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A SHORTER PROOF OF A THEOREM ON
HEREDITARILY ORDERABLE SPACES

HAROLD BENNETT AND DAVID LUTZER

Abstract. We give a shorter proof of a result of S. Purisch and
Yasushi Hirata and Nobuyuki Kemoto that any subspace of any
space of ordinals is a LOTS (under some linear ordering).

1. Introduction

A topological space is orderable if it is homeomorphic to some linearly
ordered topological space (LOTS) (X,<,L(<)) where < is a linear or-
dering of X and L(<) is the usual open interval topology of <. As the
subspace [0, 1]∪ (2, 3) of the usual space R of real numbers shows, a sub-
space of a LOTS may fail to be orderable, as may a topological sum of
two LOTS (no matter what linear ordering is used).

In [3], Yasushi Hirata and Nobuyuki Kemoto showed that any subspace
of any space of ordinal numbers must be orderable (under some ordering),
a result that follows from an earlier paper by S. Purisch [4] [5]. In this
paper we give a new proof that is shorter than the proofs given by Purisch
or by Hirata and Kemoto, and we raise some questions about hereditary
orderability, where we say that a space X is hereditarily orderable if each
of its subspaces is an orderable space.

Recall that a generalized ordered (GO) space is a triple (X,<, τ) where
< is a linear ordering of X and where τ is a Hausdorff topology on X
that has a basis consisting of order-convex (possibly degenerate) sets.
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2. Ordinals Are Hereditarily Orderable

For any linearly ordered set (X,<), the symbol (X,<)∗ denotes the
set X with the reverse ordering <∗. It is easy to see that the LOTS
(X,<,L(<)) is homeomorphic to the LOTS (X,<∗,L(<∗)). For a given
linearly ordered set X, we sometimes write X∗ for (X,<∗,L(<∗)).

Suppose (X1, <) and (X2,≺) are disjoint linearly ordered sets. We
use the symbol (X1, <) ⌢ (X2,≺) to mean the set X1 ∪ X2 with the
ordering defined by a ≪ b if either a, b ∈ X1 and a < b, or a ∈ X1

and b ∈ X2, or a, b ∈ X2 with a ≺ b. We sometimes write ≪=<⌢≺.
The relation ≪ is always a linear ordering, but if L(<) and L(≺) are the
usual open interval topologies on X1 and X2, respectively, then the open
interval topology L(≪) might not be the topology of the topological sum
(X1,L(<))⊕ (X2,L(≺)). For an example, let X1 = [0, 1] and X2 = (2, 3)
have their usual orderings. However, there are times when the topological
sum of two or more LOTS is guaranteed to be a LOTS.

Lemma 2.1. Let (X1, <) and (X2,≺) be disjoint linearly ordered sets
and let ≪ be the order <⌢≺.

(1) If the LOTS (X1, <,L(<)) contains a right end point and
(X2,≺,L(≺)) contains a left end point, then the topological sum
X1 ⊕X2 is a LOTS under the order ≪.

(2) If the LOTS (X1, <,L(<)) contains no right endpoint and if the
LOTS (X2,≺,L(≺)) contains no left end point, then the topolog-
ical sum X1 ⊕X2 is a LOTS under the order ≪.

Lemma 2.2. Suppose that (X,<, τ) is a GO-space having a right end-
point b ∈ X, and suppose that b is a τ -limit point of the set Y = X −{b}.
Suppose that ≺ is a linear ordering of the set Y such that the open in-
terval topology L(≺) on Y coincides with τ |Y , and suppose that a subset
C ⊆ Y is cofinal 1 in (Y,<) if and only if C is cofinal in (Y,≺). Extend
the linear order ≺ to a linear order ▹ on X by making b larger than each
point of (Y,≺). Then L(▹) = τ ; i.e., (X, ▹, τ) is a LOTS.

Proof. It is enough to show that the topologies τ and L(▹) agree at the
point b because, by hypothesis, they agree at each point of the open set Y .
Because b is a limit point of Y , the set (Y,<) contains no right endpoint.
Hence, neither does (Y,≺).

Let U be a τ -neighborhood of b. We may assume U is order convex
with respect to <. Because b is a τ -limit of Y , we may choose a′, a ∈ U∩Y
and a′ < a < b. Then a ∈ {x ∈ X : a′ < x < b} ⊆ U . We will show

1A subset S of a linearly ordered set (X,<) is cofinal if for each x ∈ X there is
some s ∈ S with x ≤ s.
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that there is some c ∈ X with c ▹ b and {x ∈ X : c ▹ x} ⊆ {x ∈ X :
a ≤ x} ⊆ {x ∈ X : a′ < x}. If that is not true, then for each c ∈ Y ,
there is some d(c) ∈ Y with c ▹ d(c) and d(c) /∈ {x ∈ X : a ≤ x}. The
set {d(c) : c ∈ Y } is cofinal in (Y,≺), and, therefore, it is also cofinal in
(Y,<) so there is some d(c) with a ≤ d(c), contrary to the choice of d(c).
An analogous argument shows that for each a ▹ b, there is some c with
c < b and {x ∈ X : c < x} ⊆ {x ∈ X : a ▹ x}. Consequently, the two
topologies τ and L(▹) agree at b, as required. �

The following example illustrates a key idea in the proof of our main
result. Write 2ω = ω + ω and 3ω = ω + ω + ω. Form a GO-topology τ
by isolating the points ω and 2ω in [0, 3ω). In the usual ordering <, this
is not a LOTS because the non-limit points ω and 2ω have no immediate
predecessors in the order <. However, in the linear ordering ≺ of

[0, ω) ⌢
(
[ω, 2ω)∗ ⌢ [2ω, 3ω)

)
,

the set {n : 0 ≤ n < ω} has no supremum, and the points ω and 2ω both
have immediate predecessors and immediate successors. Consequently,
([0, 3ω),≺, τ) is a LOTS. Flipping the order on subsegments of a GO-
space is the key to our next proof.

Theorem 2.3. Let ∆ be any ordinal with ∆ ≥ ω and let T be any set of
limit ordinals in [0,∆). Let [0,∆)T denote the GO-space obtained from
the usual ordinal space [0,∆) by isolating every element of T . Then the
GO-space [0,∆)T is homeomorphic to some LOTS.

Proof. In this proof, the symbol ∼= means “is homeomorphic to” and we
use ≤ and < to denote the usual well-ordering of [0,∆). Interval notation
such as [α, β) will always refer to intervals in the usual ordinal ordering.
For any α < ∆, the symbol [0, α)T denotes the GO-space obtained from
the usual LOTS [0, α) by isolating all points of T ∩ [0, α). We will write
S for the GO-topology of [0,∆)T and S[α,β) for the relative topology
that [α, β) inherits from [0,∆)T . We will argue by contradiction. For
contradiction, suppose that

(∗)[0,∆)T is not homeomorphic to any LOTS.

By an acceptable pair, we mean an ordered pair ([0, α),≺α) where
(1) α ≤ ∆;
(2) ≺α is a linear ordering of the set [0, α);
(3) 0 is the left end point of the linearly ordered set ([0, α),≺α);
(4) a subset C ⊆ [0, α) is cofinal in ([0, α),≺α) if and only if C is

cofinal in ([0, α), <); and
(5) S[0,α) = L(≺α) where L(≺α) is the usual open interval topology

of the linear order ≺α.
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Let P be the set of all acceptable pairs. Then P is not empty be-
cause ([0, 2), <) is in P. Partially order P by the rule that ([0, α),≺α) ⊑
([0, β),≺β) if and only if the following four statements hold:

(a) α ≤ β;
(b) ≺β |[0,α) =≺α (so that ≺β extends ≺α);
(c) if α < β, then {x ∈ [0, β) : x ≺β α} = [0, α) (so ≺β adds no

points to the domain of ≺α);
(d) L(≺α) ⊆ L(≺β).

Suppose C = {([0, α),≺α) : α ∈ A} is a chain in the partially ordered
set (P,⊑). For some γ ≤ ∆, the set

∪
{[0, α) : α ∈ A} = [0, γ). Define

≺γ=
∪
{≺α: α ∈ A}. We will show that ([0, γ),≺γ) is an acceptable pair

that is an upper bound for C in (P,⊑).

It is clear that ≺γ is a linear ordering of [0, γ) and that its left end
point is 0. If γ = α for some α ∈ A, then ([0, γ),≺γ) = ([0, α),≺α) is an
acceptable pair that is an upper bound for the chain C, so assume that
α < γ for all α ∈ A. Consequently, γ is a limit ordinal and the set A is
cofinal in the usual ordering of [0, γ).

We claim that ([0, γ),≺γ) satisfies part (4) in the definition of an ac-
ceptable pair. We first show that the set A is cofinal in the ordering ≺γ .
Let x ∈ [0, γ) and choose α, β ∈ A with x < α < β. In the light of (c), we
have x ∈ [0, α) = {y ∈ [0, β) : y ≺β α}, so that x ≺γ α. Hence, A is cofi-
nal in the order ≺γ . Now suppose that C is a cofinal subset of ([0, γ), <).
Fix (α,≺α) ∈ C. Choose x ∈ C with α < x, and then choose β ∈ A with
α < x < β. By (c), we have x ̸∈ [0, α) = {y ∈ [0, β) : y ≺β α}, so that
α ≼β x. Therefore, α ≼γ x, showing that C is cofinal in the ordering ≺γ .
Next suppose that C is cofinal in the ordering ≺γ . If C is not cofinal in the
usual ordering < of [0, γ), then there is some α ∈ A with C ⊆ [0, α). Then
for each β ∈ A with α < β, we have C ⊆ [0, α) = {y ∈ [0, β) : y ≺β α}, so
that x ≺β α for each x ∈ C, and therefore, x ≺γ α for each x ∈ C. But
that is impossible because C is cofinal in the ordering ≺γ .

We next show that ([0, γ),≺γ) satisfies S[0,γ) = L(≺γ), which is part
(5) in the definition of an acceptable pair. First note that the collection
B :=

∪
{L(≺α) : α ∈ A} is a base for the topology L(≺γ) and that

B′ :=
∪
{S[0,α) : α ∈ A} is a base for S[0,γ). Because we know that

L(≺α) = S[0,α) for each α ∈ A, we see that B = B′ which gives L(≺γ) =
S[0,γ) as required.

Now that we have ([0, γ),≺γ) ∈ P, we must show that ([0, α),≺α) ⊑
([0, γ),≺γ) for each α ∈ A. Clearly (a) and (b) are satisfied. For (c), note
that for each α < β in the set A, we have

[0, α) = {y ∈ [0, β) : y ≺β α} ⊆ {y ∈ [0, γ) : y ≺γ α}.
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To prove that {y ∈ [0, γ) : y ≺γ α} ⊆ [0, α), suppose y < γ satisfies
y ≺γ α. Choose β ∈ A so large that {α, y} ⊆ [0, β). Then y ∈ {z ∈ [0, β) :
z ≺β α} = [0, α), as required. To verify (d), note that the collection∪
{L(≺α) : α ∈ A} is a basis for the topology L(≺γ).
At this stage, we know that every chain in (P,⊑) has an upper bound

in (P,⊑) so that Zorn’s Lemma gives us a maximal element ([0, δ),≺δ)
of P. We have δ ≤ ∆. If δ = ∆, then we have contradicted (*) because
([0, δ),≺δ) satisfies part (5) of the definition of acceptable pair, so we have

(∗∗) δ < ∆.

Claim 1. We claim that δ must be a limit ordinal. Otherwise, write
δ = λ + n, where λ is a limit and n ≥ 1 is an integer. Then [0, δ) has a
right endpoint (namely, λ+(n−1)) in the usual ordinal ordering, so that
{λ+ (n− 1)} is a cofinal subset of [0, δ) in the usual ordering. Therefore,
{λ + (n − 1)} is a cofinal subset of [0, δ) in the linear ordering ≺δ; i.e.,
([0, δ),≺δ) has λ+(n−1) as its right endpoint. Because δ < ∆ by (**), we
know that δ+1 ≤ ∆. Define a linear ordering ≺δ+1 of [0, δ+1) that agrees
with ≺δ on [0, δ) and has δ = λ+n as its right endpoint. Then the LOTS
([0, δ + 1),≺δ+1,L(≺δ+1)) is homeomorphic to the GO-space [0, δ + 1)T
and it is clear that ([0, δ + 1),≺δ+1) belongs to P and is strictly larger
than ([0, δ),≺δ) in the ordering ⊑, contrary to maximality of ([0, δ),≺δ).
Therefore, Claim 1 is established and δ must be a limit ordinal.

Two possibilities remain. Either δ is an isolated point of the GO-space
[0,∆)T , or δ is a limit point of the set [0, δ) in the space [0,∆)T ; i.e.,
either δ ∈ T or δ ̸∈ T .

Claim 2. We claim that δ ∈ T is impossible. For suppose δ ∈ T . There
are two subcases, depending upon whether (δ,∆) ∩ T is or is not empty.

In the first subcase, we have (δ,∆)∩T = ∅, and then [δ,∆)T is identical
to the LOTS [δ,∆) with the usual ordering. Consider the linearly ordered
set X = [δ,∆)∗ obtained by reversing the usual order of [δ,∆), and let
<∗ denote the reversal of the usual ordering <. The linearly ordered set
([δ,∆)∗, <∗) has a final point (namely δ), and the linearly ordered set
Y = ([0, δ),≺δ) has 0 as its first point by part (3) of the definition of
acceptable pair. Consequently, Lemma 2.1(1) guarantees that the LOTS
topology of the linear order ▹ :=<∗⌢≺δ on the set X⊕Y is homeomorphic
to the disjoint sum topology of the space X ⊕ Y . But because δ ∈ T , we
have [0, δ)T ⊕ [δ,∆)T ∼= [0,∆)T so that

X ⊕ Y ∼= Y ⊕X =
(
[0, δ),≺δ,L(≺δ)

)
⊕ [δ,∆)∗ ∼= [0, δ)T ⊕ [δ,∆)

= [0, δ)T ⊕ [δ,∆)T = [0,∆)T ,
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showing that [0,∆)T is a LOTS under the linear ordering ▹ , contrary to
(*). Therefore, the first subcase cannot occur.

In the second subcase, (δ,∆) ∩ T ̸= ∅. Let η be the first element of
(δ,∆) ∩ T . Then η is a limit ordinal (because all members of T are limit
ordinals) and η + 1 ≤ ∆ because η < ∆. The LOTS [δ, η) with its usual
order < and usual order topology is homeomorphic to the clopen subspace
[δ, η)T of [0,∆)T and hence so is the reversed LOTS Y = ([δ, η)∗, <∗,L(<∗

)). Observe that the LOTS X = ([0, δ),≺δ,L(≺δ)) has no final point and
that the LOTS Y = ([δ, η)∗, <∗,L(<∗)) has no first point. According to
Lemma 2.1(2), the LOTS topology of the linear order ▹ =≺δ⌢<∗ on the
set [0, η) coincides with the topology of the topological sum

([0, δ),≺δ)⊕ [δ, η)∗ ∼= [0, δ)T ⊕ [δ, η) ∼= [0, η)T .

Note that the linear order ▹ has a right endpoint, namely, δ. Now extend
the linear order ▹ on [0, η) to the set [0, η] by making η greater than each
point of ([0, η), ▹). The set [0, η+1) with this extension of ▹ is a member
of P that is strictly larger than (δ,≺δ) in the partial order ⊑, and that is
impossible. Therefore, Claim 2 is established.

Claim 3. We claim that δ ̸∈ T is also impossible. For suppose δ ̸∈ T .
Because δ is a limit ordinal (see Claim 1), the point δ is a limit point of
the set [0, δ) in the space [0,∆)T . Because ([0, δ),≺δ) ∈ P, we know that
the orders < and ≺δ have exactly the same cofinal subsets of [0, δ), and
then Lemma 2.2 allows us to extend the order ≺δ to a linear order ▹ of the
set [0, δ + 1) by making the point δ greater than all points of ([0, δ),≺δ)
and guarantees that the LOTS topology of ([0, δ + 1), ▹) coincides with
the GO topology [0, δ+1)T . It is clear that ([0, δ+1), ▹) ∈ P and that is
impossible by maximality of ([0, δ),≺δ) in P. Therefore, Claim 3 holds.

In summary, assumption (*) has led us to a maximal element ([0, δ),≺δ)
of P, and we have proved that both δ ∈ T and δ ̸∈ T are impossible.
Consequently, Theorem 2.3 is proved. �

The hereditary orderability theorem of Purisch, Hirata and Kemoto is
an immediate corollary.

Corollary 2.4. Let Z be an initial segment of the ordinals with the usual
topology. Any subspace X of Z is homeomorphic to some LOTS.

Proof. The set X inherits a well-ordering from Z and we have an order
isomorphism h from X onto some set [0,∆) of ordinals. Let S be the topol-
ogy on [0,∆) that makes h a homeomorphism from X onto ([0,∆),S).
The topology S will fail to be the open interval topology of the usual
ordering < of [0,∆) if and only if there are limit ordinals λ < ∆ such
that λ is not a limit of the set [0, λ) in the space ([0,∆),S). Let T be
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the set of all limit ordinals λ < ∆ that are not topological limits of [0, λ)
in the topology S. Then X is homeomorphic to the GO-space [0,∆)T
obtained from the usual ordinal space [0,∆) by isolating each point of T .
But, from Theorem 2.3, we know that [0,∆)T is homeomorphic to some
LOTS, and that completes the proof of the corollary. �

3. Additional Comments

In this section, we use dimension theory definitions from [1]. The
following result is part of the folklore.

Lemma 3.1. In any GO-space X, the following three properties are equiv-
alent:

(a) Ind(X) = 0
(b) ind(X) = 0
(c) a connected subset of X has at most one point; (i.e., X is totally

disconnected).

H. Herrlich’s theorem [2] (see also [1, Problem 6.3.2]) is the key to under-
standing hereditary orderability in metrizable spaces.

Proposition 3.2. Let X be a metrizable space. Then the following are
equivalent:

(i) Ind(X) = 0;
(ii) X is orderable and Ind(X) = 0;
(iii) X is orderable and totally disconnected;
(iv) X is hereditarily orderable.

Proof. Herrlich’s theorem is that (i) ⇒ (ii), and (ii) and (iii) are equivalent
in light of Lemma 3.1. Because X is metrizable, for any subspace Y ⊆ X,
we have Ind(Y ) ≤ Ind(X) so that Herrlich’s theorem shows that (ii) ⇒
(iv). Finally, (iv) ⇒ (iii) because if X contains a connected subset C with
at least two points, then X contains an infinite connected open interval
(a, b) (containing no end points of itself) and a point c ̸∈ [a, b]. But then
the subspace Y = (a, b)∪{c} is not linearly orderable by any ordering. �

However, outside the class of metrizable spaces, Ind(X) = 0 is not
enough to make a LOTS hereditarily orderable.

Example 3.3. Let X be the Alexandroff double arrow, i.e., X = [0, 1]×
{0, 1} with the lexicographic ordering. Then X is a compact separable
LOTS and has Ind(X) = 0, but its subspace S := {(x, 1) : x ∈ [0, 1]} is
not a LOTS under any ordering, because S has a Gδ-diagonal but is not
metrizable.

Question 3.4. Characterize those LOTS that are hereditarily orderable.
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There is an important topological characterization of orderability by
J. van Dalen and E. Wattel [6]. By a nest, van Dalen and Wattel meant
a collection that is linearly ordered by set containment. A nest N is
interlocking if whenever a member N0 ∈ N has N0 =

∩
{N ∈ N : N ̸=

N0 and N0 ⊆ N}, then N0 also satisfies N0 =
∪
{N ∈ N : N ̸= N0, N ⊆

N0}. Van Dalen and Wattel [6] proved the following theorem.

Theorem 3.5. A T1 space is orderable if and only if it has a sub-base
that is the union of two nests, each of which is interlocking.

That theorem ought to play a key role in studies of hereditary order-
ability and should give an even shorter proof of the theorem of Purisch
and Hirata and Kemoto.

Acknowledgment. We want to thank the referee whose comments sig-
nificantly improved this paper.
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