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SHIFT-COMPACTNESS IN ALMOST ANALYTIC
SUBMETRIZABLE BAIRE GROUPS AND SPACES

A. J. OSTASZEWSKI

Abstract. We survey the harmonious interplay between the con-
cepts of normed group, almost completeness, shift-compactness,
and certain refinement topologies of a metrizable topology (the
‘ground topology’), characterized by the existence of a weak base
consisting of analytic sets in the ground topology. This leads to
a generalized Gandy-Harrington Theorem. The property of shift-
compactness leads to simplifications and unifications, e.g. to the
Effros Open Mapping Principle.

1. Introduction and overview

This survey draws attention to a ‘topological harmony of ideas’ in the
category of metrizable and submetrizable spaces, and is structured around
three principal themes: normed groups; shift-compactness; analyticity and
almost-completeness. A subspace A is analytic when it is the continuous
image of a Polish space – an absolute property. Then, by a theorem of
Lusin and Sierpiński (cf. [59, Th. 21.6]), A has the Baire property, ‘has
BP’, in symbols A ∈ Ba (or, is a ‘Baire set’, even ‘is Baire’ – if context per-
mits); that is, A is almost open (open modulo a meagre set). Here we view
this structurally via Nikodym’s theorem that the Souslin operation pre-
serves the BP (cf. [55, §2.9]): analytic sets are Souslin-F , for F the closed
sets, and a closed set differs from its interior by a nowhere dense set. Hav-
ing BP makes analytic sets almost absolute-Gδ and so in our group context
‘almost complete’, if non-meagre (and then a ‘Baire space’, cf. Th. 7.3).
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124 A. J. OSTASZEWSKI

A non-meagre almost absolute-Gδ space is non-meagre almost analytic
(cf. Th. 7.4). The term ‘almost complete’ is due to Frolík, and its name
to Michael (see [44], [1], [72]). The structure of analytic sets often di-
rectly provides enough completeness to obviate re-metrization of their
absolute-Gδ ‘cores’ (e.g. via Prop. 7.2, the Convergence Criterion). In
our context in an almost-complete space, ‘Baire set’ and ‘Baire space’
are almost synonyms: for B non-meagre, B ∈ Ba iff B is a Baire space
iff B is almost-complete (cf. Th. 7.4). We define normed groups in §2,
indicating a ‘canonical’ example, and place them historically. In §3 we
define shift-compactness (a term borrowed from the probability context
of convolution semi-groups of measures, due to Parthasarathy [85]), and
explain why this is a notion of compactness; in §4 we sketch a proof of a
(primal) version of the shift-compactness theorem (Prop. 4.4) based on
a strong separation property (another is Th. 7.5 based on analyticity).
The theorem was inspired by the following old result in real analysis, first
studied by Kestelman [61], later by Borwein-Ditor [25] with a first gener-
alization due to Harry I. Miller (e.g. [73]), and rediscovered by Trautner
[98]. Below a property holds for almost all (resp. quasi-all) t if it holds
for all t off a null (meagre) set.

Theorem 1.1 (Kestelman-Borwein-Ditor Theorem, KBD). Let
{zn} → 0 be a null sequence in R. If T is a measurable/Baire subset
of R, then for generically all (= almost all/quasi-all) t ∈ T there is an
infinite set Mt such that

(sub) {t+ zm : m ∈ Mt} ⊆ T.

We show how to prove the Banach-Steinhaus Theorem (§6.1) directly
from shift-compactness. We give an easy proof of the Steinhaus-Picard-
Pettis Theorem (§6.2) in a simple topological-group context, and later
(§9.2) identify a topological generalization. Next in §7 we introduce the
ABC of analyticity: the analytic Baire and analytic Cantor Theorems,
and note a useful characterization of almost-completeness; our viewpoint
is informed by a recent generalization (in [78]) of the Gandy-Harrington
Theorem as unifying the “Baire recognition” literature, cf. [1], [50] (and
perhaps bridging between forcing and fine-topology methods). We iden-
tify a dual shift-compactness theorem (Th. 9.2) and by reference to the
density topology recapture the measure case of KBD.

As an application we give two versions of the Steinhaus Subgroup The-
orem and derive from it a theorem of Loy [69] and Hoffmann-Jørgensen
[54] concerning analytic topological groups (that when non-meagre they
are Polish). We contrast this with a related result that under comparable
circumstances a ‘semi-analytic’ normed group is Polish (§8).
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The presentation is based on a series of papers, many with Nick
Bingham, and one with Harry Miller, cited in the bibliography. It is a
pleasure to thank them both for their intellectual stimulus. I am grateful
also to Roman Pol and to Henryk Toruńczyk for some key conversations.
There have been two other sources of inspiration, of which I am conscious
despite the long germination time; I thank Anatole Beck, for introducing
me to topological dynamics (flows on planes), and Ralph Kopperman, for
his advocacy of a bitopological viewpoint. I am also grateful for the invi-
tation of the organizers of the Kielce 25th Summer Topology Conference
not only to give an overview of this corpus of work, but also to place on
record an abridged, but updated, version of the July 2010 talk. A longer
website version offers further commentary and applications, e.g. to addi-
tive combinatorics – extensions of Ruziewicz [91] (which anticipated the
van der Waerden theorem of 1927, for bibliography and details see [20])
– though this is not the first time such a connection has been made, cf.
[43] and [53].

2. Normed groups

Motivated by normed vector spaces and topological regular variation
(see [6] for the case of R), where asymptotics (actually ‘divergence’) may
be defined via ||x|| := dX(x, eX) → ∞ (with dX a metric on X), we have:

Definition 2.1. (a) For T an algebraic group with neutral element e, say
that || · || : T → R+ is a group-norm ([21]) if the following properties hold:
(i) Subadditivity (Triangle inequality): ||st|| ≤ ||s||+ ||t||;
(ii) Positivity : ||t|| > 0 for t ̸= e and ||e|| = 0;
(iii) Inversion (Symmetry): ||t−1|| = ||t||.
Then (T, ||.||) is called a normed-group.
(b) The group-norm generates a right and a left norm topology via the
right-invariant and left-invariant metrics dTR(s, t) := ||st−1|| and dTL(s, t) :=
||s−1t|| = dTR(s

−1, t−1). In the right norm topology the right shift ρt(s) :=
st is a uniformly continuous homeomorphism, ρt ∈ Hunif (X), since
dR(sy, ty) = dR(s, t); likewise in the left norm topology for the left shift.
Since dTL(t, e) = dTL(e, t

−1) = dTR(e, t), convergence at e is identical under
either topology. In the absence of a qualifier, the ‘right’ norm topology is
to be understood.
(c) Under the dR topology, Br(x) = {t : dR(t, x) < r} = Br(eT )x.
(d) If dX is a one-sidedly invariant metric, then ||x|| := dX(x, eX) is a
norm.
(e) Under either norm topology, there is continuity of operations at e.
At further distances the topology may force the group operations to be
increasingly ‘less’ continuous.
(f) The symmetrization metric dTS := max{dTR, dTL} is also of interest be-
low, and again in §8.



126 A. J. OSTASZEWSKI

The Birkhoff-Kakutani Theorem ([52] Th. 8.3; cf. [90] Th. 1.24, albeit
in a topological-vector-space setting) asserts that a metrizable topological
group has an equivalent right-invariant metric. Inspection of Kakutani’s
proof yields the following sharpening.

Theorem 2.2 (Birkhoff-Kakutani Normability Theorem, [24], [58]). A
first-countable right topological group X is a normed group iff inversion
and multiplication are continuous at the identity.

Some history. Early use of group-norms occurs in work of A. D.
Michal and his collaborators and was in providing a canonical setting
for differential calculus (starting in the 1940s); a noteworthy example is
the implicit function theorem by Bartle (1955). In name the group-norm
resurfaces in 1950 in a paper of Pettis [86] in the course of his classic
closed-graph theorem (in connection with Banach’s closed-graph theorem
and the Banach-Kuratowski category dichotomy for groups). The notion
reappears in the group context first in 1961 by Dudley [34], who added
a further condition to derive an automatic continuity result, and then in
1963 under the name ‘length function’, motivated by word length, in the
work of R. C. Lyndon on Nielsen’s Subgroup Theorem. Gromov theory
has a normed group context. See the Introduction of [21] for a wider
discussion.

Key (and principal) example. For a metric space (X, dX) consider
Auth(X), the algebraic group (i.e. not equipped with a topology) of
homeomorphisms h : X → X (under composition) with identity eX(x) =
idX(x) = x. A candidate metric, when finite, is the supremum metric

(sup) d̂(h, h′) := supx d
X(h(x), h′(x)).

One thus restricts attention to the subgroup H(X) comprising those h(·)
such that supx d

X(h(x), eX(x)) < ∞; these are the ‘bounded elements’
(compare with h being limited by an open cover of X, as in [101, p.5422]).
We note the following properties.

1. d̂ is right invariant, so may be denoted dHR :

d̂(hg, h′g) = supx d
X(h(g(x)), h′(g(x))) = supy d

X(h(y), h′(y)) = d̂(h, h′).

2. Hence the equation ||h|| = ||h||H := d̂(h, eX) defines a norm on
H(X) with

dHR (g, h) = ||g−1h|| and dHL (g, h) = ||gh−1||.

3. The symmetrized topology provides a natural refinement topology,
via the symmetrized metric

dHS (g, h) = max{dHR , dHL } = max{d̂(g, h), d̂(g−1, h−1)},
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which is complete provided (X, dX) is complete. When (X, dX) is com-
pact, dHL is equivalent to dHR (see e.g. [99]). Thus:

4. The norm topology is topologically complete if X is compact.
5. Since dHR ≤ dHS the symmetrized topology is indeed a finer topology,

and while the latter need not be invariant, one may pursue a bi-topological
study (cf. §8).

6. Baire’s theorem holds for d̂ iff the group is non-meagre under d̂ (see
[54] Prop. 2.2.3 and §3.2).

7. The norm topology provides continuity when H(X) acts on X via
the evaluation φ : (h, x) → h(x). The action φ is continuous as a map
from (H(X), d̂) × (X, dX) → (X, dX) (see [36] XII.8.3, p. 271), which
permits a development of topological dynamics (cf. [77]). In particular
each point evaluation φx : h→ h(x) is continuous.

8. Our final property, Th.2.5, yields the viewpoint that the group
Hu(X) below is a topological dual of X (a theme pursued by [21]):

Definition 2.3. Say that h is bi-uniformly continuous if both h and h−1

are uniformly continuous wrt dX and write

Hu(X) = {h ∈ Hunif (X) : h−1 ∈ Hunif} ⊆ H(X).

Theorem 2.4 (Dieudonné [33], cf. [21, Th. 3.13]). Hu(X) is complete
under d̂, provided X is complete under dX .

2.1. Normed versus topological: Equivalence Theorem.

Theorem 2.5 (Equivalence Theorem, [21]). A normed group under either
norm topology is a topological group iff the dXR topology is equivalent to
the dXL topology. Furthermore, either of the following is equivalent to this
condition:
(i) each conjugacy γt(x) := txt−1 is continuous at e in norm,
(ii) inversion is continuous in either dXR or dXL .

This motivates the following definition to which we refer in §8.

Definition 2.6 (cf. [53] Defn. 2.4). A point z lies in the topological centre
ZΓ(X) of a normed group X, if the conjugacy γz(·) is norm-continuous at
e.

We note the immediate corollary: an abelian group equipped with a
group norm is topological under the norm topology. We mention other con-
sequences of the Equivalence Theorem, all asserting that a slight amount
of regularity in the relationship between the left and right norm topolo-
gies, often as below in the presence of separability and some topological
completeness – such as implied by analyticity of X under dXR , draws the
two into coincidence. Straightforward instances (see [81]) are:
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(i) if the graph of the self-homeomorphism x→ x−1 is analytic;
(ii) if all conjugacies γt(x) = txt−1 are Baire under dXR ;
(iii) if X is locally compact and all conjugacies are Haar-measurable;
(iv) if the norm is such that κn||x|| ≤ ||xn|| for all n, x and some κn → ∞
([21], Th. 3.39, where the normed group is then called Darboux-normed).
The result (ii) is connected with the Cauchy dichotomy governing auto-
matic continuuity of homomorphisms. For more subtle connections (espe-
cially the group’s oscillation function, ω(t) := limδ↘0 sup||z||≤δ ||γt(z)||)
see [21]. For a recent discussion of when a group is topological see [30].

3. Shift-compactness

In a normed topological group G, say that a set A is (properly) right-
shift compact if, for any sequence of points an in A (resp. in G), there
are a point t and a subsequence {an : n ∈ Mt} such that ant lies entirely
in A and converges through Mt to a point a0t in A; similarly for left-shift
compact (cf. [22], for the real line case). Evidently, finite Cartesian prod-
ucts of shift-compact sets are shift-compact. Taken in the later context
of e.g. Prop 3.5, demonstrating that shift-compactness is a strengthening
of the Baire theorem, this productivity is an improvement over the Baire
space property, which may fail to be productive - see [40], [87], and [102].
Thus a right-shift compact set A is precompact. (If the subsequence amt
converges to a0t, for m in Mt, then likewise am converges to a0, for m
in Mt.) Say that a set is strongly right-shift compact (or right-shift com-
pact for arbitrarily small shifts) if the conditions just given hold and in
addition the point t may be selected with ||t|| arbitrarily small.

Remark 3.1. The compactness terminology is justified on two counts.
Firstly, suppose T ⊆ R is as in KBD, and an is a bounded sequence
of points in T. Assume without loss of generality that an → a0; then
zn := an−a0 → 0. Now for some t ∈ T, t+ zm ∈ T for m in some infinite
set Mt. Take s := t− a0; then

s+ an = (t− a0) + an = t+ zn ∈ T

and s+am converges through Mt to s+a0 = t ∈ T . Thus after translation
a subsequence of an converges to a point of T.
Secondly, this shift-compactness implies an (open) finite sub-covering the-
orem covering after shifts (also after small shifts), as follows.

Definition 3.2. (a) For N a nhd (=neighbourhood) of eG say that D:=
{D1, ..., Dh} shift-covers A (resp. N -strongly shift-covers A, or is an N -
strong shifted-cover of A), if for some d1, ..., dh in G (in N),

(D1d1) ∪ ... ∪ (Dhdh) ⊇ A.



SHIFT-COMPACTNESS IN ALMOST ANALYTIC BAIRE SPACES 129

(b) Say that A is compactly shift-covered (resp. compactly strongly shift-
covered, or compactly shift-covered with arbitrarily small shifts), if for
every open cover U of A (and for each nhd N of eG) there is a finite
subfamily D which shift-covers A (resp. N -strongly shift-covers A).

Correspondingly one has a strong and weak compactness result with
almost identical proof.

Theorem 3.3 (Strong Compactness Theorem – modulo shift, cf. [21]).
Let A be a (strongly) right-shift compact subset of a separable normed
topological group G. Then A is compactly (strongly) shift-covered, i.e. for
any norm-open cover U of A (and any nhd N of eG), there is a finite
subset V of U , and for each member of V a translator (resp. a translator
in N) such that the corresponding translates of V cover A.

3.1. Basis of generic behaviour. Imagine a construction with aim a
set of points F (T ) associated with the set T. For example:

t ∈ F (T ) :=
∩

n

∪
m>n

(T − zm) iff t+ zn ∈ T infinitely often.

The following result formalizes that if one can get at least one point of
F (T ) in T itself, then ‘most’ points of T will be in F (T ). This explains
the ‘almost all/quasi all’ aspect of the KBD.

Theorem 3.4 (Generic Dichotomy (Completeness) Principle, see [20]).
For F : Ba → Ba monotonic, if W ∩ F (W ) ̸= ∅ for all non-meagre
W ∈ Gδ, then, for each non-meagre T ∈ Ba, T ∩ F (T ) is quasi all of T.
That is, either
(i) there is a non-meagre S ∈ Gδ with S ∩ F (S) = ∅, or,
(ii) for every non-meagre T ∈ Ba, T ∩ F (T ) is quasi-all of T.

3.2. Shift-compact spaces. For a subgroup G ⊆ Auth(X) say that X
is G-shift-compact if for any convergent sequence xn → x0, any open
subset U ⊆ X and T ∈ Ba(X) co-meagre in U, there is g ∈ G such that
g(xn) ∈ T ∩U along a subsequence. We abbreviate ‘H(X)-shift-compact’
to shift-compact. In such a space, any Baire non-meagre set is locally
co-meagre (co-meagre on open sets) in view of the following: For any
subgroup G ⊆ H(X), if X is G-shift compact, then X is Baire. This has
proof identical with [101] Prop 3.1 (1), which proof we adapt to establish:

Proposition 3.5. For any subgroup G ⊆ H(X), if G acts transitively on
a non-meagre X, then X is a Baire space.

Proof. Suppose otherwise; then X contains a non-empty meagre open set.
By Banach’s localization principle, or Category Theorem ([84] Ch. 16, [55]
p. 42, [60] Th. 6.35, or [66] §10.III under the name Union theorem), the
union of all such sets is a largest open meagre set M, and is non-empty.
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Being meagre, M has non-empty complement. For x0 ∈ X\M and any
non-empty open U pick u ∈ U and g ∈ G such that g(x0) = u. As g is
continuous, g−1(U) is a nhd of x0, so is non-meagre, since every nhd of x0
is non-meagre (cf. Definition 7.6 below). But g is a homeomorphism, so
U = g(g−1(U)) is non-meagre. (For a generalization see [54, Prop. 2.2.3].)
So X is a Baire space, as every non-empty open set is non-meagre. �

4. Separation properties and shift-compactness

The definition below, inspired by recent work of van Mill, allows the
interpretation of shift-compactness via a separation property, which is
closely related to that considered in [101]. The underlying theme is home-
omorphic shifting of points, sequences and eventually nowhere dense com-
pact sets into disjointness.

Definitions. 1. Say that a subgroup G ⊆ H(X) separates points and
closed nowhere dense sets in (X, TX) if for each p ∈ X and F closed and
nowhere dense in TX there is in each nhd of the identity eG an element
g ∈ G such that g(p) /∈ F. Here we assume G is given either a norm
topology, or some refinement of it.

2. Say that the separation of p from F, as in (1) above, is strong if
each nhd of eG contains a non-empty open set H such that h(p) /∈ F for
every h ∈ H.

Equivalently (when the group is right-topological), in each open nhd
U of eG there is g ∈ U and an open nhd V of eG such that V g ⊆ U and
V g(p) is disjoint from F.

3. Denote by Tr(Rd) the group of c-translations x → x + c in Rd.
Under the sup-norm, as in (sup) above, this group is isometric with Rd.
Thus any refinement of the Euclidean topology can be used as a topology
also on Tr(Rd): see Th. 9.5. Particularly useful refinements are provided
by density topologies, as they permit measure properties to be handled
topologically. Recall that density open sets are measurable sets W all of
whose members are density points, that is 1 = limε→0 |W∩Bε(w)|/|Bε(w)|
for every w ∈W. Here |·| denotes Lebesgue measure and Bε(w) is the open
ball of radius ε. For other density topologies in Rd (e.g. using density bases
other than these balls) in particular, and refinement topologies in general
see [70]; for the locally compact case see [21] for (metric) topological
groups, and [81] for normed groups. We recall that in D, the density
topology on the line, a set A is Baire iff A is measurable; A is meagre in
D iff A is null (has measure zero); so D is a Baire space (for all these see
e.g. [59, 17.47]). The following result relies on a Lemma which we cite in
§6.3.
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Lemma 4.1 (Separation Lemma). If G is a separable normed group,
acting separately continuously and transitively on a non-meagre space
X, then for any point x and F closed nowhere dense the set Wx,F :=
{α : α(x) /∈ F} is dense open. In particular, G separates points from
nowhere dense closed sets.

Proof. Wx,F = φ−1
x (X\F ) is open, as φx is assumed continuous. By

Lemma 6.8 below, for ∅ ̸= U ⊆ G open, Ux is non-meagre, and so Ux\F
is non-empty, as F is meagre. So u(x) /∈ F for some u ∈ U. �

Proposition 4.2 (Finitary Strong Separation, generalizing the linear
shifts of [74, Prop. 2] ). Suppose a subgroup G of H(X) strongly sep-
arates points from closed nowhere dense sets of X. In X let U be open,
ui ∈ U for i ≤ n and F closed and nowhere dense. Then in G, for each
ε > 0, in Bε(e) there is a non-empty open set V of homeomorphisms η
such that η(ui) ∈ U and η(ui) /∈ F for each i ≤ n.

Proof. Let ε>0. By assumption δ :=min{ε,mini{d(ui, X\U)}}/(n+1) >
0. Let B0 := Bδ(e). By induction on i ≤ n, we select τ1, ..., τn and open
nhds B1, ..., Bn of e such that for ηi := τi ◦ ... ◦ τ1

(i) τi ∈ Bi−1, Biτi ⊆ Bi−1,
(ii) τηi(uj) ∈ U\F for τ ∈ Bi for j ≤ i− 1, and
(iii) τηi(uj) ∈ U for τ ∈ Bi for j ≤ n.

It will follow that τηn(ui) ∈ U\F for all i ≤ n and each τ ∈ Bn.
Choose τ1 ∈ B0 = Bδ(e) and B1 an open nhd of e such that B1τ1 ⊆

Bδ(e) so that ττ1(x1) ∈ U\F for each τ ∈ B1. For each such τ and each
i one has ττ1(ui) ∈ U, since ||ττ1|| ≤ ||τ ||+ ||τ1|| < 2δ ≤ ε.

Now choose τ2 in B1 and B2 a nhd of e such that B2τ2 ⊆ B1 so that
τη2(u2) ∈ U\F for each τ ∈ B2. For any such τ and each i one has
τη2(ui) ∈ U as ||τ1|| + ||τ2|| + ||τ || < 3δ ≤ ε and τη2(u1) ∈ U\F as
τη2 ∈ B2τ2τ1 ⊆ B1τ1.

Proceed similarly for any i < n, by selecting τi in Bi−1 and Bi a nhd
of e such that Biτi ⊆ Bi−1 so that ττiηi−1(ui) ∈ U\F for each τ ∈ Bi.

For any such τ and each j < i one has τηi(uj) ∈ U as ||τ1||+||τ2||+...+
||τi|| + ||τ || < (i + 1)δ ≤ nδ < ε and ττiηi−1(u1) ∈ U\F as ττi ∈ Bi−1.
Likewise for each j < i one has ττiηi−1(uj) ∈ U as ττi ∈ Bi−1. This
completes the inductive step from i− 1 to i.

Taking V = Bn, one has for τ ′n ∈ Bn that the shift η := τ ′nηn has
||η|| < mini{ε, d(ui, X\U)}, so η(ui) ∈ U and η(ui) /∈ F, as asserted. �

One may re-interpret the preceding result as saying that any finite
number of points may be shifted locally into the complement of a closed
nowhere dense set; in the semigroup setting a set into which any finite set
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may be left-shifted was termed by Mitchell [75] left thick ; for further
connections see [32]. We now improve the last result from finite sets to
convergent sequences, a matter we return to in the final remark of this
section. The analogous result is obvious in the case of the compact-open
topology.

Lemma 4.3 ([83]). For K = {xn : n = 0, 1, 2, ..} with xn → x0 the set
WK,F := {α : α(K) /∈ F} = {α : α(K) ⊆ X\F} is dense open in the
norm topology.

Proof. As to open-ness, for u ∈ WK,F one has u(K) ⊆ X\F , so ε :=
mink∈K{d(u(k), F )} > 0, as K is compact. Then Bu ⊆ WK,F for B =
Bε(e).
As to density, fix u and write un := u(xn). By Lemma 4.1 we may assume
u(x0) /∈ F. Now for some ε > 0 and integer N one has Bε(u(x0)) ⊆
X\F and u(xn) ∈ Bε/2(u(x0)) for n > N. As in Prop. 4.2 find η with
||η|| < ε/2 such that η(ui) /∈ F for i ≤ N. But for n > N one has
η(u(xn)) ∈ Bε/2(u(xn)) ⊆ Bε(u(x0)) ⊆ X\F. Thus for all n one has
η(u(xn)) /∈ F, as required. �

A first generalization of KBD follows. Here shift-compactness is a
consequence of separation properties. (For a refinement of the argument
below see [83]). A dual version in §9 turns out to be broader, but has
other underpinnings.

Proposition 4.4 ([83]). For metric X, non-meagre T ∈ Ba(X), and G
a separable normed group, Baire in its right norm topology (e.g. almost-
complete, and so non-meagre, in the norm topology), acting separately
continuously and transitively on X : for every convergent sequence xn
with limit x there are τ ∈ G and an integer N such that τx ∈ T and

{τ(xn) : n > N} ⊆ T.

Proof. Write T := M ∪ U\
∪

n Fn with U open, M meagre and each
Fn closed and nowhere dense in X. Let u0 ∈ T ∩ U. By transitivity
there is σ ∈ G with σx0 = u0. Put un := σxn. Then un → u0. Take
K = {un : n = 0, 1, 2, ..}. As G is Baire the set {α : α(u0) ∈ U} ∩ C,
where C :=

∩
n{α : α(K) /∈ Fn} is a dense Gδ, is non-empty. For α

in the above set we have: α(u0) ∈ U\
∪

n Fn. Now α(un) → α(u0), by
continuity of α, and U is open. So for some N we have for n > N that
α(un) ∈ U. Since {α(um) : m = 1, 2, ..} ∈ X\

∪
n Fn, we have for m > N

that α(um) ∈ U\
∪

n Fn ⊆ T.
Finally put τ := ασ; then τ(x0) = ασ(x0) ∈ T and {τ(xn) : n > N} ⊆
T. �
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Remark 4.5. (Generalizing shift-compactness via ‘shifting into
disjointness’.) A metric space (X, dX) is strongly locally homogeneous
if there is a base consisting of open sets U with the property that for any
x, y ∈ U there is h ∈ H(X) taking x to y, equal to the identity outside U .
(Denoting dX -diameters also by dX , evidently ||h|| < dX(U).) In such a
space any compact nowhere dense set has a disjoint homeomorphic image
under a homeomorphism in H(X). Thus a compact nowhere dense set
may be shifted into disjointness from itself. Indeed one might consider
shift-compactness in the broader context of k-spaces, since closure of a set
may be tested by reference to whether the trace on nowhere dense com-
pact sets is closed (cf. [63], and note also [93] in regard to smallness of
σ-compact sets). Then a complete group which shifts a zero-dimensional
compact nowhere dense set into disjointness from another nowhere dense
set exhibits a more general form of shift-compactness - compare [95] and
[2]. (As to complications in regard to zero-dimensional subspaces, see e.g.
[31].)

5. Properties of normed groups

Unless otherwise stated, the default norm topology is the right norm
topology.

Theorem 5.1 (Squared Pettis Theorem, [21], Th. 5.8). Let X be an
almost-complete normed group and A ⊆ X a non-meagre Baire set (under
the right norm topology). Then eX is interior to (AA−1)2.

Squaring and higher powers of AA−1 were studied by R. Henstock [51]
and E. Følner [42], and more recently by Rosendal and Solecki [88].

When X is a locally compact normed group there exists an invariant
Haar measure on X ([81]), and so a Haar-measure variant of Theorem
KBD holds, as does also a measure version of the Pettis Theorem (in fact
without any squaring).

Theorem 5.2 (Baire Homomorphism Theorem, [21], Th. 11.11, and
[81]). Let X and Y be normed groups analytic in the right-norm topology
with X non-meagre. If f : X → Y is a Baire homomorphism (i.e. a
homomorphism with preimages of open sets being Baire sets), then f is
continuous.

5.1. Application: Subgroup Theorem. There are two well-known di-
chotomies (here ‘small or large’, rather than ‘nice or nasty’, as later) which
assert that a Baire subset is either meagre or clopen. From our current
perspective theses dichotomies are ‘duals’ (as with the generalization of
KBD). There is the Banach-Kuratowski dichotomy (for which see [3, Satz
1], [66, Ch. VI. 13. XII]; cf. [60, Ch. 6 Pblm P] ; cf. [6, Cor. 1.1.4]
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and also [5] and [4] for the measure variant), where the context is a group
G and the subset is a subgroup H (so invariant under the translation
action of H), and there is the Kuratowski-McShane dichotomy ([64], [66]
Ch 1 §13.XI, [71, Cor. 1]), where the context is a topological space and
the premise requires a transitive action of a subgroup of autohomeomor-
phisms such that each action either leaves the subset invariant or shifts
it into disjointness (for bibliography, see [21]). The latter result is highly
thematic here.

The dichotomies below are in keeping with this, though they interpret
large as ‘total’. We give an application below – see [22] for others related
to additivity, sub-additivity, and convexity (or for more detailed analyses:
[7], [12], [14], [62]). As may be expected from the Banach-Kuratowski
dichotomy, for totality one relies either on density or connectedness. The
following direct proofs, based on the Squared Pettis Theorem, are inspired
by a close reading of work by Hoffman-Jørgensen ([54] p. 355), where the
subgroup theorem is implicitly used in a topological group context. Here
less than completeness is assumed.

Theorem 5.3 (Subgroup Theorem - density version). In an almost-
complete normed group G, if H is a dense non-meagre subgroup with
the Baire property, then H = G.

Proof. We interpret the statement in the right norm topology. By the
Squared Pettis Theorem, H = (H−1H)(H−1H) is an open nhd of eG in
G, as H is Baire non-meagre. For any g ∈ G\H one has H ∩Hg = ∅ (as
otherwise h1 = h2g for h1, h2 ∈ H implies g = h−1

2 h1 ∈ H) and so Hg is
a nhd of g avoiding H. So H is closed in G; being dense in G, it is G. �

In [21] we relied on a weak Archimedean property in lieu of density to
derive a similar result, whereas in [22] we used Kronecker’s Theorem to
show that in the additive group R a non-meagre subgroup is dense. In
the absence of density, the argument above still goes through when the
group is connected, as then the Archimedean property holds in regard to
H:

Theorem 5.4 (Subgroup Theorem – connected group version). In a con-
nected almost-complete normed group G, if H is a non-meagre subgroup
with the Baire property, then G =

∪
n∈NH

n and so H = G.

Proof. Since, as before,H is an open nhd of eG inG, pickB := Bε(e) ⊆ H.
As BS =

∪
s∈S Bs is open for any set S and B is symmetric, the set

C :=
∪

n∈NB
n is an open subgroup with ∅ ̸= C ⊆ H ⊆ G. As before,

C ∩ Cg = ∅ for any g ∈ G\C, i.e. C is also closed in G, so the whole of
G, by connectedness, hence H = G. �
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Theorem 5.5 (Loy [69], Hoffman-Jørgensen [54]). A non-meagre analytic
topological group is Polish.

Proof. An analytic topological group H, being separable, may be densely
embedded (by completion) in a complete separable topological group G,
but now H is a non-meagre subgroup with the Baire property (being
analytic, by §1), so is all of G by Th. 5.3. �

The argument above does not embrace general normed groups, since
a normed group that can be extended to a complete normed group is
necessarily a topological group (cf. [21] Th. 3.38). However, see §8 for an
analogue.

6. Applications of shift-compactness

This section illustrates how easy it is to derive results using shift-
compactness. A deeper result is the Semi-Polish Theorem of §8.

6.1. Uniform Boundedness Theorem.

Theorem 6.1. For X a non-meagre topological vector space and F a fam-
ily of continous linear functionals, if for each x the set {||f(x)|| : f ∈ F}
is bounded, then {||f(x)|| : f ∈ F} is bounded on a nhd of 0.

Proof. Suppose otherwise. Then, for n ∈ N, there exist xn ∈ X con-
verging to 0 and fn ∈ F such that ||fn(xn)|| ≥ n. As f is continuous,
{x : ||f(x)|| ≤ n} is closed, and so is An :=

∩
f∈F {x : ||f(x)|| ≤ n}, so has

the Baire property. By assumption X =
∪

nAn; since X is non-meagre,
there is N such that AN is non-meagre. By Prop. 4.4, as xn is convergent,
there are t ∈ AN and infinite Mt such that xm + t ∈ AN for m ∈ Mt. For
m ∈ Mt one has

||fm(xm)|| = ||fm(xm + t)− fm(t)|| ≤ ||fm(xm + t)||+ ||fm(t)|| ≤ 2N,

so {||fm(xm)|| : m ∈ Mt} is bounded, a contradiction. �

Of course the above really proves a theorem about continuous homo-
morphisms on a non-meagre normed topological group.

6.2. Steinhaus-Piccard Theorem. The following result refers to con-
dition (wcc) studied in §9, which is satisfied for E the Euclidean topology
and D the density topology on the line. The proof resembles that used by
Solecki [94]: indeed, there is a connection between our shift-compactness
and his ‘amenability at 1’.
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Theorem 6.2 (Fine Topology Interior Point Theorem, [15]). Let R be
given a shift-invariant topology T under which it is a Baire space and
suppose the homeomorphisms hn(x) = x + zn satisfy (wcc), whenever
{zn} → 0 is a null sequence (in the Euclidean topology). For S a non-
meagre Baire subset under T , the difference set S−S contains an interval
around the origin.

Proof. Suppose otherwise. Then for each positive integer n we may select
zn ∈ (− 1/n,+ 1/n) \(S − S). Since {zn} → 0 (in the Euclidean topol-
ogy), the Category Embedding Theorem (Th. 9.2) applies, and gives
an s ∈ S and an infinite Ms such that {hm(s) : m ∈ Ms} ⊆ S. Then
s+ zm ∈ S for any m ∈ Ms, i.e. zm ∈ S − S, a contradiction. �

6.3. The Effros Open Mapping Theorem.

Definition 6.3. A group G ⊂ H(X) acts weakly on a space X if (g, x) →
g(x) is continuous separately in g and in x.
A group G ⊂ H(X) acts transitively on a space X if for each x, y in X
there is g in X such that g(x) = y.
The group acts micro-transitively on X if for U open in G and x ∈ X the
set {h(x) : h ∈ U} is a nhd of x.

Theorem 6.4 (The Effros Open Mapping Principle, [37], [100]). Let G
be a Polish topological group acting transitively on a separable metrizable
space X. The following are equivalent.
(i) G acts micro-transitively on X,
(ii) X is Polish,
(iii) X is non-meagre.
More generally, for G an analytic normed group acting transitively on
a separable metrizable space X: (iii) =⇒ (i), i.e., if X is non-meagre,
then G acts micro-transitively on X.

Remark 6.5. Jan van Mill [100] gave the more general result here for G an
analytic topological group, but actually his proof only assumes in effect a
normed group structure. Of interest is the following result: [83] discusses
a non-separable variant.

Theorem 6.6 (Effros Theorem – Baire variant, [83]). Let the normed
group G have separately continuous and transitive action on X. If under
either norm topology G is analytic and a Baire space, and X is non-
meagre, then the action of G is micro-transitive. That is, for U an open
nhd of eG and for arbitrary x ∈ X the set Ux := {u(x) : u ∈ U} is a nhd
of x, so that the point-evaluation maps g → g(x) are open for all x.
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Remark 6.7. Analyticity here is needed principally to ensure that images
of certain sets have the Baire property: since an analytic set is the con-
tinuous image of a Polish space, a continuous image of an analytic set is
an analytic set, so has the Baire property.

Lemma 6.8 ([83]). If G is a separable normed group, acting transitively
on a non-meagre space X, then for each non-empty open U in G and each
x ∈ X the set Ux is non-meagre in X.

Proof. G is separable under either norm topology. We work in the right
norm topology first. Suppose that u ∈ U and so without loss of generality
assume that U = Bε(u) = Bε(eG)u (for some ε > 0); put y := ux and
W := Bε(eG). Then Ux =Wy. Next work, exceptionally, in the left norm
topology (for which W = Bε(eG) is a nhd of eG); as each set hW for
h ∈ G is open (since now the left shift λh : g → hg is a homeomorphism),
the open family {gW : g ∈ G} covers G, and so has a countable sub-cover,
{gnW : n ∈ ω} say. As G is transitive, X = Gy and so X is covered by
{gnWy : n ∈ ω}. So for some n, the set gnWy is non-meagre. As g−1

n is
a homeomorphism of X, the set Wy = Ux is also non-meagre in X. �

Proof of the Effros Theorem, ([83]). Assume G acts transitively on
a non-meagre space X. For some x ∈ X and some B := Bε(eG) suppose
Bx is not a nhd of x. Then there is xn → x with xn /∈ Bx for each n. Take
A := Bε/2(eG) and note that A is a symmetric open set (A−1 = A, by the
inversion axiom). By Lemma 6.8 Ax is non-meagre, as G, being analytic,
is separable. Since the point-evaluation map g → g(x) is continuous Ax is
analytic and so a Baire set; by Prop. 4.4 there are a ∈ A (being open, has
the Baire property) and a co-finite Ma such that axm ∈ Ax for m ∈ Ma.
For any such m choose bm ∈ A with axm = bmx. Now a−1 ∈ A, by
symmetry, so xm = a−1bmx ∈ A2x ⊆ Bx, a contradiction. �

7. Analyticity

The theme here is to argue persuasively for analytic spaces to be
recognized as a mainstream topological tool, in view of the complete-
ness arguments they adduce. Though p-spaces, riding harmoniously with
α-favourability (refining a key feature of Baire spaces), have apparently
overtaken analyticity, nonetheless even there Fremlin’s Čech-analyticity
(see below) comes through as a necessary tool: see the papers by Bouziad
([26], [27], cf. the concluding discussion in [78]). After their classical
phase in the hands of the founding fathers of topology, analytic sets
have been a central topic for logicians, whose ‘neoclassical’ contributions
have been spectacular (especially Silver’s Theorem – see [89] p. 463).
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Early interest was shown by F. B. Jones, who showed that a Hamel basis
for the reals as a vector space over the rationals cannot be analytic (as
did also W. Sierpiński), and applied this to an analysis of the Hamel
pathology of additive functions in [57].

Recall that Cantor’s Theorem on the intersection of a nested sequence
of closed (or compact, as appropriate) sets has two formulations: (i) re-
ferring to vanishing diameters (in a complete-space setting), and (ii) to
(countable) compactness. Our first aim in this section is to give a topo-
logical version that is in this same spirit but appropriate to an analytic,
rather than complete or compact, context.

For X a Hausdorff space write K = K(X) for the family of compact
subsets of a space X, and ℘(X) for the power set. Following the the nota-
tion of [55], write I for NN endowed with the product topology (treating
N as discrete), and with i|n := (i1, ..., in), for i ∈ I and n ∈ N, put
I(i|n) = {j ∈ I : j|n = i|n}, a basic open nhd in I. For X Hausdorff, a
map K : I → ℘(X) is called compact-valued if K(i) is compact for each
i ∈ I, and singleton-valued if each K(i) is a singleton. K is upper semi-
continuous if, for each i ∈ I and each open U in X with K(i) ⊆ U, there
is n ∈ N with K(i1, ..., in) := K(I(i1, ..., in)) =

∪
i∈I(i1,...,in)

K(i) ⊆ U. A
subset of X is K-analytic if it is the image K(I) under an upper semicon-
tinuous compact-valued map. By a theorem of Jayne (cf. [55, §2.8]) this
is equivalent to two other definitions studied by: Choquet (1951), Sion
(1960). Fremlin (1980) defines a more general notion of Čech-analyticity
(for which see Hansell [48, Th. 5.3], [56, §8], [49] or Fremlin’s website.)

The following result is implicit in a number of situations, and goes back
to Frolík’s characterization of completely regular Čech-complete spaces
as Gδ in some compactification ([44]; see [39] §3.9). See [78] for this and
other versions. It is the ‘completeness-compactness’ property below that
motivates the Choquet-style α-favourability perspective on analytic sets,
and exposes their inherently topological nature.

Theorem 7.1 (Analytic Cantor Theorem, [78]). Let X be a Hausdorff
space and A = K(I) be K-analytic in X, with K compact-valued and
upper-semicontinuous.
If Fn is a decreasing sequence of (non-empty) closed sets in X such that
Fn ∩ K(I(i1, ..., in)) ̸= ∅, for some i = (i1, ...) ∈ I and each n, then
K(i) ∩

∩
n Fn ̸= ∅.

Equivalently, if there are open sets Vn in I with clVn+1 ⊆ Vn and diamIVn ↓
0 such that Fn ∩K(Vn) ̸= ∅, for each n, then
(i)

∩
n clVn is a singleton, {i} say;

(ii) K(i) ∩
∩

n Fn ̸= ∅.
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Proof. If not, then
∩

nK(i) ∩ Fn = ∅ and so, by compactness, K(i) ∩
Fp = ∅ for some p, i.e. K(i) ⊆ X\Fp. So by semicontinuity Fp ∩
K(I(i1, ..., in)) = ∅ for some n ≥ p, yielding the contradiction Fn ∩
K(I(i1, ..., in)) = ∅. �

The next theorem (Th. 7.3) is crucial, and may be deduced from
the Convergence Criterion, an immediate corollary of Th. 7.1. (For an
alternative approach – see also [78].)

Proposition 7.2 (Convergence Criterion, [79]). In a normed group, for
rn ↘ 0 and αn = an · ... · a1 with clBrn+1(an+1) ⊆ Brn(e)an, if X = K(I)
is an analytic subset and K(i1, ..., in) ∩Brn(αn) ̸= ∅ for some i ∈ I and
all n, then the sequence {αn} is convergent.

Proof. Indeed, αn → α, if {α} := K(i)∩
∩

n Fn for Fn = cl(Brn(αn)). �

Theorem 7.3 (Analytic Baire Theorem, [81]). In a normed group X
under dXR , if X contains a non-meagre analytic set, then X is Baire. In
fact, up to a meagre set, X is analytic (and separable).

As a corollary we obtain the following.

Theorem 7.4 (Characterization Theorem for Almost completeness, [81]).
In a separable normed group X under dXR , the following are equivalent:
(i) X is a non-meagre absolute Gδ modulo a meagre set (i.e. is almost
complete);
(ii) X contains a non-meagre analytic subset;
(iii) X is non-meagre and almost analytic (i.e. analytic modulo a meagre
set).

Armed with these facts we may state a result that relies on analyticity.

Theorem 7.5 (Analytic Conjugate Shift Theorem, [21]). In a normed
group X under the topology of dXR , for zn → eX null, A analytic and
non-meagre:
for a non-meagre set of a ∈ A (in fact with co-meagre Baire envelope),
there is an infinite set Ma and points an ∈ A converging to a such that

{aa−1
m zmam : m ∈ Ma} ⊆ A

(a transconjugate null sequence, i.e. translated conjugate null sequence).
Moreover, if the normed group is topological, for quasi-all a ∈ A, there is
an infinite set Ma such that

{azm : m ∈ Ma} ⊆ A.
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7.1. Fine Analytic Baire Theorem. The Gandy-Harrington Theorem
asserts that Baire’s Theorem holds for GH, the fine topology of the reals
generated by declaring the effective analytic sets to be open ([89] p. 466).
We generalize this theorem to embrace a wide family of fine topologies.
The key idea is of course appropriate analytic generation of the topology.
Refinement topologies are on the whole regarded by topologists as ‘strange
beasts’ (unless one studies function spaces where the interplay of weak and
strong topologies is common). But refinement is an important tool; let
us briefly survey its use.

One says that the density topology D (cf. §4 above) is a fine topol-
ogy on R. Fine topologies on R capture different notions of ‘typical-
ity’ or ‘randomness’. The alternative intuitive view is that they allow
in more ‘exceptions’ – as e.g. in Denjoy continuity. Other natural ex-
amples come from Analysis: whilst D is most widely known, there is
also the ‘fine topology’, a standard tool in potential theory for dimension
≥ 2. Lesser known topologies used to advantage include O’Malley’s [76]
r-topology R on R (or resolvable-topology – for this term see [66] §12. III,
V), which he used to study approximate differentiability of real-valued
functions; R ⊆ D and is generated by taking as base B:= D ∩ Gδ∩Fσ,
the sets of D that are ambiguously both Gδ and Fσ in the real line.
Another is Scheinberg’s maximal topology U ⊇ D (see [92]), which has
the following important lifting property: any bounded measurable real-
valued function f is equal a.e. to a unique U-continuous function f̃ .
(His modification refers to an ultrafilter of measurable sets extending the
filter D0 := {D ∈ D : 0 ∈ D}.) Whilst these are submetrizable, we re-
call the important role of metrizable refinement topologies in the study
of Borel sets (remetrized to be complete, see e.g. [59, Th. 13.6]), in the
semi-Polish Theorem Th. 8.1, and Staiger’s complete metric refinement
of the Cantor space used in [29] to show that the Law of Large Numbers
holds co-meagerly (and to characterize random sequences in the Martin-
Löf sense). We also note that Frolík and Holický [45] use fine uniformities
to study non-separable analyticity.

Mathematical Logic has been particularly successful in exhibiting var-
ious natural forms of ‘typicality’ in the form of ‘genericity’ constructed
through ‘forcing’ methods. Refinements of the usual (Euclidean) topol-
ogy of the reals play a special role in ‘neo-classical’ descriptive set theory.
Set-theoretic topologists are already familiar with the Ellentuck topol-
ogy E l in relation to the Ramsey property: E l corresponds to Math-
ias forcing (and Mathias reals). Less well-known, alas, are the Gandy
“reals” (Gandy-Sacks degrees), which pre-dated and motivated the
Gandy-Harrington topology GH – introduced as a proof vehicle for
Silver’s Theorem, mentioned already. Perhaps topologists might profit
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from reviewing the best-loved Logic examples: the Cohen reals (generic
in the Euclidean topology) and the Solovay reals (generic in the density
topology); their relation to the respective σ-ideals M (the meagre sets)
and N (the null sets) is well known, so perhaps the specialized infinitary
combinatorics associated with these reals would bear scrutiny by reference
to the established ideal-neglecting topologies. In the group context, if a σ-
ideal I is translation-invariant and satisfies the localization property (see
below), then a topology that neglects members of I may be generated by
having G open in the ideal-neglecting topology iff G = U\Z for some U
open and Z ∈ I; see [70] p. 25. The case I = N , studied in [92], gives a
topology T with E ⊆ T ⊆ D.

Our viewpoint here is that Harrington’s GH and Ellentuck and
Louveau’s E l (see [38], [68], or [59, §29.B]) should both be viewed as
spectacular examples of a canonical analytic construction of refinement
encompassing the classical examples quoted above. We need a definition
and an old result of Kuratowski. (The term ‘heavy’ is established, going
back to [28]; van Mill [100] calls a dense, heavy set ‘fat’. See also [96] for
a general ‘kernel’ approach.)
Definition 7.6. For I a σ-ideal, say that S is I-heavy, resp. I-heavy
on G, in X if S ∩ U /∈ I for every open set U ⊆ X meeting S, resp. for
every open U meeting S ∩G.
The I-light part of A is defined to be the set LI(A) :=

∪
{V ∩ A : V

open and A ∩ V ∈ I}. The heavy part of A is the complementary set
HI(A) = A\LI(A). So A is heavy (heavy on G) iff LI(A) is empty (iff
LI(A) ∩G is empty).
Say that I has the localization property if LI(A) ∈ I for any A.
Remark 7.7. 1. In a second-countable space any σ-ideal has the local-
ization property. In a metric space the σ-ideal M of meagre sets has
the localization property: this is Banach’s Category Theorem, quoted
in Prop. 3.5 and used there to identify an M-heavy set. In a locally
compact metric group equipped with a Haar measure the σ-ideal N of
null sets has the localization property (this follows from the appropriate
Lebesgue Density Theorem, or its generalization – see [21]).
2. Under such circumstances, H = HI(A) is I-heavy, since H ⊆ A.
(Otherwise there is open U with ∅ ̸= U ∩ H ∈ I, so U ∩ A ⊆
(U ∩ H) ∪ LI(A)) ∈ I; then U ∩ A ⊆ LI(A) so (U ∩ A) ∩ H = ∅,
and so ∅ ≠ U ∩H = U ∩H ∩A = ∅, a contradiction.)

When non-empty, the heavy part is dense-in-itself, and so some work
of Kuratowski [65], concerning closed sets that are dense-in themselves
relative to some open set, can be easily amended to give the following
results. (Compare also [55, §2.4].)
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Lemma 7.8. In a separable metric space, let I be a σ-ideal of subsets
with the localization property. For G open and F closed with F ∩G non-
empty and I-heavy, there exist for each δ > 0 non-empty, closed I-heavy
subsets Hi of G with d(Hi) < δ such that

F ∩G =
∪

i
Hi with each Hi\

∪
j<i

Hj non-empty and I-heavy.

Theorem 7.9 (Generalized Kuratowski Representation). For a separable
metric space X and any σ-ideal of subsets I with the localization property,
for any non-empty absolute-Gδ subset A that is I-heavy, there exists an
upper semicontinuous representation K : I → X with each K(I(i|n)) an
intersection of an open set G(i|n) and a closed I-heavy subset F (i|n) of
A of diameter at most 2−n.

Since all points of a topologically complete metric space dense-in-itself
are condensation points, Kuratowski’s original theorem refers de facto to
properties of Iω-heavy sets, for Iω the σ-ideal of countable subsets.

Take I = N and note that for the density topology D the family H =
D∩F ⊆ Gδ is a weak base (see below) comprising N -heavy sets. So these
have a Kuratowski representation with eachK(I(i|n)) = G(i|n)∩F (i|n), a
D-open set (since each G(i|n) is also D-open). This motivates a definition.

Definition 7.10. (K-analytically heavy topologies). 1. For (X, T )
a topological space denote by A(T ) the family of K-analytic subsets of
(X, T ).
2. B is a weak base (or π-base) for a topology T if for each non-empty
V ∈ T there is B ∈ B with ∅ ≠ B ⊆ V.
3. Let (X, T ) be a regular Hausdorff space and T ′ ⊇ T a refinement
topology. We say T ′ is analytically heavy, or weakly K-analytically gener-
ated in T , if T ′ possesses a weak base H ⊆ A(T ) comprising sets that are
K-analytic sets in T with a T ′-open representation, i.e. an upper semi-
continuous representation K : I → K(X) with K(U) ∈ T ′ for U open in
I.

Remark 7.11. The term analytically heavy is only suggestive, since for
any open G ̸= ∅, there is an analytic A with G ⊇ A ̸= ∅. We are now able
to give a very general Baire Theorem.

Theorem 7.12 (Fine Analytic Baire Theorem, Generalized Gandy-
Harrington Theorem, cf. [55, p. 466], [59, 25.18, 25.19], [78, Th.3]). In a
regular Hausdorff space T , if T ′ is a refinement topology of T , possessing
a weak base H ⊆ A(T ) ∩ T ′ whose members have an analytic representa-
tion that is T ′-open, then T ′ is Baire.
In particular, this applies to a Polish space, the Gandy-Harrington GH,
the density D, the Ellentuck E l and O’Malley R topologies.
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8. Semi-Polish Theorem

We sketch below the underlying theme of the proof of the

Theorem 8.1 (Semi-Polish Theorem, [82]). For a normed group X under
dXR , if the space X is non-meagre and semi-analytic (i.e. is analytic under
the symmetrized metric dS, e.g. Polish under dS), then it is a Polish
topological group.

Remark 8.2. This asserts that the topology determined by dXR is Polish
and is admissible, i.e. under this topology X is a topological group.

The proof applies the Baire Homomorphism Theorem of §5, the follow-
ing Open Mapping Theorem and shift-compactness.

Lemma 8.3 (Levi’s Open Mapping Theorem, [67]). Let X be a regu-
lar analytic space. Then X is a Baire space iff X = f(P ) for some f ,
continuous and defined on some Polish space P, with the property that
there exists a set X ′ which is a dense metrizable Gδ in X such that for
P ′ = f−1(X ′) the restriction map f |P ′ : P ′ → X ′ is open.

Lemma 8.4. For X a normed group, if (X, dS) is Polish and (X, dR)
non-meagre, then there is a subset Y of X which is a dense absolute-Gδ

in (X, dR), and on which the dS and dR topologies agree.

Proof. As dS is Polish, the continuous embedding j : (X, dS) → (X, dR)
with j(x) = x makes (X, dR) analytic, and being non-meagre it is a Baire
space.
Apply Levi’s Theorem to f = j to obtain a set Y that is a dense absolute
Gδ in (X, dR), such that every open set in (Y, dS) is open in (Y, dR). Every
open set in (Y, dR) is already open in (Y, dS), since dS is a refinement of
dR. Thus the two topologies agree on the Gδ subset Y.
As Y is a Gδ subset of (X, dR), it is also a Gδ subset in the complete space
(X, dS), and so (Y, dS) is topologically complete. So (Y, dR) is an absolute
Gδ, being homeomorphic to (Y, dS). Working in Y, we thus have yn →R y
iff yn →S y iff yn →L y. �

Lemma 8.5. If in the setting of Lemma 8.4 the three topologies dR, dL, dS
agree on a dense absolutely-Gδ set Y of (X, dR), then for any τ ∈ Y the
conjugacy γτ (x) := τxτ−1 is continuous.

The proof uses Th. 7.5 (the analytic shift theorem) to show first that
γ(x) := τ−1xτ is continuous for τ ∈ Y (as γ|Y is continuous on Y ). Hence
γτ = γ−1, being a Baire homomorphism, is continuous for τ ∈ Y (by Th.
5.2). We can now prove the main result by reference to the topological
centre (§2.1).
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Proof of the Semi-Polish Theorem. Under dR, the topological
centre ZΓ := {x : γx is continuous} is a closed (subsemigroup) of X ([21,
Prop. 3.43]). So X =clRY ⊆ ZΓ, i.e. γx is continuous for all x, and so
X is a topological group under the topology of dXR , by the Equivalence
Theorem (Th. 2.5). So xn →R x iff x−1

n →R x−1 iff xn →L x iff xn →S x.
So the topology of dXR is Polish as the topology of dXS is a Polish. �

9. Life without translations

The density topology D on R was described in §4. It is a refinement
of the Euclidean topology E (§6.2), i.e. E ⊆ D. So D is submetrizable
(for which see [47]), and translations are homeomorphisms, making D
semitopological but not paratopological ([92] Prop. 1.9). The key idea of
this section now follows.

Definition 9.1. (weak category convergence). A sequence of home-
omorphisms hn of a topological space (X, TX) satisfies the weak category
convergence condition (wcc) if for any non-meagre open set U there is an
non-meagre open set V ⊆ U such that, for each k ∈ ω,∩

n≥k
V \h−1

n (V ) is meagre. (wcc)

Equivalently, there is a meagre set M such that, for each k ∈ ω and t /∈M,

t ∈ V =⇒ (∃n ≥ k) hn(t) ∈ V.

The condition (wcc) may variously be interpreted as a topological con-
vergence condition: see below and the next subsection.

Theorem 9.2 (Bitopological Shift-Theorem, aka Category Embedding
Theorem, [16], [74]). Let TX be a submetrizable topology on X, i.e. a
refinement topology of some metric topology (X, Td).
For a subgroup G ⊆ H(X, Td)∩Auth(TX) under the right norm topology,
put φ(g, x) = g(x) for g ∈ G and x ∈ X.
Then the mapping φg : x→ g(x) is continuous.
Suppose further that for any hn → eG in norm, hn satisfies the (wcc).
Let A ⊆ X be a non-meagre Baire set under TX .
Then there exists a ∈ A such that hn(a) ∈ A infinitely often.

Remark 9.3. 1. Generalizations exist with consecutive embeddings of fixed
length ‘in van der Waerden style’ (e.g. both h2m and h2m+1 in A) and
with multiple embeddings (into a sequence of sets An – this is Kingman’s
theorem). For details [20].
2. If TX is the density topology, the set A above may without loss of
generality be a density-open set W. One may show under certain circum-
stances, which include the case of the real line under the density topology,
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that (wcc) is a continuity condition (see [74] and Remark 9.9 below).
3. On the real line one proves that, for zn → 0, the shifts hn(t) = t+ zn
satisfy wcc both (i) in the usual (Euclidean norm) topology and (ii) in
the density topology.
Hence both versions of KBD follow from the last theorem.
4. Recall the Birkhoff-Kakutani Theorem (§2) that a metrizable topo-
logical group has a right-invariant metric. In this case:
i) if X is a Baire space under the norm topology, then the (wcc) holds
under the norm topology,
ii) if, additionally, X is locally compact then X has a Haar measure and
(wcc) can be verified for the Haar-density topology.

Definition 9.4. Say that {hn} I-converges to the identity and write
{hn} ⇒I eG if for any open U on X there is a non-empty open W ⊆ U
such that for every increasing sequence {m(n)} of natural numbers,∩

n
V \h−1

m(n)(V ) ∈ I.

(The double arrow is cautionary: a convergence structure need not gener-
ate a topology – see [35, p. 26], or [41].) Taking in particularm(n) = n+k,
one retrieves (wcc) for k = 1, 2, ... as part of a more demanding condition.
For the group of translations on Rd the new condition is equivalent to
(wcc), since zm(n) is a null sequence whenever zn is a null sequence.

[74] studies when the convergence structure {hn} ⇒I eG is topological,
i.e. generates a topology TI . One has the following:

Theorem 9.5 ([74]). For the group G of translations of the real line, with
I = N or I = M, the topology TI on G is well-defined and is coarser
than its right supremum-norm topology.

9.1. From weak category to coarse convergence. This section is
devoted to interpreting (wcc). Refining an argument developed in [16],
one obtains the following improvement.

Theorem 9.6 (Convergence to the identity, cf. [16]). Assume that the
homeomorphisms hn : X → X satisfy (wcc) and that X is a submetrizable
Baire space. Then, for quasi-all t, there is an infinite Nt such that with
TX and Td as in Th. 9.2

limm∈Nt hm(t) = t under Td.

Proof. Working first in Td, let B =
∪

m∈ω Bm be a basis with each Bn

discrete. Now work in TX until further notice. In this finer topology
each Bn is still open and discrete, and so the members of each Bn may
be assumed non-empty, so non-meagre (as the finer topology is Baire).
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By (wcc), select for each U ∈ Bm and k ∈ ω a non-empty open Vk(U) ⊆ U
such thatMk(U) :=

∩
n≥k Vk(U)\h−1

n (Vk(U)) is a meagre subset of Vk(U).
For k ∈ ω andW ∈ B choose a maximal family VW

k := {Vk(UW
i ) : i ∈ IW }

of disjoint non-empty open subsets of the form Vk(U) for U ⊆W. Let VW
k

denote its union and Fk(W ) the closure of VW
k . Then Fk(W ) ⊆ W̄ .

Furthermore W ⊆ Fk(W ), otherwise U :=W\Fk(W ) is non-empty, open
and disjoint from VW

k , so that Vk(U) is non-empty and disjoint from the
members of VW

k , contradicting maximality.
We now construct two meagre sets N and M as follows.
Observe that Nk(W ) := Fk(W )\VW

k is closed and nowhere dense as VW
k

is open; one has Nk(W ) ⊆ W̄ . For m ∈ ω, note that Bm :=
∪
{W̄\W :

W ∈ Bm} is nowhere dense. (Any point x of X has a nhd G meeting
at most one set W ∈ Bm, say WG, but otherwise for W ∈ Bm the set
G misses W and so also W̄ . As W̄G\WG is nowhere dense, there is a
non-empty subset G′ of G avoiding W̄G\WG.) By the Banach Category
Theorem, since Bm is a discrete open family,

∪
{Nk(W ) ∩W : W ∈ Bm}

is meagre. So Nk,m :=
∪
{Nk(W ) : W ∈ Bm} is meagre, being a subset

of Bm ∪
∪
{Nk(W ) ∩W :W ∈ Bm}. So

N :=
∪

k,m∈ω
Nkm =

∪
{Nk(W ) :W ∈ Bm and k,m ∈ ω}

is meagre. Note that W\Nk(W ) ⊆ Fk(W )\Nk(W ) ⊆ VW
k .

Next for W ∈ B and k ∈ ω, put

MW
k :=

∪
{Mk(U

W
i ) : i ∈ IW } ⊆W,

which is meagre – again by the Banach Category Theorem, as Mk(U
W
i ) ⊆

Vk(U
W
i ) and VW

k is disjoint. Put

M :=
∪

k,m∈ω

∪
{MW

k :W ∈ Bm},

which is likewise meagre (by the discreteness of Bm).
Consider t /∈ N ∪ M. For W ∈ B with t ∈ W and k ∈ ω, one has
t ∈ Vk(U

W
i ) for some UW

i ⊆ W with i ∈ IW , as t ∈ W\Nk(W ) ⊆ VW
k .

Also, since t /∈ M, one has t ∈ Vk(U
W
i )\Mk(U

W
i ), so t ∈ h−1

m (Vk(U
W
i ))

for some m = m(t, k,W, i) ≥ k. So hm(t) ∈ Vk(U
W
i ) ⊆ UW

i ⊆ W. Passing
now to the coarser topology Td in which Bt := {W ∈ B : t ∈W} is a basis
for the nhds of t, it follows that there is an infinite set Nt of integers m
for which hm(t) → t in Td. �

9.2. A generalized Pettis theorem. Our final example of homeomor-
phisms replacing translations is motivated by a key property required in
topological regular variation theory ([17]): for any convergent sequence
of points xn with limit x0, existence of a corresponding sequence of
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bounded self-homeomorphisms, i.e. in H(X), converging to the iden-
tity (i.e. ψn → idX under the supremum metric d̂X , as in (sup) above)
with ψn(x0) = xn. We call the ψn a ‘crimping sequence’ and think of
them as diminishing ‘topological’ shifts. This property is equivalent to
the microtransitivity of the Effros Theorem ([37], [100], [83]).

The continuous analogue below of crimping yields a generalized Pettis
theorem requiring only that H(X) act transitively on X (homogeneity).

Definition 9.7. Let {ψu : u ∈ U} for U an open set in X be a family
of homeomorphisms in H(X). Let u0 ∈ U. Say that ψu converges to the
identity as u→ u0 if limu→u0 ∥ψu∥H = 0.

Theorem 9.8 (Generalized Piccard-Pettis Theorem, [21]). Let (X, dX) be
homogenous under H(X). Suppose that the homeomorphisms ψu converge
to the identity as u→ u0, and that A ⊆ X is a non-meagre Baire subset.
Then, for some δ > 0, we have

A ∩ ψu(A) ̸= ∅, for all u with dX(u, u0) < δ,

or equivalently, for some δ > 0

A ∩ ψ−1
u (A) ̸= ∅, for all u with dX(u, u0) < δ.

Example. Take X = R, u0 = 0 and ψu(x) = x+u, then limu→u0 ∥ψu∥H =
0. For A Baire non-meagre, there is some δ > 0 such that for each u with
|u| < δ there is a1, a2 with a1 = a2 + u ∈ A ∩ (A+ u). So a1, a2 ∈ A and
u = a1 − a2, i.e. (−δ, δ) ⊆ A−A.

Remark 9.9. Writing Ψ(u) for the map x → ψu(x), the property here
when A is an open set U may be rephrased as Bδ(u0) ⊆ Ψ−1{h ∈ H(X) :
U ∩ h(U) ̸= ∅} indicating that Ψ is continuous relative to the lower Fox-
Mosco topology on H(X), as defined in [74].
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