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ELEMENTARY SUBMODEL ARGUMENTS
IN BALOGH’S DOWKER SPACES

HARUTO OHTA AND TERUYUKI YORIOKA

Abstract. We prove a combinatorial lemma which enables us to
prove that Balogh’s natural Dowker space is not countably para-
compact without using elementary submodels.

1. Introduction

A space is called a Dowker space if it is normal but not countably
paracompact. Zoltan T. Balogh [1], [2], [3], [4], [5] constructed a variety
of Dowker spaces of size 2ℵ0 in ZFC. They have similar constructions
except for the first one in [1], and, as he stated in [4], it is relatively easy
to read the construction (from which the normality directly follows). The
hard part is to show that the space is not countably paracompact. Balogh
carries it out by some diagonal arguments and a reflection lemma through
countable elementary submodels. The purpose of this note is to consider
how we can prove it without going through elementary submodels. In
particular, we prove Lemma 1.1 below, which enables us to prove that a
Dowker space described in [5] is not countably paracompact without using
elementary submodels. The space in [5] is the most basic and plain one
(i.e., without any additional properties) among Balogh’s Dowker spaces
and is entitled a natural Dowker space. We believe that mild modifications
of Lemma 1.1 are available for other Dowker spaces in [2], [3], [4].

2010 Mathematics Subject Classification. 54D15, 54D20, 03E05.
Key words and phrases. ∆-system, Dowker space, elementary submodel.
The first author was partially supported by KAKENHI 2011 (No. 22540123).
The second author was partially supported by KAKENHI 2011 (No. 22540124).
c⃝2012 Topology Proceedings.

289



290 H. OHTA AND T. YORIOKA

Lemma 1.1. Let κ be an infinite cardinal with cf(κ) > ω, let {c(x) : x ∈
κ×ω} be a set of finite functions into 2 = {0, 1}, and let H be a countable
set. Then, there exist δ ∈ κ and a function φ such that

(1) dom(φ) is a countable subset of δ × ω;
(2) for each x ∈ dom(φ), φ(x) ⊆ dom(c(x)); and
(3) for each β ∈ κ\ δ and each n ∈ ω, if we put y = ⟨β, n⟩, then there

exists x = ⟨α, n⟩ ∈ dom(φ) such that dom(c(x)) ∩ dom(c(y)) =
φ(x) and c(x)|φ(x) = c(y)|φ(x).

Moreover, if we put M = (
∪
ran(φ)) ∪H, then

(4) for each x ∈ dom(φ), dom(c(x)) ∩M = φ(x), and
(5) {dom(c(x)) \M : x ∈ dom(φ)} is pairwise disjoint.

Lemma 1.1 will be proved in section 2. In section 3, we sketch the
definition of a natural Dowker space in [5] and, in section 4, we apply
Lemma 1.1 to prove that the space is not countably paracompact.

As usual, a cardinal is identified with the initial ordinal, and an ordinal
is the set of smaller ordinals. For a set A and a cardinal κ, let [A]κ = {B :
B ⊆ A, |B| = κ} and [A]<κ = {B : B ⊆ A, |B| < κ}. For a function f ,
dom(f) and ran(f) denote the domain and the range of f , respectively,
and f |A stands for the restriction of f to a set A. By a finite function,
we mean a function defined on a finite set. Other terms and notation will
be used as in [6].

2. Proof of Lemma 1.1

Recall that a family {aλ : λ ∈ Λ} of sets is a ∆-system if there is a fixed
set r, called the root of the ∆-system, such that aλ ∩ aµ = r whenever
λ, µ ∈ Λ and λ ̸= µ. It is known ([6, Ch. 2, Theorem 1.5]) that if each aλ
is finite and Λ is uncountable, then there is an uncountable Λ′ ⊆ Λ such
that {aλ : λ ∈ Λ′} forms a ∆-system.

Proof of Lemma 1.1. For a while, we fix n ∈ ω. By induction on ν ∈
ω1 + 1, we define subsets Dn

ν , E
n
ν of κ, a finite set Rn

ν , and a function
cnν : Rn

ν → 2 as follows. If the set Fn
ν = κ \

∪
µ<ν E

n
µ is uncountable,

then there exist an uncountable Dn
ν ⊆ Fn

ν , a finite set Rn
ν , and a function

cnν : Rn
ν → 2 such that {dom(c(α, n)) : α ∈ Dn

ν } forms a ∆-system with
root Rn

ν ,

(2.1) (∀α ∈ Dn
ν )(c(α, n)|Rn

ν = cnν ),

and for any set R, if |R| < |Rn
ν |, then there is no uncountable D ⊆ Fn

ν

such that {dom(c(α, n)) : α ∈ D} forms a ∆-system with root R. Then
we define

(2.2) En
ν = {α ∈ Fn

ν : dom(c(α, n)) ⊇ Rn
ν and c(α, n)|Rn

ν = cnν}.
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We note that Dn
ν ⊆ En

ν ⊆ Fn
ν and

(2.3) (∀µ < ν)(⟨Rn
ν , c

n
ν ⟩ ̸= ⟨Rn

µ, c
n
µ⟩ and |Rn

µ| ≤ |Rn
ν |).

Because, if for some µ < ν, either ⟨Rn
ν , c

n
ν ⟩ = ⟨Rn

µ, c
n
µ⟩ or |Rn

µ| > |Rn
ν |,

then the former equality implies Dn
ν ⊆ En

µ , which contradicts the fact
that Dn

ν ∩ En
µ = ∅, and the latter inequality contradicts the minimality

of |Rn
µ| since Dn

ν ⊆ Fn
µ . On the other hand, if either Fn

ν is countable or
ν = ω1, then we stop the induction and define ξ(n) = ν.

Now, we show that ξ(n) < ω1. Suppose on the contrary that ξ(n) = ω1.
Then by induction on ν ∈ ω1, we can choose αν ∈ Dn

ν such that

(2.4) {dom(c(αν , n)) \Rn
ν : ν ∈ ω1} is pairwise disjoint.

This can be done because for each ν ∈ ω1, {dom(c(α, n)) \Rn
ν : α ∈ Dn

ν }
is uncountable and consists of pairwise disjoint finite sets. Note that
the sequence ⟨|Rn

ν | : ν ∈ ω1⟩ is constant on ω1 \ µ for some µ < ω1.
Hence, there is an uncountable set Γ ⊆ ω1 and a finite set R such that
{dom(c(αν , n)) : ν ∈ Γ} forms a ∆-system with root R and

(2.5) (∀µ, ν ∈ Γ)(c(αµ, n)|R = c(αν , n)|R and |Rn
µ| = |Rn

ν |).
Fix λ = minΓ. Then, by (2.4), we can find µ0, µ1 ∈ Γ \ {λ} such that
µ0 ̸= µ1, and for each i < 2,

dom(c(αλ, n)) ∩ (dom(c(αµi , n)) \Rn
µi
) = ∅,

which implies that R ⊆ Rn
µi

, since R = dom(c(αλ, n)) ∩ dom(c(αµi , n)).
By the second equality of (2.5) and the minimality of |Rn

λ|, |Rn
µi
| = |Rn

λ| ≤
|R| for each i < 2. Hence, Rn

µ0
= R = Rn

µ1
. By the first equality of (2.5),

cnµ0
= c(αµ0 , n)|Rn

µ0
= c(αµ0 , n)|R
= c(αµ1 , n)|R = c(αµ1 , n)|Rn

µ1
= cnµ1

.

Hence, ⟨Rn
µ0
, cnµ0

⟩ = ⟨Rn
µ1
, cnµ1

⟩, which contradicts (2.3).
Put M =

∪
{Rn

ν : ν ∈ ξ(n), n ∈ ω} ∪ H. Since M is countable, by
induction, we can take αn

ν,k ∈ Dn
ν for each n ∈ ω, ν ∈ ξ(n), and k ∈ ω

such that αn
ν,k ̸= αn′

ν′,k′ whenever ⟨n, ν, k⟩ ̸= ⟨n′, ν′, k′⟩,

(2.6) {dom(c(αn
ν,k, n))\Rn

ν : n ∈ ω, ν ∈ ξ(n), k ∈ ω} is pairwise disjoint,

and

(2.7) (∀n ∈ ω, ν ∈ ξ(n), k ∈ ω)(dom(c(αn
ν,k, n)) ∩M = Rn

ν ).

Define a function φ by dom(φ) = {⟨αn
ν,k, n⟩ : n ∈ ω, ν ∈ ξ(n), k ∈ ω} and

φ(αn
ν,k, n) = Rn

ν

for n, ν, and k. Note that dom(φ) and Fn
ξ(n) are countable for each n < ω.

Since cf(κ) > ω, we can take δ ∈ κ such that sup(
∪

n∈ω Fn
ξ(n)) < δ and
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dom(φ) ⊆ δ × ω. We will check that these φ and δ work. Let β ∈ κ \ δ
and n ∈ ω. Then, since β ̸∈ Fn

ξ(n), there is unique ν ∈ ξ(n) such that
β ∈ En

ν . By (2.6), there is k ∈ ω such that

(2.8) (dom(c(αn
ν,k, n)) \Rn

ν ) ∩ (dom(c(β, n)) \Rn
ν ) = ∅.

Now, we put α = αn
ν,k. Since α ∈ Dn

ν and β ∈ En
ν ,

φ(α, n) = Rn
ν ⊆ dom(c(α, n)) ∩ dom(c(β, n)).

This combined with (2.8) implies that

φ(α, n) = dom(c(α, n)) ∩ dom(c(β, n)),

and (2.1) and (2.2) imply that

c(α, n)|φ(α, n) = c(α, n)|Rn
ν = cnν = c(β, n)|Rn

ν = c(β, n)|φ(α, n).

Hence, we have (3) in Lemma 1.1. Finally, by (2.6), {dom(c(x)) \ φ(x) :
x ∈ dom(φ)} is pairwise disjoint and, by (2.7), dom(c(x))∩M = φ(x) for
each x ∈ dom(φ). Hence, we have (4) and (5) in Lemma 1.1. �

Remark 2.1. There is a short proof of Lemma 1.1 using an elemen-
tary submodel. Let M be a countable elementary submodel of the set
H((2κ)+) such that M contains κ, H, and the set {c(α, n) : α ∈ κ, n ∈ ω}
as members. Then we note that, for every β ∈ κ \M and n ∈ ω, there is
I ∈ [κ]κ ∩M such that the set {dom(c(α, n)) : α ∈ I} forms a ∆-system
with root dom(c(β, n)) ∩M , and for every α ∈ I, c(α, n)|

(
dom(c(β, n)) ∩

M
)
= c(β, n)|

(
dom(c(β, n)) ∩ M

)
. We enumerate all tuples ⟨n, I,R, c⟩

in M such that I ∈ P(κ) ∩M and the set {dom(c(α, n)) : α ∈ I} forms
an infinite ∆-system with root R and, for every α ∈ I, c(α, n)|R = c by
⟨⟨ni, Ii, Ri, ci⟩ : i ∈ ω⟩. By induction on i ∈ ω, we take αi ∈ Ii ∩ M
such that αi ̸∈ {αj : j < i} and the set {dom(c(αi, ni)) \ Ri : i ∈ ω}
is pairwise disjoint. This can be done because, for each i ∈ ω, the
set {dom(c(α, ni)) \ Ri : α ∈ Ii} is a pairwise disjoint family of fi-
nite sets and belongs to M . Then we define δ := sup(κ ∩ M) and
φ := {⟨⟨αi, ni⟩, Ri⟩ : i ∈ ω}. Then δ < κ because M is countable and
cf(κ) > ω. These are as desired.

3. Balogh’s Natural Dowker Space

For the reader’s convenience, we sketch the construction of a natural
Dowker space in [5]. Let X = c × ω, where c = 2ℵ0 , and for all n ∈ ω,
Wn = c × n. The collection B0 = {Wn : n ∈ ω} ∪ {X \ {x} : x ∈ X} is
a subbase for an initial topology. Balogh’s idea is to add more open sets
in 2c steps to B0 to make X a Dowker space. For U0, U1 ⊆ X, the pair
⟨U0, U1⟩ is called a covering pair if U0∪U1 = X. Fix a list ⟨⟨U0

ξ , U
1
ξ ⟩⟩ξ<2c

of all covering pairs mentioning each 2c many times. Inductively, we will
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define H ⊆ 2c and, for all ξ ∈ H, a covering pair ⟨B0
ξ , B

1
ξ ⟩ such that

Bi
ξ ⊆ U i

ξ for each i < 2 and B0
ξ ∩B1

ξ = ∅. Then we will set

Bξ = B0 ∪ {B0
η , B

1
η : η ∈ H, η < ξ}.

A subset of X is called ξ-open if it is open in the topology generated by
Bξ as a subbase. For A ⊆ X, let

SA = {⟨U0 ∩A,U1 ∩A⟩ : ⟨U0, U1⟩ is a covering pair}.
Definition 3.1. A pair ⟨A, u⟩ is a control pair if A ∈ [X]ℵ0 , and u is a
function with dom(u) ⊆ A such that

(C1) for each x ∈ dom(u), u(x) ∈ [SA]
<ℵ0 , and

(C2) for each x, x′ ∈ dom(u), if x ̸= x′, then u(x) ∩ u(x′) = ∅.
Remark 3.2. Balogh [5] used the notion of a control triple; however, the
above definition is enough for our purpose. Note that the size of the set
of all control pairs is c since |SA| = c for A ∈ [X]ℵ0 .

Let ⟨⟨Aβ , uβ⟩⟩β<c be a list of all control pairs mentioning each c many
times and where Aβ ⊆ β × ω for each β ∈ c. Suppose ξ < 2c and, for
every η < ξ, we have already decided whether η ∈ H and, if so, what B0

η

and B1
η are. We now decide if ξ ∈ H and, if so, show how to define B0

ξ

and B1
ξ .

Case 1. Suppose that U0
ξ and U1

ξ are ξ-open and there is no η < ξ such
that ⟨U0

η , U
1
η ⟩ = ⟨U0

ξ , U
1
ξ ⟩ and U0

η and U1
η are η-open. Then ξ ∈ H, and

we need to define B0
ξ and B1

ξ .

Suppose β < c and, for every α < β and every k ∈ ω, we already
decided ⟨α, k⟩(ξ) are equal to the unique i < 2 with ⟨α, k⟩ ∈ Bi

ξ.
Subcase 1.1. If ⟨U0

ξ ∩Aβ , U
1
ξ ∩Aβ⟩ ̸∈

∪
ran(uβ), then take the biggest

m ≤ ω such that there exists i < 2 with {β} × m ⊆ U i
ξ. Fix an i with

{β} × m ⊆ U i
ξ and make sure {β} × m ⊆ Bi

ξ. If this m < ω, then, for
each k with m ≤ k < ω, pick any i < 2 such that ⟨β, k⟩ ∈ U i

ξ and set
⟨β, k⟩ ∈ Bi

ξ.
Subcase 1.2. If ⟨U0

ξ ∩ Aβ , U
1
ξ ∩ Aβ⟩ ∈ uβ(x) for some x ∈ dom(uβ),

then there is only one such x by (C2). Since x ∈ Aβ ⊆ β × ω, x(ξ) has
been defined. For every j ∈ ω, set ⟨β, j⟩(ξ) = x(ξ) if ⟨β, j⟩ ∈ U

x(ξ)
ξ , and

⟨β, j⟩(ξ) = 1− x(ξ), otherwise.

Case 2. Not Case 1. Then ξ ̸∈ H and B0
ξ and B1

ξ need not be defined.

The space X = c× ω with

B =
∪
ξ<2c

Bξ = B0 ∪ {B0
ξ , B

1
ξ : ξ ∈ H}
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as a subbase for the topology is normal by construction and is named
a natural Dowker space in [5]. The following claims immediately follow
from the construction.

Claim 3.3. For every ξ, ξ′ ∈ H, if ξ ̸= ξ′, then ⟨U0
ξ , U

1
ξ ⟩ ̸= ⟨U0

ξ′ , U
1
ξ′⟩.

Claim 3.4. Let ξ ∈ H and β ∈ κ. Then
(1) in Subcase 1.1, if {β} × (k + 1) ⊆ U j

ξ for some k < ω and j < 2,

then {β} × (k + 1) ⊆ B
⟨β,k⟩(ξ)
ξ , and

(2) in Subcase 1.2, ({β} × ω) ∩ U
x(ξ)
ξ ⊆ B

x(ξ)
ξ .

Claim 3.5. If F 0 and F 1 are disjoint closed sets in X, then there exists
ξ ∈ H such that F i ⊆ Bi

ξ for each i < 2.

Each basic neighborhood for x = ⟨α, k⟩ ∈ X is of the form

Vt,K(x) =
∩
ξ∈t

B
x(ξ)
ξ ∩ (Wk+1 \K)

for some t ∈ [H]<ℵ0 and K ∈ [X \ {x}]<ℵ0 . A neighborhood Vt,K(x) is
called complete if, for every ξ ∈ t, Vt∩ξ,K(x) ⊆ U

x(ξ)
ξ .

Lemma 3.6 ([5, Lemma 2.1]). For every neighborhood Vt,K(x), there ex-
ist t∗ ⊇ t and K∗ ⊇ K such that Vt∗,K∗(x) is a complete neighborhood.

4. The Space X Is Not Countably Paracompact

For β ∈ c and ξ ∈ H, we say that β is ξ-homogeneous if there exists
i < 2 such that {β} × ω ⊆ Bi

ξ. Balogh [5] proved the following lemma.

Lemma 4.1 ([5, Lemma 3.1]). For every countable subset H ′ of H, there
exists β ∈ c such that β is ξ-homogeneous for every ξ ∈ H ′.

Remark 4.2. We note that Lemma 4.1 implies that X is not countably
paracompact. Suppose that X is countably paracompact. Then there is
a countable closed cover {Fn : n ∈ ω} of X such that Fn ⊆ Wn for each
n ∈ ω. By Claim 3.5, there is a function ξ : ω → H such that Fn ⊆ B0

ξ(n)

and X \ Wn ⊆ B1
ξ(n) for each n ∈ ω. Then, for every β ∈ c, there is

n ∈ ω such that β is not ξ(n)-homogeneous, since
∪

n∈ω Fn = X. This
contradicts Lemma 4.1.

Now, we give an alternative proof of Lemma 4.1 using Lemma 1.1.

Proof of Lemma 4.1. Let H ′ = {ξn : n ∈ ω} ⊆ H. By Lemma 3.6,
there exist functions t : X → [H]<ℵ0 and K : X → [X]<ℵ0 such that
Vt(x),K(x)(x) is a complete neighborhood and

(4.1) if x = ⟨α, n⟩ ∈ X, then {ξj : j ≤ n} ⊆ t(x).



BALOGH’S DOWKER SPACES 295

For each x ∈ X, define a function c(x) : t(x) → 2 by c(x)(ξ) = x(ξ) for
ξ ∈ t(x). Then by Lemma 1.1, there exist δ ∈ c and a function φ such
that

(1) dom(φ) ∈ [δ × ω]ℵ0 ,
(2) for each x ∈ dom(φ), φ(x) ⊆ t(x), and
(3) for each β ∈ c \ δ and each n ∈ ω, there is ⟨α, n⟩ ∈ dom(φ) such

that t(α, n)∩t(β, n) = φ(α, n) and c(α, n)|φ(α, n) = c(β, n)|φ(α, n).
Moreover, if we put M = (

∪
ran(φ)) ∪H ′, then

(4) for each x ∈ dom(φ), t(x) ∩M = φ(x), and
(5) {t(x) \M : x ∈ dom(φ)} is pairwise disjoint.

Put D =
∪
{t(x) : x ∈ dom(φ)} ∪H ′. Since D is countable, by Claim 3.3

there exists A ∈ [X]ℵ0 such that dom(φ) ⊆ A and

(4.2) (∀ξ, ξ′ ∈ D)(if ξ ̸= ξ′, then ⟨C0
ξ ∩A,C1

ξ ∩A⟩ ≠ ⟨C0
ξ′ ∩A,C1

ξ′ ∩A⟩).

Define a function u by dom(u) = dom(φ) and

u(x) = {⟨C0
ξ ∩A,C1

ξ ∩A⟩ : ξ ∈ t(x) \ φ(x)}

for x ∈ dom(u). Then, by (4), (5), and (4.2), u(x) ∩ u(x′) = ∅ whenever
x ̸= x′. Hence, ⟨A, u⟩ is a control pair. Since this appears cofinally many
times in our list of control pairs, we can choose β ∈ c such that β > δ,∪

x∈δ×ω K(x) ⊆ β × ω and ⟨A, u⟩ = ⟨Aβ , uβ⟩. Note that, since M ⊆ D
and (t(x) \φ(x))∩M = ∅ for each x ∈ dom(φ), it follows from (4.2) that

(4.3) (∀ξ ∈ M)
(
⟨C0

ξ ∩Aβ , C
1
ξ ∩Aβ⟩ ̸∈

∪
ran(uβ)

)
.

We show that β is the desired ordinal. Our proof of the remaining part is
almost the same as in [5]. Suppose that β is not µ-homogeneous for some
µ ∈ H ′. Then, by (4.1), there is n ∈ ω such that µ ∈ t(β, n) and

(4.4) ({β} × (n+ 1)) ∩Bi
µ ̸= ∅ for each i < 2.

Put y = ⟨β, n⟩. Then, by (3), there exists x = ⟨α, n⟩ ∈ dom(uβ) such that

(4.5) t(x) ∩ t(y) = φ(x) and c(x)|φ(x) = c(y)|φ(x).

Claim 1. {β} × (n+ 1) ⊆ Vt(x)∩µ,K(x)(x).

Proof of Claim 1: Remember that

Vt(x)∩µ,K(x)(x) =
∩

ξ∈t(x)∩µ

B
x(ξ)
ξ ∩ (Wn+1 \K(x)).

Since K(x) ⊆ β × ω, it suffices to show that for each ξ ∈ t(x) ∩ µ,

(4.6) {β} × (n+ 1) ⊆ B
x(ξ)
ξ .
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We show this by induction on ξ ∈ t(x) ∩ µ. Suppose that for each η ∈
t(x)∩ξ, {β}×(n+1) ⊆ B

x(η)
η . Then by the completeness of Vt(x),K(x)(x),

(4.7) {β} × (n+ 1) ⊆ Vt(x)∩ξ,K(x)(x) ⊆ U
x(ξ)
ξ .

We distinguish two cases.

Case A. ξ ∈ t(x) ∩M (= φ(x)).
In this case, ⟨C0

ξ ∩Aβ , C
1
ξ ∩Aβ⟩ ̸∈

∪
ran(uβ) by (4.3). Hence, by (4.7)

and Claim 3.4(1), {β}×(n+1) ⊆ B
y(ξ)
ξ . Since y(ξ) = c(y)(ξ) = c(x)(ξ) =

x(ξ) by (4.5), we have (4.6).

Case B. ξ ∈ t(x) \M .
In this case, ⟨C0

ξ ∩ Aβ , C
1
ξ ∩ Aβ⟩ ∈ uβ(x) by the definition of u = uβ .

Hence, by (4.7) and Claim 3.4(2), {β}×(n+1) ⊆ ({β}×ω)∩Ux(ξ)
ξ ⊆ B

x(ξ)
ξ .

This completes the proof of Claim 1.

Finally, by Claim 1 and the completeness of Vt(x),K(x)(x), {β} × (n+

1) ⊆ U
x(µ)
µ . Since µ ∈ H ′ ⊆ M , ⟨C0

µ ∩Aβ , C
1
µ ∩Aβ⟩ ̸∈

∪
ran(uβ) by (4.3).

Hence, by Claim 3.4(1), {β} × (n + 1) ⊆ B
y(µ)
µ , which contradicts (4.4).

This completes the proof of Lemma 4.1. �

References

[1] Zoltan T. Balogh, A small Dowker space in ZFC, Proc. Amer. Math. Soc. 124
(1996), no. 8, 2555–2560.

[2] , A normal screenable nonparacompact space in ZFC, Proc. Amer. Math.
Soc. 126 (1998), no. 6, 1835–1844.

[3] , Nonshrinking open covers and K. Morita’s third conjecture in Proceed-
ings of the International Conference on Set-theoretic Topology and its Appli-
cations, Part 2 (Matsuyama, 1994). Ed. Tsugunori Nogura. Topology Appl. 84
(1998), no. 1-3, 185–198.

[4] , Dowker spaces and paracompactness questions, Topology Appl. 114
(2001), no. 1, 49–60.

[5] , A natural Dowker space, Topology Proc. 27 (2003), no. 1, 1–7.
[6] Kenneth Kunen, Set Theory. An Introduction to Independence Proofs. Studies in

Logic and the Foundations of Mathematics, 102. Amsterdam-New York: North-
Holland Publishing Co., 1980.

(Ohta) Faculty of Education; Shizuoka University; Ohya, Shizuoka, 422-
8529 Japan

E-mail address: echohta@ipc.shizuoka.ac.jp

(Yorioka) Department of Mathematics; Faculty of Science; Shizuoka Uni-
versity; Ohya, Shizuoka, 422-8529 Japan

E-mail address: styorio@ipc.shizuoka.ac.jp




