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ČECH-STONE COMPACTIFICATIONS OF DISCRETE
SPACES IN ZF AND SOME WEAK FORMS OF THE

BOOLEAN PRIME IDEAL THEOREM

ERIC J. HALL AND KYRIAKOS KEREMEDIS

Abstract. For every infinite set X, we show that:
(i) In ZF, the Stone space S(X) of the Boolean algebra of all
subsets of X is homeomorphic with the Čech-Stone extension β(X)

of the discrete space X.
(ii) In ZF + BPI (the Boolean Prime Ideal theorem), Id(X) (X
has an independent family of size |P(X)|) ↔ “∀X,2P(X) is a con-
tinuous image of S(X)”.
(iii) In ZF+ Id(X), “every filterbase of X is a subset of an ultra-
filter of X” ↔ “2P(X) is compact”. However, in ZF alone, “every
filterbase of X is a subset of an ultrafilter of X” 9 “2P(X) is com-
pact”.

1. Notation and terminology

Let X = (X,T ) be a topological space.

X is said to be compact iff every open cover U of X has a finite subcover
V. Equivalently, X is compact iff every family G of closed subsets of X
with the finite intersection property, fip for abbreviation, has a non-empty
intersection.

X is said to be ultrafilter compact iff every ultrafilter F of X converges
to some point x ∈ X.
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Given a set X, 2X denotes the Tychonoff product of the discrete space
2 (2 = {0, 1} is taken with the discrete topology) and,

B(2X) = {[p] : p ∈ Fn(X, 2, ω)},
where Fn(X, 2, ω) is the set of all finite partial functions from X into 2
and

[p] = {f ∈ 2R : p ⊂ f},
will denote the canonical (clopen) base for the product topology on 2X .

If X ̸= ∅ then S(X) will denote the Stone space of the Boolean algebra
of all subsets of X. i.e., the set of all ultrafilters on X together with the
topology having as a base the collection of all (clopen) sets of the form

[Z] = {F ∈ S(X) : Z ∈ F}.
A family F of subsets of X is independent if for any two non-empty finite
and disjoint subsets A,B ⊆ F the set

∩
A ∩ (

∩
{Bc : B ∈ B} is infinite.

Let X be a non empty set endowed with the discrete topology. Let,
• χA denote the characteristic function of A,
• ∆X = {χA : A ∈ P(X)},
• C = [0, 1]X be the set of all functions from X to [0, 1],

• δ : X→ 2∆X and e : X→ [0,1]
C be the functions given by δ(x) =

(χA(x))A∈P(X) and e(x) = (f(x))f∈C , where [0,1]
C denotes the

Tychonoff product of C many copies of the subspace [0,1] of the
real line R,
• π∆X

: [0,1]
C → [0,1]

∆X be the projection of [0,1]C onto [0,1]
∆X ,

• Fx denote the principal ultrafilter of X generated by x ∈ X,
• Wx = {χA : A ∈ Fx}, x ∈ X,
• for all y ∈ 2∆X ,F(y) denotes the set {A ∈ P(X) : h(χA) = 1}.

Clearly,
• δ = π∆X

◦ e, and the image of π∆X
◦ e is contained in 2∆X .

• F(χWx) = {A ∈ P(X) : χWx(χA) = 1} = {A ∈ P(X) : x ∈ A} =
Fx,
• the collections ∆X and C separate points from closed sets. Hence,

the functions δ and e are embeddings, see Theorem 4.2 in [8] p.
220 for details.

Furthermore, for all A ∈ P(X),
(1)

χWx(χA) =

{
1 if χA ∈ Wx

0 if χA /∈ Wx
=

{
1 if x ∈ A
0 if x /∈ A

= χA(x) = δ(x)(χA)

and consequently,

(2) δ(X) = {χWx : x ∈ X}.
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Definition 1. Let X be a non empty set endowed with the discrete
topology. γ(X) = δ(X) is called the Stone extension of X and β(X) =

e(X) is called the Čech-Stone extension of X.
Let Y be an ultrafilter compact T2 space and f : X → Y be a func-

tion. Clearly, for every F ∈ S(X), {f(F ) : F ∈ F} is an ultrafilter of
f(X). Since closed subspaces of ultrafilter compact spaces are clearly
ultrafilter compact, it follows that the ultrafilter H of f(X) which is gen-
erated by {f(F ) : F ∈ F} converges to a unique point yF ∈ f(X). It is
straightforward to verify that

(3) {yF } =
∩
{f(F ) : F ∈ F}.

Definition 2. Let X be a non empty set, Y an ultrafilter compact T2

space and f : X → Y be a function. The function f̄ : S(X) → Y given
by f̄(F) = yF where, for every F ∈ S(X), yF is given by (3), is called the
Stone extension of f .

Clearly, if F = Fx then f̄(Fx) = f(x) and this justifies the term “ f̄ is
an extension of f ” in case we identify Fx with x.

Let X be an infinite set.
(1) C(X) : The Tychonoff product 2P(X) is compact.
(2) BPI(X) : Every filterbase of X is included in an ultrafilter of

X.
(3) BPI : (∀Y )BPI(Y ).
(4) Id(X) : X has an independent family of size |P(X)|.
(5) AC : Every family of non-empty sets has a choice function.

2. Introduction and some preliminary results

Let X be a topological space and C be a base for the closed subsets of X
(every closed subset of X can be expressed as an intersection of members
of C). Clearly, X is compact iff for every G ⊂ C with the fip,

∩
G ̸= ∅.

In particular, if X = S(X) and C = {[A] : A ∈ P(X)} then we have the
following well known result:
Proposition 3. “S(X) is compact” iff BPI(X).
Proof. (→) Assume S(X) is compact and let H be a filter of X. Clearly,
{[H] : H ∈ H} ⊂ C has the fip and, by our hypothesis,

∩
{[H] : H ∈ H} ̸=

∅. It is easy to see that every F ∈
∩
{[H] : H ∈ H} is an ultrafilter of X

extending H.
(←) Fix a family {[Ai] : i ∈ I} ⊂ C with the fip. Clearly, {Ai : i ∈ I}

has the fip and by BPI(X), {Ai : i ∈ I} is included in an ultrafilter F .
Clearly, F ∈

∩
{[Ai] : i ∈ I} ̸= ∅ and consequently S(X) is compact as

required. �
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Let X be an infinite set endowed with the discrete topology. In ZFC
it is known that S(X) is homeomorphic with the Čech-Stone extension
β(X) of X and the latter extension is compact (see e.g. [9] Prop 1.42).
In ZF however, S(X) and β(X) need not be compact. So, the question
which arises at this point is:
Question 1. Are S(X) and β(X) homeomorphic in ZF?

In addition to Proposition 3, other characterizations of BPI(X) in
terms of compactness are known for certain special cases:
Theorem 4. (i) ([6]) BPI(ω) iff 2P(ω) is compact.
(ii) ([5]) BPI(R) iff 2P(R) is compact.

In view of Theorem 4, one may ask:
Question 2. Is it true in ZF that for every infinite set X, BPI(X) iff
C(X)?

The research in this paper is motivated by questions 1 and 2.
Regarding Question 1 we will establish in Theorems 14 and 15 that

S(X) ≃ β(X) ≃ γ(X) in ZF.
With respect to Question 2 we will show in Theorems 18 and 20 that

in ZF + Id(X), BPI(X) iff C(X) but in general in ZF, BPI(X) does
not imply C(X).

The last result in this section is listed here for future reference.
Theorem 5. ([7, Proposition 3]) (ZF) If |X| = |Y |, then 2X ≃ 2Y . i.e.,
the Tychonoff products 2X and 2Y are topologically homeomorphic.

3. Compactifications

The main results about Stone spaces and their proofs are in the follow-
ing section, mostly independently of this section. This section provides
further context and comparison between what is provable in ZFC versus
what is provable in ZF.

Let T be a Tychonoff space (meaning Hausdorff and completely reg-
ular). Recall that the Čech-Stone compactification of T can be charac-
terized as follows: B is a Čech-Stone compactification of T if and only if
(i) There is an embedding j : T → B whose image is dense in B, (ii) B
is compact Hausdorff, and (iii) for every continuous f : T → K where K
is compact Hausdorff, there exists a unique continuous F : B→ K which
extends f in the sense that F ◦ j = f . It is well-known that in ZFC
(or even ZF + BPI) it can be proven that every Tychonoff space has
a Čech-Stone compactification. Furthermore, using the universal prop-
erty (iii) (and some lemmas about dense subsets of Hausdorff spaces),
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well-known arguments show that the Čech-Stone compactification of a
given T, if it exists, is unique in the sense that there exists a homeomor-
phism between the compactifications which fixes all elements of T. (See,
e.g., [10] 19.6–19.10.)

If T is an infinite discrete space, then it cannot be proved in ZF that
β(T ) (as defined in Section 1) is the Čech-Stone compactification of T.
However, by changing the definition somewhat, we can find a universal
property for β(T ) which holds in ZF.

Definition 6. A cube is a product of copies of the space [0,1]. A space
is cube-compact if it is homeomorphic to a closed subspace of a cube.

Clearly β(X), γ(X), and 2∆X as defined in Section 1 are cube-compact.

Proposition 7. Every cube-compact space is ultrafilter compact.

Proof. It is straightforward that closed subspaces of ultrafilter compact
spaces are ultrafilter compact, so it suffices now to show that cubes are
ultrafilter compact. (The following argument can be generalized to show
that every product of ultrafilter compact spaces is ultrafilter compact.)

Let F be an ultrafilter of [0,1]
Y . Clearly, for every x ∈ Y,Fx =

{πx(F ) : F ∈ F} is an ultrafilter of the compact space [0,1] (resp.
2). Hence, Fx converges to a unique point, say f(x) ∈ [0, 1] (resp.
f(x) ∈ {0, 1}). It is straightforward to see that every neighborhood V
of (f(x))x∈Y is a member of F . Hence, F converges to (f(x))x∈Y and
[0,1]

Y is ultrafilter compact as required. �

For Hausdorff spaces, the notions of compactness and cube-compactness
are equivalent in ZFC. However, in ZF they are not equivalent, and nei-
ther notion is stronger than the other. BPI is equivalent to the statement
“every cube is compact”; since BPI is not provable in ZF it is consistent
that there are cube-compact Hausdorff spaces (for example, cubes) which
are not compact. For the consistency with ZF of a compact Hausdorff
space that cannot be embedded in a cube, see Example 2.4 in [1].

Definition 8. For a Tychonoff space T, a Čech-Stone cube-compactifica-
tion of T is a space B such that (i) there is an embedding j : T→ B whose
image is dense in B, (ii) B is cube-compact and Hausdorff, and (iii) for
every continuous f : T → K where K is cube-compact and Hausdorff,
there exists a unique continuous F : B→ K which extends f in the sense
that F ◦ j = f .

Remark 9. The argument mentioned above for the uniqueness of the
Čech-Stone compactification of T can be easily adapted to show unique-
ness of the Čech-Stone cube-compactification of T.
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Some of the results of the next section can be summarized as follows:

Theorem 10. For a discrete space X, the Stone space S(X) is a Čech-
Stone cube-compactification.

Proof. The embedding X → S(X) obtained by mapping each x ∈ X to
the fixed ultrafilter Fx ∈ S(X) certainly has a dense image in S(X), since
every basic open set of S(X) contains fixed ultrafilters. So part (i) of
Definition 8 is satisfied.

It will follow from Theorem 14 below that S(X) is cube-compact (part
(ii) of Definition 8), using the observation that γ(X) is clearly cube-
compact.

Finally, it will follow from Theorem 13 below (along with Proposition 7)
that S(X) has the universal property (iii) of Definition 8. �

After Theorem 10 is established, the result that S(X) ≃ β(X) could be
proven by showing that β(X) is also a Čech-Stone cube-compactification
(see Remark 9). This may be done by modifying usual ZFC argu-
ments (e.g. [10] 19.5) showing that β(X) is a Čech-Stone compactifi-
cation. (More generally, this approach shows that a Čech-Stone cube-
compactification exists for every Tychonoff space, not just discrete spaces).
We will not follow this approach here; instead we give a more direct proof
that S(X) ≃ β(X) in Theorem 15.

4. Main results

Proposition 11. Let X be a non empty set, Y an ultrafilter compact
T2 space and f : X → Y be a function. Then:
(i) For every F ∈ S(X), {f̄(F)} =

∩
{f̄([F ]) : F ∈ F}, where f̄ is the

Stone extension of f .
(ii) For every A ∈ P(X), f̄([A]) = f(A). In particular, for A = X,
f̄(S(X)) = f(X).

Proof. (i) By (3) we have,

(4) {f̄(F)} =
∩
{f(F ) : F ∈ F}.

We claim that

(5) for every A ∈ P(X), f̄([A]) ⊆ f(A).

We have:
y ∈ f̄([A]) ↔ there exists H ∈ [A] with f̄(H) = y → {y} =

∩
{f(H) :

H ∈ H}.
Since A ∈ H we see that y ∈ f(A) and consequently f̄([A]) ⊆ f(A) as

required.
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Since for every F ∈ F , f̄(F) ∈ f̄([F ]), we see, in view of (4) and (5)
that:

(6) {f̄(F)} ⊆
∩
{f̄([F ]) : F ∈ F} ⊆

∩
{f(F ) : F ∈ F} = {f̄(F)}

finishing the proof of (i).
(ii) This follows at once from (5) and the observation that for every

A ∈ P(X), f(A) ⊆ f̄([A]). �

Our next result in this section shows that for every y ∈ γ(X)\δ(X),
F(y) is a free ultrafilter of X.

Proposition 12. Let X be an infinite set. Then, for every y∈γ(X)\δ(X),
F(y)(= {A ∈ P(X) : y(χA) = 1}) is a free ultrafilter of X.

Proof. First we show that F(y) is a filter of X.
(a) ∅ /∈ F(y). Assume on the contrary and let ∅ ∈ F(y). Then,

V = [{(χ∅, 1)}] is a neighborhood of y. Hence, V ∩ δ(X) ̸= ∅. Fix
χWx ∈ V ∩ δ(X). It follows that χWx(χ∅) = 1. Therefore, χ∅ ∈ Wx and
x ∈ ∅. Contradiction!

(b) X ∈ F(y). Assume, aiming for a contradiction, that X /∈ F(y).
Hence, y(χX) = 0. Fix χWx

∈ δ(X) ∩ [{(χX , 0)}]. Then, χX /∈ Wx and
x /∈ X. Contradiction!

(c) Assume that A,B ∈ F(y). We show that A∩B ∈ F(y). Assume on
the contrary that A∩B /∈ F(y). Then, V = [{(χA, 1), (χB , 1), (χA∩B , 0)}]
is a neighborhood of y. Fix χWx ∈ V ∩ δ(X). Then, χA, χB ∈ Wx and
χA∩B /∈ Wx. Therefore, x ∈ A, x ∈ B but x /∈ A ∩B. Contradiction!

(d) Assume that A ∈ F(y) and A ⊆ B ∈ P(X). If y(χB) = 0 then
V = [{(χA, 1), (χB, 0)}] is a neighborhood of y. Fix χWx ∈ V ∩ δ(X).
Clearly, χA ∈ Wx and χB /∈ Wx. Thus, x ∈ A and x /∈ B. Contradiction!

From (a) - (d) it follows that F(y) is a filter of X.
Next we show that F(y) is maximal. Let A ∈ P(X). We show that

either A ∈ F(y) or Ac ∈ F(y). Assume on the contrary and let A,Ac /∈
F(y). Fix χWx ∈ δ(X) ∩ [{(χA, 0), (χAc , 0)}]. It follows that x /∈ A and
x /∈ Ac. Contradiction!

Since for all x ∈ X, y ̸= χWx
, it follows that F(y) ̸= F(χWx

) = Fx for
all x ∈ X. Hence, F(y) is free finishing the proof of the proposition. �

We show next that the Stone extension f̄ : S(X)→ Y of any function
f : X → Y is continuous in case Y is ultrafilter compact and T3.

Theorem 13. Let X be a non empty set, Y an ultrafilter compact T3

space and f : X → Y be a function. Then:
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(a) The Stone extension f̄ of f is continuous and unique.
(b) BPI(X) implies f̄ is closed and onto f(X).

Proof. (a) LetW be a filter of S(X) converging to F ∈S(X). This means
that for every F ∈ F , [F ] ∈ W. Hence,

{f̄([F ]) : F ∈ F} ⊆ {f̄(W ) : W ∈ W} = G.

By (5), f̄([F ]) ⊆ f(F ) for every F ∈ F . Thus, f(F ) ∈ G for every F ∈ F .
We show that G converges to f̄(F) = yF . To see this, fix V a closed
neighborhood of yF in f(X). By (6),

∩
{f(F ) : F ∈ F} = {yF}. Hence,

V ∩f(X) meets non trivially every member of the ultrafilter {f(F ) :F ∈F}
of f(X) and consequently V ∩ f(X) = f(F ) for some F ∈ F . Hence,
V ∩ f(X) = f(F ) ⊆ V and V ∈ G as required. Thus, f̄ is continuous as
required.

To see that f̄ is unique let g : S(X) → f(X) be a continuous
extension of f . Since f̄ , g are continuous functions, it follows that K =
{F ∈ S(X) : f̄(F) = g(F)} is a closed subspace of S(X). Since X ⊆ K
and X = S(X), we see that K = S(X). Thus, f̄ = g as required.

(b) By Proposition 3, BPI(X) implies S(X) is compact. Thus, by
the continuity of f̄ , f̄ maps closed, hence compact, subsets of S(X), to
compact, hence closed subsets of f(X). Hence, f̄ is a closed map.

By Proposition 11 and the closedness of f̄ we have f̄(S(X))= f̄(S(X))=

f(X) finishing the proof of the theorem. �

Theorem 14. Let X be an infinite set. Then, S(X) ≃ γ(X).

Proof. Clearly, the family ΓX = {χ[A] : A ∈ P(X)} separates points from
closed sets in S(X). Therefore, by Theorem 4.2 in [8] p. 220, the mapping
G : S(X) → 2ΓX , G(F) = (χ[A](F))A∈P(X) is an embedding. Since the
mapping H : 2ΓX → 2∆X given by H(f)(χA) = f(χ[A]), A ∈ P(X) is
clearly a homeomorphism, it follows that T = H ◦G : S(X)→ 2∆X is an
embedding. Since

G(F)(χ[A]) = χ[A](F) =
{

1 if A ∈ F
0 if A /∈ F = χF (A),

we see that, T (F)(χA) = H(G(F)(χA) = G(F)(χ[A]) = χF (A),F ∈
S(X). In particular, for every x ∈ X,

T (Fx)(χA) = χFx(A) =

{
1 if x ∈ A
0 if x /∈ A

= χA(x) = δ(x)(χA).



ČECH-STONE COMPACTIFICATIONS OF DISCRETE SPACES IN ZF... 119

Hence, T |X = δ and by Proposition 7 and Theorem 13 T = δ̄. By
Proposition 12, for every y ∈ γ(X) = {δ(x) : x ∈ X},F(y) is an ultrafilter
of X. Since δ̄(F(y)) = T (F(y)) and for every A ∈ P(X),

T (F(y))(χA) = χF(y)(A) =

{
1 if A ∈ F(y)
0 if A /∈ F(y) =

{
1 if y(χA) = 1
0 if y(χA) = 0

= y(A),

we see that δ̄(F(y)) = y and consequently δ̄ is onto γ(X). Hence, δ̄ :
S(X)→ γ(X) is a homeomorphism as required. �
Theorem 15. Let X be an infinite set. Then:
(i) For every A ⊆ X, δ(A) = π∆X (e(A)).
(ii) For every F ∈ S(X), δ̄(F) = π∆X

(ē(F)).
(iii) For every z ∈ γ(X), there exists a unique y ∈ β(X) with z = π∆X (y).
In particular, the restriction π∆X

|β(X) : β(X) → γ(X) is a homeomor-
phism.

Proof. (i) This follows at once from the observation for every x ∈ X,
δ(x) = π∆X (e(x)).

(ii) Fix F ∈ S(X). We have ē(F) is the unique limit point yF of the
ultrafilter {e(F ) : F ∈ F} of e(X) in β(X) and δ̄(F) is the unique limit
point zF of the ultrafilter {δ(F ) = π∆X

(e(F )) : F ∈ F} of δ(X) in γ(X).
Since zF ⊆ yF , the conclusion follows from the fact that δ̄(F) = zF =
π∆X

(yF ) = π∆X
(ē(F)).

(iii) Fix z ∈ γ(X). By Proposition 12 F(z) is a free ultrafilter of X and
by the proof of Theorem 14, δ̄(F(z)) = z. Since, by part (ii), δ̄(F(z)) =
π∆X

(ē(F(z))) we see that for y = ē(F(z)) we have z = π∆X
(y).

Assume on the contrary that there exists w ∈ β(X), w ̸= y with z =
π∆X

(w). Fix f ∈ C = [0, 1]X with y(f) ̸= w(f). Clearly, V = π−1
f (y(f))

and U = π−1
f (w(f)) are disjoint neighborhoods of y and w respectively in

[0,1]C . Since F(z) is an ultrafilter of X, it follows at once that e−1(V ) ∈
F(z) and e−1(U) ∈ F(z). Contradiction! Thus, y is unique as required
finishing the proof of the proposition.

The second assertion follows from (iii) and the fact that projections
are continuous and open. �

Next we get, as a corollary to Theorems 14 and 15, a list of character-
izations of BPI(X), as well as an answer to Question 1.

Corollary 16. Let X be an infinite set. The following are equivalent:
(i) BPI(X).
(ii) S(X) is compact.
(iii) γ(X) is compact.
(iv) β(X) is compact.
In particular, BPI iff “for every infinite set X, C(X)”.
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Theorem 17. BPI(X) implies “every ultrafilter compact T3 space Y
with a dense subset D of size ≤ |X| is compact”.
In particular, for every infinite set J , if 2J (resp. [0,1]J) has a dense set
D of size ≤ |X| then BPI(X) implies 2J (resp. [0,1]J) is compact.

Proof. Fix X an infinite set and let Y be an ultrafilter compact T3 space
having a dense subset D with |D| ≤ |X|. Fix f : X → D an onto function.
By Theorem 13 the Stone extension f̄ : S(X)→ Y of f is continuous and
onto f(X) = Y . By BPI(X) and Corollary 16 S(X) is compact. Hence,
by the continuity of f̄ , Y is compact as required. �

Proof of Theorem 4. Follow the proof of Theorem 17 and use the fact that
“the product 2P(ω) has a dense set of size ℵ0” and “the product 2P(R) has
a dense set of size |R|” hold true in ZF.

Next, we show that in ZF+Id(X), BPI(X) and C(X) are equivalent.

Theorem 18. (i) Id(X) implies “BPI(X) iff C(X)”.
In particular, BPI(X) and Id(X) together imply “2P(X) is a continuous
image of S(X)”.
(ii) “2P(X) is a continuous image of S(X)” implies Id(X). Hence, under
BPI, the Fichtenholz-Kantorovich-Hausdorff theorem, i.e., the proposi-
tion: “For every infinite set X, Id(X)” is equivalent to the statement:
“∀X,2P(X) is a continuous image of S(X)”.

Proof. (i) BPI(X) → C(X). Fix X an infinite set and let, by Id(X), A
be an independent family of X of size |P(X)|. We will show that 2P(X)

is compact. By Proposition 5, 2A and 2P(X) are homeomorphic. So,
it suffices to show that 2A is compact. Since, by Proposition 7, 2A is
ultrafilter compact, it suffices in view of Theorem 17, to show that 2A

has a dense subset of size ≤ |X|. This has been established in [3] where
it is shown that {(χA(x))A∈A : x ∈ X} = 2A.

C(X) → BPI(X). In view of Corollary 16, the fact that γ(X) is a
closed subspace of 2P(X) and our hypothesis, it follows that BPI(X)
holds true.

The second assertion of (i) is straightforward and it follows from the
proof of BPI(X) → C(X).

(ii) To see this, fix H : S(X) → 2P(X) a continuous onto function.
Clearly, D = H(X) is dense in 2P(X). It is well known and easy to see
that

A = {Ax = {d ∈ D : d(x) = 1} : x ∈ P(X)}
is an independent family of D of size |P(X)|. It is a routine work to verify
that A′ = {H−1(Ax) : x ∈ P(X)} is the required independent family of
X. �
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Remark 19. We would like to point out here that if H : S(X)→ 2P(X)

a continuous onto function, then certainly D = H(X) is dense in 2P(X)

but it is not known if |D| = |X|. In [3] it has been shown that Id(X)
implies “the product 2P(X) has a dense set of size |X|”. Hence, in the
light of the latter implication and Theorem 18 (ii), we see that “2P(X) is
a continuous image of S(X)” implies “the product 2P(X) has a dense set
of size |X|”.

Next, we answer Question 2.

Theorem 20. In ZF, BPI(X) does not imply C(X).

Proof. We recall that in [11] it has been established that there exists a
ZF modelM containing an unbounded amorphous set Y (every subset of
Y is finite or cofinite and for every n ∈ N, there is a (necessarily infinite)
partition Π of Y into finite sets such that infinitely many members of Π
have size greater than n. Clearly, BPI(Y ) holds true in M.

We show next that the product 2Y , hence 2P(Y ) also, fails to be com-
pact in M. Assume on the contrary that 2Y is compact in M. Let for
every π ∈ Π,

Gπ = {f ∈ 2Y : |f−1(1) ∩ π| = 1}.
It is easy to see that G = {Gπ : π ∈ Π} is a family of closed subsets of 2Y

with the fip. Hence,
∩
G ̸= ∅. Fix g ∈

∩
G and let G = g−1(1). Clearly,

{G,Y \G} is a partition of Y into two infinite sets. Contradiction! Thus,
C(Y ) fails in M. �
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