
Volume 40, 2012
Pages 337–342

http://topology.auburn.edu/tp/

A Countable Product Theorem for
Anti-Ponderous Spaces

by

Peter Nyikos

Electronically published on April 6, 2012

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 40 (2012)
Pages 337-342

http://topology.auburn.edu/tp/

E-Published on April 6, 2012

A COUNTABLE PRODUCT THEOREM FOR
ANTI-PONDEROUS SPACES
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Abstract. An anti-ponderous space is a space in which every in-
finite countably compact subspace has a convergent sequence that
is not eventually constant. It is shown that a countable family of
anti-ponderous spaces has an anti-ponderous product, with only a
modest separation axiom assumed. This still leaves a wide range
of uncertainty if the Continuum Hypothesis is not assumed.

This paper continues a theme begun in [1] and [3], on the effects of car-
dinal functions on the convergent sequences in countably compact spaces,
without necessarily assuming that the spaces in question are Hausdorff or
better. Often, as in the case of the main new result of this paper (The-
orem 7), weaker axioms are adequate for various theorems, and stronger
axioms do not seem to lead to stronger results. Theorem 7 is a natural
variation on the classical result that the product of countably many se-
quentially compact spaces is sequentially compact. It involves a natural
weakening of sequential compactness, given in Definition 4.

Definition 1. A space is countably compact if every countable open cover
has a finite subcover. Equivalently, every infinite sequence has a cluster
point.

Definition 2. A space is sequentially compact if every infinite sequence
has a convergent subsequence.

The following property was introduced in [3], and some cardinal invari-
ants associated with it were discussed there.
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Definition 3. A ponderous space is an infinite, countably compact space
in which every convergent sequence is eventually constant.

Definition 4. An anti-ponderous space is one that has no ponderous
subspaces.

In other words, every countably compact subspace has a convergent
sequence which is not eventually constant. A formally stronger condition
will be given in Corollary 17 near the end of this paper, replacing “not
eventually constant” with “one to one.”

The following modest separation axiom plays a key role in our main
theorem.

Definition 5. A space has Property S if every convergent sequence has
a unique cluster point.

Clearly, every ponderous space is T1, as is every space with Property S.
As is well known, every KC space (that is, a space in which every compact
subset is closed) has Property S, and every Hausdorff space is KC.

Well-known examples of ponderous spaces include βN and its countably
compact subspaces, including the Novak-Teresaka example of a countably
compact Tychonoff space whose square is not countably compact (nor
even pseudocompact). The famous Efimov Conjecture, still not com-
pletely disproven, is equivalent to the conjecture that every ponderous
compact Hausdorff space contains a copy of βN.

The following unpublished improvement on the classical theorem men-
tioned above was discovered by Jan Pelant and Petr Simon, and indepen-
dently by the author.

Theorem 6. The small uncountable cardinal h is the least cardinality of
a family of sequentially compact spaces whose product is not sequentially
compact.

Here h stands for the least height of a splitting tree on ω [2]. A recent
characterization of h related to the above theorem is the result that h is
the least cardinality (also the least net weight) of a countably compact
space that is not sequentially compact, and a KC example was given of a
space that witnesses this [3].

On the other hand, new ideas are needed for any strengthening of the
following result along these lines.

Theorem 7. Let {Xn : n ∈ ω} be a countable family of spaces with
Property S. If none of the Xn contains a ponderous subspace, then neither
does their product.
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Since Property S is productive, Corollary 8 immediately follows.

Corollary 8. The class of anti-ponderous spaces with Property S is count-
ably productive.

This is as far as we are able to go at present.

Problem 9. Is there a model of set theory in which every product of ℵ1

anti-ponderous spaces with Property S is anti-ponderous?

This is in marked contrast to the characterizations of h related above.
For example, Martin’s Axiom implies h = c, and Martin’s axiom is com-
patible with c being “arbitrarily large.” We are somewhat better off in the
opposite direction.

Problem 10. Is it consistent that there is a family of < s anti-ponderous
spaces with property S, whose product contains a ponderous subspace?

Here s is the splitting number, which satisfies h ≤ s ≤ c (see [2], [4],
[7]). Ponderous compact subsets of 2s have been constructed in models
of ℵ1 = s < c (see [5], [6]). In particular, they were shown to exist in any
model obtained by adding random reals to a model of CH in the usual
way [6]; hence, c could be arbitrarily large.

The proof of Theorem 7 involves the following lemmas, the first two of
which are elementary and well known.

Lemma 11. Every countable, countably compact space is compact and
sequentially compact.

Lemma 12. A continuous image of a (countably) compact space is (count-
ably) compact.

Lemma 13. In any space X with Property S, the range of a convergent
sequence with infinite range, together with its (unique) limit point, is a
closed copy of ω + 1.

Proof. Since X is T1, every finite subset is closed discrete, and the range
of a convergent sequence σ, minus its limit point p, is closed discrete in
its relative topology. Therefore, any one-to-one map from ω to ran(σ) \
{p} is a homeomorphism, and its obvious extension to ω + 1 is also a
homeomorphism since every neighborhood of p contains all but finitely
many points in the range of σ, but is not in the closure of any finite
subset of ran(σ) \ {p}. �

By the way, Property S should not be confused with the weaker prop-
erty (to which Lemma 13 does not extend) that no sequence can converge
to more than one point.
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Proof of Theorem 7. Let X = Π∞n=1Xn and suppose no Xn has a ponder-
ous subspace. Let πn denote the projection of X to Xn, and let Y be an
infinite, countably compact subspace of X.

We will show that Y has a one-to-one convergent sequence. Our strat-
egy will be to find countable, compact Hausdorff subspaces Zn ⊂ Xn such
that Π∞n=1Zn =: Z contains an infinite subset of Y . This subset Yω, in
turn, will be the intersection of a descending chain of infinite closed sub-
sets Yn of Y such that πi → Yn+1 ⊂ Zi for all i = 1, . . . , n. Thus, Yω is a
subset of the compact metrizable space Z = ΠnZn. Let σ be a one-to-one
sequence whose range is in Yω, and let τ be a subsequence that converges
in Z. Since Y is countably compact, the unique limit of this sequence is
in Y , and so we will be done.

To ensure that Yω =
∩∞

n=1 Yn is infinite, we will choose points {pn : n ∈
N} by induction in Y , making sure pn is in Ym for all m and n. We will
also define Zn ⊂ Xn and Yn ⊂ Yn−1 by induction. Let Y1 = Y . If π→1 Y
is finite, let Z1 = π→1 Y . Otherwise, let Z1 be a copy of ω+1 in π→1 Y . In
either case, let z1 ∈ Z1 and choose p1 ∈ Y1 such that π1(p1) = z1.

Let Y2 = π←1 Z1. Clearly, Y2 is an infinite closed subspace of Y con-
taining p1. Let Z2 = π→2 Y2 if π→2 Y2 is finite. Otherwise, let Z2 be a copy
of ω + 1 in π→2 Y2 that includes π2(p1). (In spaces satisfying Property S,
adding finitely many points to a copy of ω + 1 still produces a copy of
ω + 1.) In either case, let p2 be a point in Y2 other than p1.

In general, suppose that we have defined infinite closed, hence count-
ably compact subspaces Yi ⊂ Y and Zi ⊂ π→i Yi such that Yj ⊃ Yi for
j ≤ i ≤ n and such that Zn is either finite and all of π→n Yn, or a copy of
ω+1. Also suppose that πn(pi) ∈ Yn for i ≤ n. Let Yn+1 = π←n Zn. Then
either Yn+1 = Yn or Yn+1 is the preimage of a copy of ω + 1.

Let Zn+1 = π→n+1Yn+1 if this image is finite; otherwise, let Zn+1 be
a copy of ω + 1 in π→n+1Yn+1 that includes πn+1(pi) for i = 1, . . . , n. In
either case, let pn+1 ∈ π←n+1Zn+1, pn+1 ̸= pi for i = 1, . . . , n. It is routine
to show that the induction hypotheses are satisfied.

In the trivial case where all but finitely many of the Zn are one-point
spaces, their product is a countable, compact space, and the chain will
stabilize at a Yn where the |Zm| = 1 for all m > n, and we will be done,
as indicated in the second paragraph. Yn is homeomorphic to an infinite
subset of the metric space Πn

i=1Zi.
Otherwise, we continue the induction for infinitely many steps. When

it is done, we will have ensured that Yω is infinite, inasmuch as it contains
all the pi. �

Problem 9 asked whether we can improve on “countable” in Theorem
7. The proof does not seem to lend itself to continuation beyond ω; even
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going to ω + 1 seems to involve sacrificing an essential part of Yω and
practically starting over. The following problem is also open.

Problem 14. Can we weaken the topological conditions on the spaces Xn

in Theorem 7?

The condition on uniqueness of limit points of convergent sequences
was used in showing that Yω is closed in Y and hence countably compact,
that Yω is sequentially closed in Z, and in getting Z to be metrizable by
making sure that a one-to-one sequence and its limit point form a copy
of ω + 1. The third use is not really essential since we could also show
Z to be sequentially compact using Lemma 11 and the classical theorem
that a countable product of sequentially compact spaces is sequentially
compact.

On the other hand, the first two uses do seem to call for something along
the lines of Property S. We need to avoid a situation where any bijective
sequence in Yω that is convergent in Z also has so many cluster points
that it has no convergent subsequences in Y . However, the following
theorem suggests that a weakening of Property S that does not imply the
T1 property might be usable. We recall the following concept from [3].

Definition 15. A space is almost ponderous if it is countably compact
and has no convergent one-to-one sequences.

Theorem 16. Every almost ponderous space contains a ponderous (hence
T1) subspace.

Proof. First, we show that if X is almost ponderous, it contains an almost
ponderous T0 subspace. Let x1 ≡ x2 if and only if x1 and x2 have the same
set of open neighborhoods. This is clearly an equivalence relation on X,
and equivalent points are “topologically indistinguishable.” In particular,
if x is a cluster point of ⟨xn⟩ and yn ≡ xn for all n, then x is also a cluster
point of ⟨yn⟩, as is any other member of the equivalence class of x.

Now, if some equivalence class [x] modulo ≡ were infinite, then any
one-to-one sequence from ω to [x] would converge to each point of [x], a
contradiction. So the axiom of choice for finite sets can be applied to get
an infinite subspace Y of X that meets each equivalence class in exactly
one point. Clearly, Y is T0 and almost ponderous by the comments at the
end of the preceding paragraph.

The proof will be finished once we find an almost ponderous T1 sub-
space of Y , because every almost ponderous T1 space is ponderous. This
is because, in a T1 space, a convergent sequence cannot repeat more than
one point infinitely many times.

For this, we use the following order relation: z ≤ y if and only if
z ∈ cℓ{y}. The minimal closed sets (if any) in a space are of the form cℓ{y}
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for some y, and if Y is T0, then these sets are singletons, and ≤ is a partial
order on Y . If Y is almost ponderous, then no point is below infinitely
many others, and any descending ω-sequence with respect to ≤ would
have a cluster point to which the sequence converges, a contradiction. So
every point is above some minimal point, and the set of minimal points
is infinite, and they are easily seen to constitute a closed subspace Z
which is, thus, almost ponderous. Finally, Z is T1 because singletons are
closed. �
Corollary 17. A space is anti-ponderous if and only if every infinite
countably compact subspace contains a convergent one-to-one sequence.

Proof. The “if” part is obvious. Conversely, by Theorem 16, no anti-
ponderous space can contain an almost ponderous subspace. �

We close with two problems which may be easier to answer than the
previous ones. The second is reminiscent both of Problem 10 and of the
Efimov Conjecture.

Problem 18. Is there a countable family of anti-ponderous, countably
compact spaces whose product is not countably compact?

Problem 19. Is it consistent that the product of fewer than c spaces can
contain a copy of βN without any of the factors containing one?

References

[1] Ofelia T. Alas and Richard G. Wilson, When is a compact space sequentially com-
pact? Topology Proc. 29 (2005), no. 2, 327–335.

[2] Bohuslav Balcar, Jan Pelant, and Petr Simon, The space of ultrafilters on N covered
by nowhere dense sets, Fund. Math. 110 (1980), no. 1, 11–24.

[3] Angelo Bella and Peter Nyikos, Sequential compactness vs. countable compactness,
Colloq. Math. 120 (2010), no. 2, 165–189.

[4] Eric K. van Douwen, The integers and topology, in Handbook of Set-Theoretic
Topology. Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: North-Holland,
1984. 111–167.

[5] Eric K. van Douwen and William G. Fleissner, Definable forcing axiom: an alter-
native to Martin’s axiom, Topology Appl. 35 (1990), no. 2-3, 277–289.

[6] A. Dow and D. Fremlin, Compact sets without converging sequences in the random
real model, Acta Math. Univ. Comenian. (N.S.) 76 (2007), no. 2, 161–171.

[7] Jerry E. Vaughan, Small uncountable cardinals and topology, with an appendix by
S. Shelah, in Open Problems in Topology. Ed. Jan van Mill and George M. Reed.
Amsterdam: North-Holland, 1990. 195–218.

Department of Mathematics; University of South Carolina; Columbia,
SC 29208

E-mail address: nyikos@math.sc.edu




