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Abstract. In this paper, we discuss generalized metric properties
of paratopological groups. We prove that a paratopological group
is sn-metrizable if and only if it is so-metrizable. Moreover, we
pose some questions concerning generalized metric properties on
paratopological groups.

1. Introduction

A semitopological group G is a group G with a topology such that the
product map of G×G into G is separately continuous. If G is a semitopo-
logical group and the inverse map of G onto itself associating x−1 with
arbitrary x ∈ G is continuous, then G is called a quasitopological group. A
paratopological group G is a group G with a topology such that the product
map of G×G into G is jointly continuous. If G is a paratopological group
and the inverse map of G onto itself associating x−1 with arbitrary x ∈ G
is continuous, then G is called a topological group. However, there exists a
paratopological group which is not a topological group; the Sorgenfrey line
([7, Example 1.2.2]) is such an example. Paratopological groups were dis-
cussed and many results have been obtained [2, 3, 4, 5, 12, 15, 16, 17, 18].
Obviously, each semitopological group is homogeneous, so it is enough to
define the topology at one point and then translate it.
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In this paper, we mainly discuss the generalized metric properties on
paratopological groups and pose some questions concerning generalized
metric properties on paratopological groups. In section 3, we prove that
a paratopological group is sn-metrizable if and only if it is so-metrizable.
In section 4, we mainly discuss some questions concerning generalized
metric properties on paratopological groups.

2. Preliminaries

Let X be a space. For P ⊂ X, the set P is a sequential neighborhood
of x in X if every sequence converging to x is eventually in P . P is a
sequentially open subset of X if P is a sequential neighborhood of x in X
for each x ∈ P . X is said to be a sequential space [8] if each sequentially
open subset is open in X.

Definition 2.1. Let P =
∪

x∈X Px be a cover of a space X such that
for each x ∈ X, (a) if U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px;
(b) the family Px is a network of x in X, i.e., x ∈

∩
Px, and if x ∈ U

with U open in X, then P ⊂ U for some P ∈ Px.
(1) The family P is called a sn-network (sequential-neighborhood net-

work) [14] for X if each element of Px is a sequential neighborhood of
x in X for each x ∈ X. X is called snf-countable [14], if X has a sn-
network P such that each Px is countable. A regular space X is called
sn-metrizable [14] if X has an σ-locally finite sn-network.

(2) The family P is called a so-network (sequentially-open network)
[14] for X if each element of Px is a sequentially open neighborhood of
x in X for each x ∈ X. X is called sof-countable [14], if X has an so-
network P such that each Px is countable. A regular space X is called
so-metrizable [14] if X has an σ-locally finite so-network.

(3) The family P is called a weak base for X [1] if, for every A ⊂ X,
the set A is open in X whenever for each x ∈ A there exists P ∈ Px such
that P ⊂ A. The space X is weakly first-countable if Px is countable for
each x ∈ X.

It is easy to see that [14]
(1) weakly first-countable spaces ⇔ snf-countable and sequential spaces;
(2) weak bases ⇒ sn-networks for a space X;
(3) sn-networks ⇒ weak bases for a sequential space X;
(4) every sequential and sof-countable space is first-countable.

All spaces are Hausdorff unless stated otherwise. The symbol N denotes
the natural numbers. The letter e denotes the neutral element of a group.
Readers may refer to [3, 7, 9] for notations and terminology not explicitly
given here.
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3. sn-metrizability in paratopological groups

Let G be a snf-countable paratopological group. Then it is easy to see
that G has a sn-network {Vn(x) : x ∈ X,n ∈ N} such that the following
conditions are satisfied:

(1) each Vn(x) is a sequential neighborhood of x;
(2) {Vn(x) : n ∈ N} is a network at x;
(3) Vn+1(x) ⊂ Vn(x) for each n ∈ N and x ∈ X.
Therefore, we will always assume that a sn-network of an snf-countable

paratopological group satisfies the above conditions.
The following two lemmas are an easy exercise.

Lemma 3.1. Suppose that {Vn(x) : n ∈ N, x ∈ G} and {Wn(x) : n ∈
N, x ∈ G} are two sn-networks in the snf-countable paratopological group
G. Then, for each x ∈ G and n ∈ N, there exists m ∈ N such that
Wm(x) ⊂ Vn(x).

Lemma 3.2. Suppose that {Vn(x) : n ∈ N, x ∈ G} is a sn-network in the
snf-countable paratopological group G. For each x ∈ G and each n ∈ N,
put Wn(x) = x · Vn(e). Then {Wn(x) : n ∈ N, x ∈ G} is a sn-network in
G.

Lemma 3.3. Suppose that {Vn(x) : n ∈ N, x ∈ G} is a sn-network in the
snf-countable paratopological group G. For each x ∈ G and each n ∈ N,
put Wn(x) = x · Vn(e) · Vn(e). Then {Wn(x) : n ∈ N, x ∈ G} is a sn-
network in G.

Proof. By Lemmas 3.1 and 3.2, we can assume that Vn(x) = x ·Vn(e), for
each x ∈ G and each n ∈ N. Since G is joint continuity, it is easy to see
that {Wn(x) : n ∈ N, x ∈ G} is a sn-network in G. �
Theorem 3.4. Every snf-countable paratopological group G is sof-count-
able.

Proof. Let {Vn(x) : n ∈ N, x ∈ G} be a sn-network in G. For each x ∈ G
and n ∈ N, we can assume tha Vn(x) = x · Vn(e) by Lemma 3.2. Let
Un = {x ∈ Vn(e) : x · Vk(e) ⊂ Vn(e) for some k ∈ N}. Obviously, we
have e ∈ Un ⊂ Vn(e). Next we show that Un is sequentially open in G.
Indeed, take any y ∈ Un and a sequence {yn : n ∈ N} converging to y.
Then y · Vk(e) ⊂ Vn(e) for some k ∈ N. By Lemmas 3.1, 3.2 and 3.3, it
is easy to see that there exists an m ∈ N such that (y · Vm(e)) · Vm(e) ⊂
y ·Vk(e). Hence (y ·Vm(e)) ·Vm(e) ⊂ Vn(e), which implies that Vm(y) = y ·
Vm(e) ⊂ Un. Since Vm(y) is a sequential neighborhood at y, the sequence
{yn : n ∈ N} is eventually in Vm(y), hence eventually in Un Therefore,
the set Un is sequentially open in G. Thus {Um : m ∈ N} is a sequentially
open neighborhood network at e. Then G is sof-countable. �
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Corollary 3.5. Every regular sn-metrizable paratopological group is so-
metrizable.

Corollary 3.6. Every sequentially snf-countable paratopological group is
first-countable.

Corollary 3.7. If G is a weakly first-countable paratopological group,
then G is first-countable.

Proof. Since a weakly first-countable space is snf-countable and sequen-
tial, it follows from Theorem 3.4 that G is sof-countable. Then G is
first-countable since G is sequential space. �

Corollary 3.8. If G is a weakly first-countable topological group, then G
is metrizable.

A related concept for sn-networks is cs-networks.

Definition 3.9. Let P be a family of subsets of a space X. The family
P is called a cs-network [10] for x ∈ X if whenever a sequence {xn}n
converges to x and U is open in X and contains x, there exist m ∈ N and
P ∈ P such that {x} ∪ {xn : n > m} ⊂ P ⊂ U . If every point of X has
a countable cs-network, then we call X csf-countable.

It is easy to see that [14]
(1) snf-countable spaces ⇒ csf-countable spaces;
(2) weak bases ⇒ sn-networks ⇒ cs-networks for a space X.

Example 3.10. There exists a csf-countable topological group G such
that G is not snf-countable.

Proof. Let X be a convergent sequence, and let G be the free Abelian
topological group A(X). Then A(X) is a countable kω-space1 [3, Corollary
7.4.2], and hence A(X) is csf-countable and sequential since a countable
kω-space is a sequential space with a countable cs-network [19]. However,
A(X) is not metrizable [3, Theorem 7.1.20]. Then G is not snf-countable
since a sequential snf-countable space is first-countable by Corollary 3.6,
and hence G would be metrizable, which is a contradiction. �

1A quotient image of a topological sum of countably many compact spaces is called
a kω-space.
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4. Open questions

In view of Theorem 3.4, we have the following question.

Question 4.1. Let G be a snf-countable semitopological group or a qua-
sitopological group. Is G sof-countable?

Definition 4.2. Let (X, τ) be a topological space. We define a sequential
closure-topology στ [8] on X as follows: O ∈ στ if and only if O is a se-
quentially open subset in (X, τ). The topological space (X,στ ) is denoted
by σX.

It is easy to see that σG is a quasitopological group for a topological
group G.

The following question was posed by Y. Ge during the 1st Topology
Forum held in Zhangzhou, PRC.

Question 4.3. Let G be a topological group. Is σG a topological group?

The following theorem is a partial answer to Question 4.3.

Theorem 4.4. Let G be a snf-countable topological group. Then σG is a
topological group.

Proof. It follows from Corollary 3.5 that G is sof-countable. Let {Vn : n ∈
N} be a decreasing so-network at point e. Therefore, {Vn : n ∈ N} is a
neighborhood base at point e in σG. Indeed, let U be a sequentially open
set in G containing e; then there exists n ∈ N such that Vn ⊂ U . For,
suppose that Vn * U for each n ∈ N. Then we can take a xn ∈ Vn \ U
for each n ∈ N. Obviously, the sequence {xn}n converges to e. Since U is
a sequentially open neighborhood at e, the sequence {xn}n eventually in
U . However, {xn : n ∈ N}∩U = ∅, which is a contradiction. By the joint
continuity of the operation in G, it is easy to see that {Vn · Vn : n ∈ N}
is also a decreasing so-network at e. For each n ∈ N, there exists an
m ∈ N such that V 2

m ⊂ Vn. For, suppose that Vm · Vm * Vn for each
m ∈ N. Then we can take a point ym ∈ Vm · Vm \ Vn for each m ∈ N.
Obviously, the sequence {ym}m converges to e. Since Vn is a sequentially
open neighborhood at e, the sequence {ym}m eventually in Vn. However,
{ym : m ∈ N} ∩ Vn = ∅, which is a contradiction. Hence, the operation in
σG is jointly continuous. So σG is a topological group. �

A regular space is called ℵ if it has a σ-locally finite cs-network. A
space X is said to have a Gδ-diagonal if the diagonal ∆={(x, x) :x∈X}
can be represented as the intersection of a countable family of open neigh-
borhoods of ∆ in X ×X.

Question 4.5. Is every snf-countable topological group an ℵ-space?
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Assuming Martin’s Axiom, E.V. Douwen constructed in [6] an infinite
countably compact topological group G without non-trivial convergent
sequences. Obviously, G is snf-countable. Suppose that G is an ℵ-space.
Then G has a Gδ-diagonal [9, Theorem 4.6], and G is metrizable since it
is well known that a countably compact space with a Gδ-diagonal is com-
pact metrizable [9, Theorem 2.14]. Since G has no non-trivial convergent
sequences, G is discrete, and therefore is finite since G is compact, which
is contradiction with G being infinite. Therefore, G is not an ℵ-space.

A subset B of a paratopological group G is called ω-narrow in G if,
for each neighborhood U of the neutral element of G, there is a countable
subset F of G such that B ⊂ FU ∩ UF .

Question 4.6. Does every snf-countable ω-narrow topological group have
a countable sn-network?

Definition 4.7. Let X be a space and {Pn}n a sequence of collections
of open subsets of X.

(1) {Pn}n is called a quasi-development for X if for every x ∈ U with
U open in X, there exists an n ∈ N such that x ∈ st(x,Pn) ⊂ U .

(2) {Pn}n is called a development for X if {st(x,Pn)}n is a neigh-
borhood base at x in X for each point x ∈ X.

(3) X is called quasi-developable (resp. developable), if X has a quasi-
development (resp. development).

(4) X is called Moore, if X is regular and developable.
(5) A space X has a uniform base if and only if it is a metacompact

developable space.

Recently, P.Y. Li, L. Mou and S.Z. Wang [18] have proved that a Moore
paratopological group need not be metrizable. Therefore, C. Liu posed
the following question in a private communication with the author in this
paper.

Question 4.8. Is every regular paratopological group with a uniform base
metrizable?

Let (X, τ) be a topological space. A function g : N ×X → τ satisfies
that x ∈ g(n, x) for each x ∈ X,n ∈ N. A space X is a β-space [9] if there
is a function g : N×X → τ such that if x ∈ g(n, xn) for each n ∈ N, then
the sequence {xn} has a cluster point in X.

In [16], the authors proved that each first-countable β-space is devel-
opable. Therefore, we have the following question.

Question 4.9. Is every quasi-developable paratopological (semitopologi-
cal) group a β-space?
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In [13], F. Lin and C. Liu proved that a Baire quasi-developable para-
topological group is a topological group. However, the following is still
open.

Question 4.10. Is every Baire quasi-developable semitopological (or
quasitopological) group a topological group?

Definition 4.11. Let X be a space. If there exists a sequence of open
covers {Un}n satisfying the following condition:

(♯) For each x ∈ X and a sequence {xn}, if xn ∈ st2(x,Un) then {xn}
has a cluster point in X.

Then X is called a wM-space.

It is still open whether a wM-space with a Gδ-diagonal is metrizable
[11]. Therefore, we have the following question.

Question 4.12. Let G be a paratopological group with a Gδ-diagonal. If
G is a wM-space, is it metrizable?

A regular space X is said to be a σ-space if X has a σ-locally finite
network.

Question 4.13. Let G be a normal paratopological group. If G is a k-
space and a σ-space, is it paracompact?
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