
Volume 40, 2012
Pages 283-288

http://topology.auburn.edu/tp/

Connectedness in Spaces of
Pseudoquotients

by

Piotr Mikusiński and Steven A. Purtee

Electronically published on January 24, 2012

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 40 (2012)
Pages 283-288

http://topology.auburn.edu/tp/

E-Published on January 24, 2012

CONNECTEDNESS IN SPACES OF PSEUDOQUOTIENTS

PIOTR MIKUSIŃSKI AND STEVEN A. PURTEE

Abstract. A space of pseudoquotients, denoted by B(X,S), is
defined as equivalence classes of pairs (x, f), where x is an element
of a non-empty set X, f is an element of S, a commutative semi-
group of injective maps from X to X, and (x, f) ∼ (y, g) if gx = fy.
A topology on X induces a topology on B(X,S). We show that
connectedness of X implies connectedness of B(X,S).

1. Introduction

The construction of pseudoquotients (generalized quotients) is a gen-
eral abstract construction that allows us to build extensions of spaces
while preserving their basic structure.

Let X be a set and let S be an abelian semigroup of injections acting
on X. In X × S, we introduce the following relation

(x, f) ∼ (y, g) if gx = fy.

Using the fact that elements of S are injective maps and that they com-
mute, it is easy to show that this is an equivalence relation. Equivalence
classes in X × S will be called pseudoquotients. The space of all pseudo-
quotients will be denoted by B(X,S), or simply B. The equivalence class
[(x, f)] will be denoted by x

f . Thus, xf = y
g means (x, f) ∼ (y, g).

In this note, we assume that X is a topological space and that S is an
abelian semigroup of continuous injections acting on X. Moreover, S is
equipped with its own topology such that the map g 7→ fg is continuous
for every f ∈ S. Note that this condition is always satisfied if the topology
of S is discrete. Topologies on X and S induce a natural topology on B;
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we first define the product topology on X × S and then the quotient
topology in B.

There is growing evidence that this method of constructing extensions
of spaces is a useful tool.

In [1], a space of pseudoquotients is constructed which allows us to
generalize Bochner’s theorem so that all Radon measures on a locally
compact group are in a one-to-one correspondence with elements of that
space of pseudoquotients. In this case, X is the cone of positive definite
functions on a locally compact group G with the topology of uniform
convergence on compact subsets of G and

S =
{
φ ∈ L1(G) : φ̂(ξ) > 0 for all ξ ∈ Ĝ

}
,

(where Ĝ is the dual group and φ̂ is the Fourier transform of φ) with the
discrete topology.

The space of pseudoquotients constructed in [2] is isomorphic to the
space of tempered distributions on RN . In this case, X is the space of
complex valued functions of the form f = pg, where p is a polynomial
and g ∈ L2(RN ), with the inductive limit topology induced by all maps
Λp : L2 → X, where p is a polynomial and Λpf = pf . The semigroup S
is generated by the function

E(x) = e−(|x1|+|x2|+···+|xN |),

that is,
S = {En : n = 1, 2, 3, . . . },

where En denotes the n-fold convolution E ∗ · · · ∗ E. Elements of S act
on X by convolution. The topology of S is the discrete topology.

In our opinion, there is value in studying general topological properties
of pseudoquotients. Some questions concerning the topological structure
of pseudoquotients have been studied in [5], [3], [4], and [6]. In [5], the
question of whether separation properties of X are inherited by B is con-
sidered. In particular, it is shown that, if X has a Hausdorff topology, the
topology of B need not be Hausdorff. Conditions under which it happens
are discussed. In [3] and [4], pseudoquotients are studied in the framework
of the category of convergence spaces.

In this short note, we show that various types of connectedness are
preserved in extensions to pseudoquotients.

2. Preliminaries

We start with some simple but useful observations:
(1) (x, f) ∼ (gx, gf) for all g ∈ S.
(2) If (x, f) ∼ (y, f) for some f ∈ S, then x = y.
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(3) For all f, g ∈ S, (fx, f) ∼ (gx, g).
(4) (x, f) ∼ (y, g) if and only if (x, hf) ∼ (y, hg) for every h ∈ S if

and only if (x, hf) ∼ (y, hg) for some h ∈ S.
Note that, by (3), we may consider X as a subset of B by identifying

x ∈ X with gx
g for any f ∈ S.

Proposition 2.1. The mapping g̃ : B → B given by

g̃

(
x

f

)
=
gx

f

is a well-defined homeomorphism for every g ∈ S.

Proof. It is easy to check that g̃ is well defined and that it is injective.
Since, for any g ∈ S and any x

f ∈ B,

g̃

(
x

gf

)
=
gx

gf
=
x

f
,

g̃ is surjective and

g̃−1

(
x

f

)
=

x

gf
.

For g ∈ S, define φg : X × S → X × S by φg(x, f) = (gx, f). Consider
the diagram

X × S
φg //

q

��

X × S

q

��
B(X,S)

g̃
// B(X,S)

where q is the quotient map q(x, f) = x
f . Note that this diagram com-

mutes and q ◦ φg is continuous. By a standard result (see, for example,
Theorem 22.2 in [7]), g̃ is continuous.

Now, for g ∈ S, define ψg : X × S → X × S by ψg(x, f) = (x, fg).
Then the diagram

X × S
ψg //

q

��

X × S

q

��
B(X,S)

g̃−1

// B(X,S)

commutes and q ◦ψg is continuous. Consequently, g̃−1 is continuous. �

We will not distinguish between g ∈ S and its extension g̃, but will use
g in both cases.
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Corollary 2.2. The semigroup S can be extended to a group Ŝ of home-
omorphisms on B.

The following proposition is often useful in constructing examples of
spaces of pseudoquotients with desired properties.

Proposition 2.3. Let X be a topological space and let f : X → X be a
homeomorphism. Let Y be an open subset of X such that f(Y ) ⊂ Y and

(2.1) X =

∞∪
n=1

f−n(Y ) .

If S = {fn : n ∈ N}, then X and B(Y, S) are homeomorphic.

Proof. We will show that the map ι : B(Y, S) → X, defined by

ι

(
y

fn

)
= f−ny,

is a homeomorphism. First, note that y
fn = z

fm implies fmy = fnz and
consequently, f−ny = f−mz, which shows that ι is well defined. In a
similar way we can show that ι is injective. Surjectivity follows from
(2.1).

Now consider the diagram

Y × S

q

��

φ

##G
GG

GG
GG

GG

B(Y, S)
ι

// X,

where the function φ : X × S → X is defined by φ(y, fn) = f−ny. Since
the diagram commutes and φ is continuous, ι is continuous.

If U ∈ B(Y, S) is open, then

U = q

( ∞∪
n=1

Un × {fn}

)

for some open Un ⊂ Y . Hence,

ι(U) = φ

( ∞∪
n=1

Un × {fn}

)
=

∞∪
n=1

f−nUn,

which shows that ι is an open map. �
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3. Main Results

In this section we show that the extension to B preserves path connect-
edness, connectedness, local connectedness, and local path connectedness.

Theorem 3.1. If X is path connected, then B is path connected.

Proof. Let A,B ∈ B. Without loss of generality, we can assume that
A = x

f and B = y
f . Since X is path connected, there exists a path

γ : [0, 1] → X such that γ(0) = x and γ(1) = y. Define α : [0, 1] → X ×S
by α(t) = (γ(t), f). Then α is a path in X × S with α(0) = (x, f) and
α(1) = (y, f). Hence, q ◦ α is a path in B from A to B. �

Theorem 3.2. If X is connected, then B is connected.

Proof. Suppose B is not connected and let U, V ⊂ B be a separation of
B. Then q−1(U) and q−1(V ) form a separation of X × S.

If there exists an f ∈ S such that Uf = (X × {f})
∩
q−1(U) ̸= ∅ and

Vf = (X × {f})
∩
q−1(V ) ̸= ∅, then Uf and Vf form a separation of

X×{f} and thus, ΠXUf and ΠXVf form a separation of X (ΠX denotes
the projection on X).

Now suppose that there are f, g ∈ S such that X × {f} ⊂ q−1(U) and
X×{g} ⊂ q−1(V ). Then x

f ∈ U and x
g ∈ V for all x ∈ X. Hence, gxfg ∈ U

and fx
fg ∈ V . This implies (X×{fg})

∩
q−1(U), and (X×{fg})

∩
q−1(V )

is a separation of X×{fg}. Then ΠX(X×{fg})
∩
q−1(U), and ΠX(X×

{fg})
∩
q−1(V ) is a separation of X. �

Let X = R with its standard topology, f(x) = x
3 , and Y = (−1, 1) ∪

(2, 3). If S = {fn : n ∈ N}, then B(Y, S) is homeomorphic to R by
Proposition 2.3. This simple example shows that B(Y, S) can be connected
(or path connected) even if Y is not.

We assume that the topology of S is discrete in the next two theorems.

Theorem 3.3. If X is locally connected, then B is locally connected.

Proof. Since every quotient of a locally connected space is locally con-
nected (see, for example, Theorem 27.12 in [8]), it suffices to show that
X × S is locally connected. If the topology of S is discrete, then every
(x, g) ∈ X×S has a neighborhood of the form U×{g}. Since X is locally
connected, U can be chosen to be connected. �

In the proof of the next theorem, we use the following well-known
property of locally path connected spaces (see, for example, Theorem
25.4 in [7]): A space Y is locally path connected if and only if for every
open U ⊂ Y , each path component of U is open in Y .
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Theorem 3.4. If X is locally path connected, then B is locally path con-
nected.

Proof. Let U be an open subset of B and let

q−1(U) =

∞∪
n=1

Un × {fn},

where each Un is open in X. Let V be a path component of U . We need
to show that V is open in B or, equivalently, that q−1(V ) is open in X×S.
If

q−1(V ) =
∞∪
n=1

Vn × {fn},

then each Vn is the union of path components of Un. But each Un is open
in X and X is locally path connected, so Vn must open in X. Hence,
q−1(V ) is open in X × S. �
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