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CONNECTEDNESS OF THE
REPRESENTATION SPACE FOR CONTINUA

WŁODZIMIERZ J. CHARATONIK, MATT INSALL, AND JANUSZ R. PRAJS

Abstract. In On representation spaces, a forthcoming article,
José G. Anaya, Félix Capulín, Włodzimierz J. Charatonik, and
Fernando Orozco-Zitli have introduced the representation space C
of all continua (up to homeomorphism). Here, we reproduce the
argument that it is a topological space, and then we investigate its
connectedness properties. Specifically, we show that C has exactly
two components, and we demonstrate that the subspace N , consist-
ing of all nondegenerate continua, is itself connected and even path
connected. Moreover, we show that there exists a single continuum
L such that N is the closure of the class of {L}.

1. Introduction

In topology of metric spaces, ε-maps occur naturally. For instance,
they appear as projections of inverse sequences and in the definitions or
in the important characterizations of the properties, such as dimension,
arc-likeness, tree-likeness, etc. If a space X admits, for each ε > 0,
an ε-map onto some member of a class P, then we think of X being
“near” P. This sense of being “near” has been proven in [1] to yield a
topological structure on the representation space C of all continua, that
is, the collection of the equivalence classes of mutually homeomorphic
continua. We reproduce this argument in section 2 for the convenience of
the reader. In section 3, we show that C has exactly two components: the
collection N of the equivalence classes of all nondegenerate continua, and
the isolated class that includes all singletons. The collection N is shown
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to be path connected and to be the closure of the class of a single locally
connected continuum.

The representation space for continua has been recently studied by var-
ious authors. It was investigated at the First Polish-Mexican Workshop
in Continuum Theory by José G. Anaya, Félix Capulín, Włodzimierz
J. Charatonik, and Fernando Orozco-Zitli [1]. Félix Capulín, Raúl Es-
cobedo, Fernando Orozco-Zitli, and Isabel Puga [3] have examined the
very interesting related concept of an ε-property – in our context, these
properties are the closed subsets of C. In an unpublished paper, Jorge
Bustamante, Raúl Escobedo, and Janusz R. Prajs [2], in 2003, defined
the closure operator we investigate here and studied some of its proper-
ties.

2. Definitions and Notation

In this section, we set the stage for the construction of the representa-
tion space for continua as presented in [1], and we reproduce the argument
that it is a topological space in order to investigate, in section 3, its con-
nectedness properties.

In this article, the term “mapping” means “continuous function.”
Let I = [0, 1] be the unit interval and let (Iω, d) denote the Hilbert

cube, i.e., the product of denumerably many copies of I endowed with
the product metric. Let td denote the topology defined on the Hilbert
cube by this metric, d. It is well known that the metrizable space (Iω, td)
is universal in the class of all (metrizable) continua; that is, if (X, ρ) is any
metric continuum, then there is a topological embedding from X into Iω.
Let ∼= denote the equivalence relation on the power set of Iω that is defined
by the notion of homeomorphism; i.e., two subspaces of the Hilbert cube
are equivalent under ∼= if and only if they are homeomorphic. Then, by
C∼=, we mean the factor set {C ⊆ Iω |C is a continuum}/ ∼=, and by C, we
generally mean any specific set of representatives for ∼=; for our purposes,
C is such a set of representatives of all subcontinua of the Hilbert cube.

Definition 2.1. Let P be a subset of C and let X ∈ C. Then we write
X ∈ Cl(P) to mean that

(∀ε > 0) (∃Xε ∈ P) (∃fε : X → Xε) [fε is a surjective ε-mapping]

We will prove that Cl is a (topological) closure operator, but to do so,
we will use the following result.

Lemma 2.2. Let ε > 0 and let f : X → Y be an ε-mapping between
compact metric spaces X and Y. Then

(2.1) (∃δ > 0) (∀A ⊆ Y )
[
diam(A) < δ =⇒ diam

(
f−1(A)

)
< ε

]
.
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Proof. Assume not, and then for each n, let xn, yn ∈ X with dX(xn, yn) ≥
ε, but dY (f(xn), f(yn)) ≤ 1

n . Because of compactness, by taking subse-
quences, we may assume that x, y ∈ X satisfy x = limn xn and y =
limn yn. Then dX(x, y) ≥ ε and dY (f(x), f(y)) = 0. That is, f(x) = f(y),
contrary to the fact that f is an ε-mapping. �

In fact, it is not difficult to see that any function between compact
spaces that satisfies (2.1) must be an ε-mapping, so Lemma 2.2 provides
an alternative characterization of ε-mappings, loosely phrased as the fol-
lowing principle: “pre-images of small sets are small.” Now, as promised,
we use this in proving part (d) of the following theorem.

Theorem 2.3. The operator Cl is a topological closure operator. That
is, for all A,B ⊆ C, we have

(a) Cl(∅) = ∅;
(b) A ⊆ Cl(A), (i.e., Cl is extensive);
(c) Cl(A ∪ B) = Cl(A) ∪ Cl(B), (i.e., Cl preserves finite unions);
(d) Cl(Cl(A)) = Cl(A), (i.e., Cl is idempotent).

It follows that τ = {C \ Cl(A)|A ⊆ C} is a topology on C.

Proof. The argument showing that (a) holds is trivial.
For (b), use X = Xε and set fε equal to the identity on X ∈ A.
For (c), first note that Cl is monotone; i.e., A ⊆ B implies Cl(A) ⊆

Cl(B). It then follows that Cl(A) ∪ Cl(B) ⊆ Cl(A ∪ B). For the reverse
inclusion, let P be any member of Cl(A∪B), so that if ε > 0, then there
are Pε ∈ A ∪ B and a surjective ε-mapping fε : P → Pε. Choose a
sequence εn > 0 that converges to 0, and let {nk}k∈N a strictly increasing
infinite sequence such that either for each k, Pεnk

∈ A or for each k,
Pεnk

∈ B. By doing this, we see that P ∈ Cl(A) or P ∈ Cl(B). Part(c)
follows.

Finally, to see that (d) is satisfied, note first that (b) implies that
Cl(A) ⊆ Cl(Cl(A)). For the reverse inclusion, let X ∈ Cl(Cl(A)), and let
ε > 0 be given. Let Xε ∈ Cl(A), and let fε : X → Xε be a surjective ε-
mapping, and let δ > 0 be given as in Lemma 2.2. Because Xε ∈ Cl(A), let
Xδ ∈ A and let g : Xε → Xδ be a surjective δ-mapping. Let z ∈ Xδ. Then
diam

(
g−1(z)

)
< δ, so that diam

(
f−1[g−1(z)]

)
< ε. We are done. �

Now, let us describe a characterization of the interior operator for the
resulting topological space.

Proposition 2.4. Let int denote the interior operator in the topological
space C∼=, with the topology determined by the closure operator Cl. Then,
for any space X and any property P, we have

X ∈ int(P) ⇐⇒ ∃ε > 0 [all ε− images of X are in P] .
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Consequently, every continuous invariant, i.e., any property preserved by
continuous surjections, is an open property.

Proof. To see this, formally negate the definition of the closure of the
complement of P. We leave the details to the reader. �

Remark 2.5. The topology τ on C from Theorem 2.3 does not satisfy
any of the usually considered separation axioms, not even the T0 axiom.
In particular, it leads to unusual three-element paths in C described in
Corollary 3.5 in the next section. Nevertheless, this topology occurs nat-
urally on the representation space of some of the most intuitive classes of
metric spaces, the class of continua. Thus, we have an uncommon case
when a space, which would be considered by some authors “pathologi-
cal,” captures essential qualities of a class of very intuitive and applicable
metrizable topological spaces.

3. Components of C

Here, we show that C has exactly two components, and we demonstrate
that, in C, the subspace of all nondegenerate continua is itself pathwise
connected.

First, we make an observation, as follows.

Remark 3.1. For any property P ⊆ C, let PI be the property of being an
inverse limit of members of P with surjective bonding maps. Some authors
call members of PI “P representable continua.” Then the property PI is
a subset of the closure of P.

Remark 3.2. The class of polyhedra is dense in N . This follows from
the fact that every non-degenerate continuum can be represented as an
inverse limit of polyhedra with surjective bonding mappings. See [7] and
[5].

For the following proof of our main theorem, we define a continuum
L as follows. First, note that there are only countably many mutually
non-homeomorphic polyhedra. Enumerate a class of representatives of
all polyhedra, P = {P1, P2, ...}, and let L be the wedge union of these
spaces, L =

∪∞
j=1 Pj , with junction point p. Precisely, we assume that

Pi ∩Pj = {p} for i ̸= j and limn→∞ diam(Pn) = 0. Clearly, L is a locally
connected continuum.

Theorem 3.3. If X is a nondegenerate continuum, then X is L-like.

Proof. We will show that for every ε > 0, there is a surjective ε-mapping
f : X → L. Thus, fix ε > 0. Let j be a positive integer, and, by [7],
let g : X → Pj be a surjective ε-mapping, and choose δ so that the
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conclusion of Lemma 2.2 is satisfied for g in place of fε. Let A be a closed
δ-neighborhood of the point p in Pj which is an absolute retract, and let I
be an interval with I ∩Pj = {p}. Since A∪ I is also an absolute extensor,
let e : A → A∪ I be a surjective map, which fixes the boundary of A. Let
s map I onto the closure of the complement of Pj in L. Define h on Pj

by setting h(x) = s(e(x)) if x ∈ A, but so that h fixes Pj \A. Then h ◦ g
is the desired ε-mapping from X onto L. �

Corollary 3.4. The set {L} is dense in N . Thus the density of N is 1.

Corollary 3.5. The space N is path connected. Indeed, for any nonde-
generate continua X and Y , there is a three-element path from X to Y
through L.

Proof. Let α(0) = X, α(t) = L for 0 < t < 1, and α(1) = Y . Then α is
such a path. �

Remark 3.6. The results of Theorem 3.3 and corollaries 3.4 and 3.5 can
also be reproduced for any collection P ′ of polyhedra such that for each
finite set of members of P ′, its wedge is in P ′. Indeed, a construction
similar to that of L leads to a locally connected continuum LP′ in Cl(P ′)
such that every member in Cl(P ′) is LP′ -like. In particular, the class of
cell-like continua, the class of continua of dimension less than or equal to
n, and the intersection of these two classes, namely the class of cell-like
continua of dimension less than or equal to n, have density 1 and are path
connected.
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