) = M ∩ Y ∩ r (L) = M ∩ Y =

W0 and
r (H0) = r

(
r−1 (W0) ∩M

)
= W0 ∩ r (M) = W0 (since W0 ⊆ r (M));

(3) has been checked.
We can now conclude the proof of our theorem.
Set G̃ =

∪
{G : (W,G,H) ∈ Zmax} and H̃ =

∪
{H : (W,G,H) ∈ Zmax}.

Since the cellularity of Y is countable, it follows from (1) and (2) that G̃
and H̃ are disjoint open σ-compact subsets of X. Consequently,
clG̃∩ clH̃ = ∅. Since (by (3)) D ⊆ H̃, p ∈ Y ⊆ clH̃, and therefore,
p /∈ clG̃. Since (by (3) again) D ⊆ r

(
G̃
)
, p ∈ Y ⊆ r

(
clG̃

)
, and there-

fore, clG̃ ∩
(
r−1 (p)− {p}

)
̸= ∅. It implies that if U is any open subset of

X such that r−1 (p)−{p} ⊆ U , then U ∩ G̃ ̸= ∅. Since G̃ ⊆ V , U∩V ̸= ∅,
which proves that Y −{p} and r−1(p)−{p} cannot be separated by open
sets in the space X − {p}. �
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The next proposition indicates a possible scope for π-open retractions.

Proposition 2.2. Let X be a compact zero-dimensional F-space and let
r : X → X be a retraction. If Y = r(X) is a nowhere dense subspace of
X and the π-weight of Y is countable, then r is a π-open function.

Proof. Assume otherwise and let W be a non-empty open subset of Y
and let V be an open neighborhood of Y that demonstrates it. Pick a
clopen set C in X such that C ⊆ r−1 (W ) ∩ V and ∅ ̸= C ∩ Y = r(C).
Let {Un : n ∈ ω} be an enumeration of all the elements of a π-base in Y
that are contained in C ∩ Y. By induction, we can define two sequences
{Kn : n ∈ ω} and {Ln : n ∈ ω} possessing the following properties.

(1) Each of the sets Kn and Lm is a clopen set in X and is contained
in C.

(2) Kn ∩ Lm = ∅, for each n,m ∈ ω.
(3) Kn ∩ Y = ∅ = Lm ∩ Y , for each n,m ∈ ω.
(4) r (Kn) ∩ Un ̸= ∅ ̸= r (Ln) ∩ Un, for each n ∈ ω.

By (2), there exists a clopen set M in X such that M ⊆ C,
∪
{Kn :

n ∈ ω} ⊆ M , and M ∩ (
∪
{Ln : n ∈ ω}) = ∅. By (4), r (M) = C ∩

Y = r (C −M). Since M and C − M are open subsets of C such that
intY r (M) ̸= ∅ ̸= intY r (C −M), both must intersect Y , i.e., M ∩ Y ̸=
∅ ̸= (C −M)∩Y. Consider the set G = (C −M)∩ r−1 (C ∩M). Clearly,
G is a clopen set in X contained in C (and hence, G ⊆ r−1 (W ) ∩ V ).
Let us show that G ∩ Y = ∅. For if y ∈ Y ∩ (C −M) ∩ r−1 (C ∩M),
then y = r (y) ∈ (C −M) ∩ (C ∩M), which is impossible. Finally, let us
show that r (G) = Y ∩M . Indeed, r (G) = r

(
(C −M) ∩ r−1 (C ∩M)

)
=

r (C −M)∩C ∩M = C ∩ Y ∩M = Y ∩M (because C ∩ Y = r (C −M)
and M ⊆ C). Since Y ∩M is a non-empty open set in the subspace Y ,
we get a contradiction. �

3. π-open retractions on ω∗

It is folklore that if Y is a closed subspace of ω∗ and the π-weight of
Y is countable, then Y is a retract of βω. Although a concrete proof of
this fact is not that easy to come by (at least, in topological literature),
one can get one, for example, by adopting and modifying the proof of
Theorem 2.4 from [4]. We would like to present yet another proof. Being
motivated by the results of Alan Dow’s paper [6], we state and prove a
theorem that is going to be a reinforcement of that folklore result.

Following Dow [6], a retraction r from βω onto F will be called a 1-to-
1 retraction if r|ω is 1-to-1. A space Y will be called an absolute 1-to-1
retract of βω if each homeomorphic copy of F of Y in βω is a 1-to-1
retract.
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Theorem 3.1. If F is a closed subspace of ω∗ and the π-weight of F is
countable, then there is a retraction from βω onto F . If, in addition, F
is crowded, then there is a 1-to-1 retraction from βω onto F .

Proof. Let {Gn : n = 1, 2, ...} be a π-base in F consisting of clopen subsets
of F . For each n = 1, 2, ..., fix an infinite subset An of ω such that
F ∩ clAn = Gn.

Let 2<ω denote the set of all finite sequences into {0, 1}. Set B∅ = ω.
Suppose that s ∈ 2<ω is a sequence of length n and that Bs ⊆ ω has
already been defined.

If Gn+1 ∩ clBs = ∅, we set Bsa0 = Bs and Bsa1 = ∅.
If clBs ∩ F ⊆ Gn+1, we set Bsa0 = ∅ and Bsa1 = Bs.
If Gn+1 ∩ clBs ̸= ∅ and clBs ∩ F * Gn+1, we set Bsa0 = Bs − An+1

and Bsa1 = Bs ∩An+1.
From the above construction, it follows that
(1) Bsa0 ∪Bsa1 = Bs and Bsa0 ∩Bsa1 = ∅ for each s ∈ 2<ω;
(2) Bs ⊆ Bt for each s, t ∈ 2<ω such that s ⊆ t;
(3) Bs ∩Bt = ∅ for each s, t ∈ 2<ω such that s * t and t * s;
(4) clBs ∩ F ̸= ∅ for each s ∈ 2<ω such that Bs ̸= ∅;
(5) {clBs ∩ F : s ∈ 2<ω} is a π-base in F .

We proceed to defining a retraction r. The values of r on ω are set up
in the following way.

Let m ∈ ω. There exists φ ∈ 2ω such that m ∈ Bφ|n for each n ∈ ω.
From (2) and (4), Em = F ∩

∩{
clBφ|n : n ∈ ω

}
̸= ∅. We set r (m) to be

any point of the set Em. It follows that
(6) r (Bs) ⊆ clBs ∩ F for each s ∈ 2<ω such that Bs ̸= ∅.

Let r̂ : βω → F be the continuous extension of r to βω. We claim that r̂
is a retraction.

Otherwise, there is x ∈ F such that r̂ (x) ̸= x. Choose an open (in F )
neighborhood U of x such that U ∩ r̂ (U) = ∅. By (5), we can find an
s ∈ 2<ω such that ∅ ̸= clBs ∩ F ⊆ U . By (6), r̂ (clBs) ⊆ clBs ∩ F . But
then ∅ ̸= r̂ (clBs ∩ F ) ⊆ U ∩ r̂ (U); a contradiction.

To get a 1-to-1 retraction from βω onto F in case F is crowded, we
need to make slight modifications in the above construction.

We begin by enumerating the set of all two element subsets of ω, say
[ω]

2
= {ai : i = 1, 2, 3, ...}. The only variation in defining the sets Bt ⊆ ω,

t ∈ 2<ω, will occur when, say, s ∈ 2<ω is a sequence of length n and an ⊆
Bs. In this case, Bsa0 and Bsa1 are to satisfy the following conditions.

(1′) Bsa0 ∪ Bsa1 = Bs and Bsa0 ∩ Bsa1 = ∅.
(2′) clBsa0 ∩ F ̸= ∅ ̸= Bsa1 ∩ F .
(3′) |Bsa0 ∩ an| = 1 = |Bsa1 ∩ an|.



200 A. SZYMANSKI

(4′) If Gn+1 ∩ clBs ̸= ∅ and clBs ∩F * Gn+1, then |Bsa0 ∩ An+1| <
ω and |An+1 −Bsa1| < ω.

The fact that F is crowded enables to do that. Because of (3′), r̂ is
going to be a 1-to-1 retraction from βω onto F . �
Remark 3.2. Let us observe that if Y is a compact extremally discon-
nected crowded space of countable π-weight, then Y is an absolute 1-to-1
retract of βω. Indeed, if F is a homeomorphic copy of Y in βω, then
F ⊆ ω∗ and Theorem 3.1 applies. On the other hand, any non-trivial
(i.e., possible to embed into βω) absolute 1-to-1 retract of βω is a crowded
space.

Combining Theorem 3.1 with Proposition 2.2, we get the following.

Corollary 3.3. If F is a closed subspace of ω∗ and the π-weight of F is
countable, then there is a π-open retraction from ω∗ onto F .

The scope of possible π-open retractions on βω or even on ω∗ cannot
be widened to, e.g., separable subspaces of ω∗.

Example 3.4. In [6], Dow has shown the existence of a crowded separable
subspace E of ω∗ and a 1-to-1 retraction r from βω onto E such that∣∣r−1 (x)

∣∣ ≤ 2 for each x ∈ E. Neither the retraction r itself nor its
restriction to ω∗ can be π-open. For, since r is a ≤ 2-to-1 retraction on
ω∗, the restriction of r to ω∗ −E is 1-to-1. Hence, if U is a clopen set in
ω∗ and U∩ ω∗ = ∅, then r|U is a homeomorphism between U and r (U).
Thus, r (U) has to be a nowhere dense set in E.

Corollary 3.5. If F is a closed subspace of ω∗ and the π-weight of F is
countable, then every non-isolated point of F is a non-normality point of
ω∗.

Proof. Let p be a non-isolated point of F . By Corollary 3.3, there is a
π-open retraction from ω∗ onto F . Hence, by Theorem 2.1, p is a non-
normality point of ω∗. �
Remark 3.6. If D is a countable discrete subset of ω∗ and p ∈ clD−D,
then F = clD is a closed subspace of ω∗, the π-weight of F is countable,
and p is a non-isolated point of F . By Corollary 3.3, p is a non-normality
point of ω∗. Also, by a result of Bohuslav Balcar and Petr Simon [1], any
compact extremally disconnected crowded space of countable π-weight
contains a point not accessible by countable discrete subsets. Hence, our
Corollary 3.3 constitutes a proper generalization of the result of [3].

Acknowledgment. Thanks to the anonymous referee for the valuable
suggestions and corrections.
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