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LINEAR HOMEOMORPHISMS OF FUNCTION SPACES
AND PROPERTIES CLOSE TO COUNTABLE

COMPACTNESS

HÉCTOR DAVID RAMÍREZ HERNÁNDEZ AND OLEG OKUNEV

Abstract. Several topological properties of countable compact-
ness type are proved to be preserved by the relations of l-equiva-
lence, M -equivalence and A-equivalence of topological spaces.

All spaces considered in this paper are assumed to be Tychonoff (=com-
pletely regular Hausdorff). We use terminology and notation as in [3].

Given a space X, Cp(X) is the linear topological space of all continu-
ous real-valued functions on X equipped with the topology of pointwise
convergence, that is, the topology of the subspace of the set RX of all
real-valued functions on X with the Tychonoff product topology. Two
spaces X and Y are called l-equivalent if the space Cp(X) and Cp(Y ) are
linearly homeomorphic. See [2] for basic properties and constructions and
some essential results in the theory of spaces Cp(X).

The symbols F (X) and A(X) denote the free topological group and
the free Abelian topological group of a Tychonoff space X in the sense
of Markov [5]. Two Tychonoff spaces X and Y are called M-equivalent
(respectively A-equivalent) if their free topological groups (free Abelian
topological groups), are topologically isomorphic. The notions of M -
equivalence and A-equivalence were introduced by Graev in [4] where he
constructed the first known example of non-homeomorphic M -equivalent
spaces and posed a general problem: What topological properties are pre-
served by the relation of M -equivalence? (We say that a topological prop-
erty P is preserved by M -, A- or l-equivalence if for any pair X, Y of
spaces which are equivalent in the respective sense, X has P if and only
if Y has P).
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M -equivalence of two spaces implies their A-equivalence, and A-equiv-
alence implies l-equivalence [1]. As far as the authors know, it is not
known to date whether M -equivalence and A-equivalence are the same.
There are several topological properties that are known to be preserved
by A-equivalence but not by l-equivalence (such as connectedness and,
in the class of polyhedra, homology groups), but covering properties and
cardinal invariants tend to behave similarly under these equivalences.

There are many results related to preservation and non-preservation of
various topological properties under the relations of M -, A-, l- and other
related equivalences (see [2]), however, little is known about preservation
or non-preservation by these relations of countable compactness and simi-
lar properties; apparently, because of the “non-functional” nature of these
properties. While compactness and pseudocompactness are known to be
preserved by linear homeomorphisms of function spaces [9], the question
about the preservation by l-equivalence of countable compactness [1] is
still open. Note that the uncountable version of countable compactness
turned out to be somewhat easier: it is known that the existence of a
closed uncountable discrete subspace is not preserved by M -equivalence
(Example 3.17 in [6]), and the existence of a closed uncountable discrete
subspace in some finite power of the space is preserved even by homeo-
morphisms (not necessarily linear) of the spaces of continuous functions
[7].

In this article we prove the preservation of some properties similar
to countable compactness by A-equivalence, and of one of them by the
relation of l-equivalence. Several arguments in the article rely on the
following statement proved by V. Uspenskij in [9]:

Theorem 0.1. A space X is pseudocompact if and only if Cp(X) is a
countable union of its totally bounded subspaces. In particular, if X is
pseudocompact, and a space Y is l-equivalent to X, then Y is pseudocom-
pact.

1. Countable compactness type properties and free
topological groups

The following statement summarizes basic properties of the free Abelian
topological groups [4].

Theorem 1.1. Let X be a Tychonoff topological space. The free Abelian
topological group over X is the (unique up to a topological isomorphism)
topological group A(X) with the following properties:
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(1) A(X) without topology is the free Abelian group with the set of
generators X,

(2) X is a closed subspace of A(X),
(3) If f : X → G is a continuous mapping of X to an Abelian topolog-

ical group G, then the homomorphism f∗ : A(X) → G extending
f is continuous.

Thus, A(X) is the set of all formal linear combinations k1x1+· · ·+knxn,
where n ∈ N, k1,. . . , kn are integers, and x1, . . . , xn are elements of X,
equipped with the natural group operation. The length of an element a ̸=
0 of A(X) is the minimum number |k1|+ · · ·+ |kn| over all representations
a = k1x1 + · · · + knxn; the length of the neutral element 0 (represented
by the empty linear combination), is by definition equal to 0. The sets
An(X), n ≥ 0, are defined as the sets of all elements of A(X) of length
≤ n. It is easy to see that An(X) ⊂ An+1(X), A(X) =

∪
n∈N An(X), and

that An(X) is a continuous image of (X⊕(−X)⊕{0})n under the addition
mapping; here −X is a homeomorphic copy of X whose elements when
applying the mapping are interpreted as inverses of the corresponding
elements of X. In particular,

Proposition 1.2. Let P be a topological property invariant with respect
to finite unions, finite powers and continuous images. If X has P, then
for every n ∈ N, An(X) has P.

The following fact is proved in [4]:

Theorem 1.3. Let K be a compact subspace of A(X). Then for some
n ∈ N, K ⊂ An(X).

We need the following slight generalization of this:

Proposition 1.4. Let X be a topological space, A(X) the free Abelian
topological group over X, and Y a pseudocompact subspace of A(X). Then
there is n ∈ ω such that Y ⊂ An(X).

Proof. Let g : X ↪→ βX be the inclusion of X into its Stone-Čech compact-
ification. Consider the homomorphism h : A(X) → A(βX) that extends g.
Note that h is one-to one and continuous, and h(An(X)) = An(βX)∩⟨X⟩
where ⟨X⟩ is the subgroup of A(βX) generated by X. Since Y is pseudo-
compact, the image h(Y ) is pseudocompact. On the other hand, since βX
is compact, F (βX) is σ-compact. Thus, the closure of h(Y ) in A(βX) is
σ-compact and pseudocompact, hence compact. By Theorem 1.3, there
is an n ∈ ω such that h(Y ) ⊂ An(βX). Thus, Y ⊂ An(X). �

As a corollary, we obtain
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Theorem 1.5. Let P be a topological property invariant with respect
to continuous images, closed subspaces, finite products and finite unions.
Then the property P is preserved by A-equivalence within the class of
pseudocompact spaces.

Proof. Let X be a space with a property P as in the statement of the
theorem. Let Y be a pseudocompact space A-equivalent to X, and let
i : A(Y ) → A(X) be a topological isomorphism. Then by Theorem 1.4,
there is n ∈ ω such that i(Y ) ⊂ An(X), and by Proposition 1.2, An(X)
has P. Since Y is a closed subspace of A(Y ), i(Y ) is a closed subspace of
An(X), so i(Y ) has P. It follows that Y has P. �

Recall definitions of some countable compactness type properties [10].

Definition 1.6. A space X is totally countably compact if every infinite
set in X contains an infinite subset with compact closure,

Definition 1.7. A space X is called ω-bounded if every countable set in
X has compact closure.

Definition 1.8. Let p be a free ultrafilter on ω. A space X is p-compact
if every sequence in X has a p-limit point in X (a point z is a p-limit
of a sequence {xn : n ∈ ω } if for every neighborhood U of z, the set
{n ∈ ω : xn ∈ U } is an element of p).

Definition 1.9. A space X is called sequentially compact if every se-
quence in X has a convergent subsequence.

Obviously, each of the above properties implies countable compactness,
in particular, pseudocompactness.

Definition 1.10. A topological space X is called initially κ-compact if
every open cover U of X with |U| ≤ κ has a finite subcover.

The following fact is proved, e.g., in [10].

Theorem 1.11. The properties of total countable compactness, ω-bound-
edness, p-compactness, sequential compactness and initial κ-compactness
are invariant with respect to continuous images, closed subspaces and
finite unions.

Recall that a cardinal number κ is said to be a strong limit cardinal
number if 2λ < κ whenever λ < κ. The following fact is proved, e.g., in
[8].

Theorem 1.12. Let {Xa : a ∈ A} be a family of initially κ-compact
spaces, where κ is a singular, strong limit cardinal number. Then X =
Π{Xa : a ∈ A} is initially κ-compact.
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Theorem 1.13. The properties of total countable compactness, ω-bound-
edness, p-compactness, sequential compactness and initial κ-compactness,
with κ a singular strong limit cardinal number, are invariant with respect
to finite products.

Thus,

Theorem 1.14. The properties of total countable compactness, ω-bound-
edness, p-compactness, sequential compactness and initial κ-compactness,
with κ a singular strong limit cardinal, are preserved by A-equivalence.

Proof. Let P be one of the above properties, X a space with the property
P, and Y a space A-equivalent to X. By Uspenskij’s theorem [9], the
space Y is pseudocompact. Now from Theorems 1.5 and 1.11 follows that
Y has P. �

Similarly,

Theorem 1.15. If all finite powers of X are countably compact, and Y
is a space A-equivalent to X, then all finite powers of Y are countably
compact.

Theorem 1.16. Let κ be an infinite cardinal. If Xκ is countably compact,
and Y is a space A-equivalent to X, then Y κ is countably compact.

2. l-equivalence and ω-boundedness

In this section we prove the following theorem.

Theorem 2.1. Let X and Y be l-equivalent spaces. If X is ω-bounded,
then Y is ω-bounded.

Recall that for a Tychonoff space X, Lp(X) is the dual space of the
linear topological space Cp(X) with the weak topology (in different words,
Lp(X) is the subspace of Cp(Cp(X)) consisting of all continuous linear
functions on Cp(X)).

We need the following properties of Lp(X) (see e.g. [2]):

Proposition 2.2. Let X be a Tychonoff space. Then
(1) Cp(X) is the dual space of Lp(X) with the weak topology;
(2) The function ˆ: X → Lp(X) defined by the rule x̂(f) = f(x) for

all x ∈ X and f ∈ Cp(X) is an embedding of X into Lp(X);
moreover, X̂ is a closed Hamel base for Lp(X), and every linear
function h : Lp(X) → R is continuous if and only if the restriction
h|X̂ is continuous.

(3) If F is a closed subspace of X, then the linear subspace of Lp(X)

generated by F̂ is closed in Lp(X).
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From (1) it follows that two spaces X and Y are l-equivalent if and
only Lp(X) and Lp(Y ) are linearly homeomorphic.

We will identify X and X̂; thus, X is a closed topological subspace
of Lp(X), and every element of Lp(X) has a unique up to the order
of summands representation of the form ϕ = λ1x1 + · · · + λkxk where
λ1, . . . , λk ∈ R \ {0} and x1, . . . xk are distinct points of X. We denote
suppϕ = {x1, . . . , xk}, and, for a set S ⊂ Lp(X), suppS =

∪
{suppϕ :

ϕ ∈ S}. Thus, suppS is the smallest subset A of X such that S is
contained in the linear span of A in Lp(X). It is obvious that for a
countable S, suppS is at most countable.

Proposition 2.3. [2] Let L be a linear topological space that contains a
Tychonoff subspace X. Then there is a linear homeomorphism of L onto
Lp(X) fixing the points of X if and only if X is a Hamel base of L and
every continuous function f : X → R has a linear continuous extension
over L.

Recall that a linear topological space is called weak if its topology is
generated by continuous linear real functions on X. In particular, Lp(X)
is a weak space.

Proposition 2.4. [2] If L is a weak linear topological space, then every
continuous function f : X → L has a unique linear continuous extension
to Lp(X).

In particular, for every continuous mapping f : X → Y there is a unique
continuous linear mapping f# : Lp(X) → Lp(Y ) such that f#|X = f .

Proposition 2.5. [2] Lp(X) is a countable union of products of finite
powers of X with finite powers of the unit interval [0, 1]. In particular, if
X compact, then Lp(X) is σ-compact.

Proposition 2.6. Let X be a pseudocompact space, βX its Stone-Čech
compactification, and i : X ↪→ βX the standard embedding. Then the
mapping i# : Lp(X) → Lp(βX) is an embedding of linear topological
spaces.

Proof. Let L be the subspace of Lp(X) spanned by X. Then L is weak,
because it is a linear topological subspace of the weak space Lp(βX),
so to prove that i# is an embedding it is enough to prove that every
continuous function f : X → R has a continuous extension over L. Since
X is pseudocompact, f is bounded, so there is a continuous extension
g : βX → R of f . Let g# : Lp(βX) → R be the continuous linear extension
of g, then g#|L is the required continuous linear extension of f . �



LINEAR HOMEOMORPHISMS OF FUNCTION SPACES 7

Thus, for pseudocompact spaces X, we may view Lp(X) as the sub-
space of Lp(βX) spanned by X.

Proposition 2.7. Let X and Y be pseudocompact spaces, βX and βY
their Stone-Čech compactifications, and h : Lp(X) → Lp(Y ) a linear hom-
eomorphism. Then there is a linear homeomorphism h̃ :Lp(βX)→Lp(βY )

such that h̃|Lp(X) = h.

Proof. Since βY is compact, the space Lp(βY ) is σ-compact. It follows
that the closure B in Lp(βY ) of the pseudocompact subspace h(X) is
compact. Let h1 : βX → B be the continuous extension of h|X, and
h̃ : Lp(βX) → Lp(βY ) the continuous linear extension of h1.

Let g = h−1. By a similar argument, there is a linear continuous
g̃ : Lp(βY ) → Lp(βX) such that g̃|Lp(Y ) = g. Obviously, (g̃ ◦ h̃)|X =

(g ◦h)|X = idX , so by the continuity, (g̃ ◦ h̃)|βX = idβX , and since βX is
a Hamel base of Lp(βX), g̃ ◦ h̃ = idLp(βX). A symmetric argument shows
that h̃g̃ = idLp(βY ), so h̃ is a linear homeomorphism. �

We are now ready to prove the main theorem of this section.

Proof of Theorem 2.1. Let X and Y be l-equivalent spaces such that X
is ω-bounded. Then X is pseudocompact, and by Uspenskij’s Theorem
[9], Y is also pseudocompact. Since X and Y are l-equivalent, by Propo-
sition 2.7 there is a linear homeomorphism h : Lp(βX) → Lp(βY ) such
that h(Lp(X)) = Lp(Y ). Let S be a countable set in Y . Put B = h−1(S).
Then B ⊂ Lp(X) and suppB ⊂ X is at most countable. Let K be the
closure of suppB in X. Since X is ω-bounded, K is compact. Let E be
the linear subspace of Lp(X) generated by K. Then B ⊂ E and E is
closed in Lp(βX), because K is closed in βX.

Put F = h(E), then F ⊂ Lp(Y ), F is closed in Lp(βY ), and S ⊂ F . It
follows that S is contained in F∩βY ⊂ Lp(Y )∩βY = Y . Since F is closed
in Lp(βY ), F ∩ βY is compact, so the closure of S in Y is compact. �

3. Some open problems

We do not know the answers to the following questions:

1. [1] Let X and Y be l-equivalent spaces. If X is countably compact,
must Y be countably compact?

2. Let X and Y be M -equivalent spaces. If X is countably compact,
must Y be countably compact?

3. Let X and Y be l-equivalent spaces. If all finite powers of X are
countably compact, must Y be countably compact?
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4. Let X and Y be l-equivalent spaces. If X is sequentially compact,
must Y be sequentially compact?

5. Let X and Y be l-equivalent spaces. If X is totally compact, must
Y be totally compact?
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