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LIFTING THE COLLINS-ROSCOE PROPERTY
BY CONDENSATIONS

VLADIMIR V. TKACHUK

ABsTrRACT. We show that every strongly monotonically monolithic
Lindel6f ¥-space has a countable base. We also establish that the
Collins—Roscoe property and monotonic k-monolithity have a nice
behavior with respect to condensations of Lindeldf ¥-spaces, i.e., if
a Lindelof X-space X condenses onto a monotonically x-monolithic
space (onto a space with the Collins—Roscoe property), then X
itself is monotonically k-monolithic (has the Collins—Roscoe prop-
erty). We prove that a monotonically monolithic perfectly nor-
mal compact space is metrizable; this provides another method for
constructing a Corson compact space which is not monotonically
monolithic. Answering a question of Gary Gruenhage, we give an
example of a compact space which fails to be Gul’ko but has the
Collins—Roscoe property.

INTRODUCTION

It is a textbook result that every condensation (i.e., a continuous bijec-
tion) of a compact Hausdorff space is a homeomorphism, so if a compact
space X condenses onto a space with a property P, then X itself has
P. The class of Lindelof -spaces is an extension of the class of com-
pact spaces; this extension has been widely studied in general topology as
well as in functional analysis and descriptive set theory. In particular, it
was proved that every Lindel6f ¥-space X is stable (see the beginning of
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Section 2 for the definition); this implies that X is cosmic if X con-
denses onto a cosmic space. In this paper we will show that there exist
other important properties P such that a Lindel6f X-space has P when-
ever it condenses onto a space with the property P. We will show that
some consequences of these results are well-known difficult theorems of
Gary Gruenhage.

Recall that, for an infinite cardinal &, a space X is called k-monolithic if
nw(A) < k for every set A C X with |A| < k. The space X is monolithic
if it is k-monolithic for any infinite x. These concepts, introduced by
A. V. Arhangel’skii in [5], proved to be very useful both for the theory of
cardinal invariants and C),-theory.

V. V. Tkachuk introduced in [18] the concept of a (strongly) monotoni-
cally monolithic space and proved that every subspace of a monotonically
monolithic space has the D-property. It was also shown in [18] that C),(X)
is monotonically monolithic for any Lindel6f X-space X and every space
with a point-countable base is strongly monotonically monolithic. In par-
ticular, any metrizable space is strongly monotonically monolithic. There-
fore, the class of monotonically monolithic spaces is reasonably large; it
was also established in [18] that monotonic monolithity is preserved by
countable products, subspaces, and closed maps. In [1] monotonic k-
monolithity was introduced for any infinite cardinal x; it was proved, in
particular, that monotonic k-monolithity is preserved by countable prod-
ucts and o-products.

It was asked in [1] whether every monotonically w-monolithic compact
space is Corson compact. Gruenhage, in [12], gave a positive answer to
this question; he also considered a property introduced by P. J. Collins
and A. W. Roscoe in [9]. It turned out that every Gul’ko compact has
the Collins—Roscoe property which, in turn, implies its monotonic mono-
lithity, so it was asked in [12] whether these two properties coincide.

Tkachuk studied the Collins—Roscoe property systematically in [19].
Answering a question of Gruenhage, he gave an example of a monoton-
ically monolithic space without the Collins—Roscoe property. He also
proved that the Collins—Roscoe property is preserved by closed maps,
countable products, and o-products and established that if a Lindeldf -
space X has a weakly o-point-finite Ty-separating family of cozero subsets,
then X has the Collins—Roscoe property.

In this paper we prove that both monotonic monolithity and the Collins—
Roscoe property are “lifted” by condensations in Lindel6f ¥-spaces and
generalize Gruenhage’s result on Collins—Roscoe property in Gul’ko com-
pact spaces in the context of condensations into X,-products (see the
definition of a ¥4-product in Section 3 in the introductory text to Theo-
rem 3.2). It turns out that monotonically w-monolithic space of countable
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tightness is monotonically monolithic while any strongly monotonically w-
monolithic space is strongly monotonically monolithic. Answering Ques-
tion 3.4 of [12], we give an example of a compact space which fails to be
Gul’ko compact but has the Collins—Roscoe property.

We also provide a method of construction of Corson compact spaces
which are not monotonically w-monolithic and prove that any strongly
monotonically monolithic Lindel6f Y-space is second countable, general-
izing the respective result of J. Chaber (see [7]) on Lindeldf 3-spaces with
a point-countable base.

1. NOTATION AND TERMINOLOGY

All spaces are assumed to be Tychonoff. Given a space X, the family
7(X) is its topology; if x € X, then 7(z,X) = {U € 7(X) : ¢ € U};
besides, for any set A C X, we will need the family 7(A,X) = {U €
7(X): A C U}. We denote by R the real line with its natural topology
and I = [0,1] C R; furthermore, D = {0,1} is the doubleton with the
discrete topology.

Say that a family F of subsets of a space X is a network with respect
to a cover C if, for any C € C and U € 7(C, X), there exists F € F such
that C C F C U. If C = {{z} : * € X}, then a network with respect to
C is called a network of X. The network weight nw(X) of a space X is
the minimal cardinality of a network in X. A space that has a countable
network is called cosmic.

A space X is Lindelof X if there exists a countable family F of subsets
of X such that F is a network with respect to a compact cover C of the
space X. If X is a space, then a family G of subsets of X is called a
network (base) at a point x € X if (G C 7(X) and), for any U € 7(z, X)
there exists G € G such that x € G C U. Given a set A in a space X say
that a family A of subsets of X is an external network (base) of A in X
if (all elements of N are open in X and) N is a network at every z € A.
A family B is called an outer base of a set F' in a space X if F' C [ B and,
for every U € 7(F, X), there exists B € B such that B C U.

For an infinite cardinal k, say that a space X is (strongly) monoton-
ically k-monolithic if, for any set A C X with |A| < k, we can assign
an external network (base) O(A) to the set A in such a way that the
following conditions are satisfied:

(a) [O(A)| < k;

(b) if A C B, then O(A) C O(B);

(¢) if A < kis an ordinal and we have a family {A,, : @ < A} of subsets
of X such that a < < X implies A, C Ag, then O(J, ., 4a) =
Ua<)\ O(Aa)
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A space X is (strongly) monotonically monolithic if it is (strongly)
monotonically x-monolithic for any infinite cardinal .

Given a space X, assume that, for every point z € X, a countable
family G(x) of subsets of X is chosen. Say that {G(z) : + € X} is a
(strong) Collins-Roscoe collection if, for any z € X (we have G(x) C
7(X)) and for each U € 7(z, X ), we can find an open set V' such that = €
V C U and, for any y € V, there exists a set P € G(y) with x € P C U.
If a space X has a Collins—Roscoe collection, then we will say that X has
the Collins—Roscoe property. Gruenhage proved in [12] that a collection
{G(z) : x € X} of countable families has the (strong) Collins—Roscoe
property if and only if, for any set A C X, the family (J{G(x) : v € A} is
a network (or base, respectively) at every point of A.

The rest of our terminology is standard and follows from [11].

2. MONOTONIC MONOLITHITY AND CONDENSATIONS

In general, the fact that a space X has a weaker monotonically mono-
lithic topology does not imply that X must be w-monolithic. To see that,
observe that the Sorgenfrey line is not w-monolithic while it condenses
onto a monotonically monolithic space R. Therefore, even the hereditary
Lindel6f property does not help to “lift” monolithity under a condensation.
The situation is different if we look at Lindelof X-spaces.

Recall that a space X is called k-stable if, for any continuous image Y
of the space X, if Y condenses onto a space of network weight < &, then
nw(Y) < k. A space is stable if it is k-stable for any infinite cardinal
k. The following result is an easy consequence of stability of Lindelof
Y-spaces (see [6, Theorem I1.6.21]); however, it seems to be new.

Proposition 2.1. Given an infinite cardinal k, suppose that a Lindelof
Y.-space X condenses onto a k-monolithic space. Then X is k-monolithic.

Proof. Suppose that f: X — Y is a condensation and Y is x-monolithic.
If AC X and |A| < &, then A is a Lindelof 3-space which condenses into
the space Z = f(A) with nw(Z) < k, so we can apply stability of A to

conclude that nw(A) < k, i.e., X is k-monolithic. O

Corollary 2.2. If a Lindeléf ¥-space X condenses onto a monolithic
space, then X is monolithic.

We will see later that the same results can be proved for monotonic
monolithity and the Collins—Roscoe property. Our main tool is the fol-
lowing lemma.

Lemma 2.3. Suppose that f : X — Y is a condensation of a Lindeldf
Y-space X onto a space Y. Fiz a countable network N with respect to a
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compact cover C of the space X. Assume that y € Y and F is a network
aty in'Y. Then the family € = {f Y (F)NN:F € F and N € N} is a
network at the point v = f~(y) in X.

Proof. Take any U € 7(x, X); there exists C € C with z € C. Since
F is a network at y, we can choose a set F' € F such that y € F' and
FNf(C\U)=0. If G=fYF), then GN(C\U) = 0; by normality
of X there exists a set V € 7(C \ U, X) such that VNG = 0. The set
V UU is an open neighborhood of C in X, so we can find N € N for
which C C N C UUV. It is straightforward that E = GN N € £ and
r € FE CU,so & is network at the point . O

Theorem 2.4. Given an infinite cardinal k, suppose that a Lindeldf 3-
space X can be condensed onto a monotonically k-monolithic space. Then
the space X is monotonically k-momnolithic.

Proof. Fix a countable network N with respect to a compact cover of
X and take a condensation f : X — Y of X onto a monotonically k-
monolithic space Y; let O be a k-monolithity operator in Y. Take any
set A C X with |A| < k and let G(A) = {fY(B)NN : N € N and
B € O(f(A)}. Then |G(A)| < k; it is immediate that the properties
(b) and (c) of the definition of monotonic k-monolithity also hold for the
operator G. Now, if x € A and y = f(z), then O(f(A)) is a network at
the point y, so we can apply Lemma 2.3 to conclude that the family G(A)
is a network at the point x, i.e., G is a monotonic xk-monolithity operator
on X. ]

Corollary 2.5. If a Lindeldf -space X condenses onto a monotonically
monolithic space, then X is monotonically monolithic.

The following proposition generalizes Lemma 3.26 from [10] and gives
another method for constructing a Corson compact space which is not
monotonically w-monolithic (see [12, Example 2.3]).

Proposition 2.6. If X is a monotonically w-monolithic perfectly normal
compact space, then X is metrizable.

Proof. Observe that X must be Corson compact by [12, Corollary 2.2],
but there exist, at least consistently, perfectly normal Corson non-metriz-
able compact spaces. Let O be an operator that witnesses the monotonic
w-monolithity of X. There is no loss of generality to assume that all
elements of O(A) are closed in X for every A C X. Choose a countable
outer base B for every closed set F' C X. Fix a set A C X and observe
that the family G(A) = U{Br : F € O(A)} C 7(X) is countable. It is
standard to verify that the operator G witnesses the strong monotonic
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w-monolithity of the space X. Therefore, by [1, Theorem 2.6], X must be
metrizable. (]

Recall that X is called an L-space if X is hereditarily Lindel6f and
non-separable. Compact L-spaces exist under CH and do not exist under
MA+-CH. Gruenhage constructed in [12] a ZFC example of a Corson
compact space which is not monotonically w-monolithic. Gruenhage’s
construction is very difficult, but if CH is assumed, then it is easy to
obtain such an example.

Corollary 2.7. If X is a compact L-space, then X can be irreducibly
mapped onto a Corson compact space which is not monotonically w-mono-
lithic.

Proof. Since t(X) = w, we can apply [4, Theorem 3.2.4] to find a Corson
compact space K such that X can be irreducibly mapped onto K. If K
is monotonically w-monolithic, then it is metrizable by Proposition 2.6;
every closed irreducible preimage of a separable space is separable so X
is separable, which is a contradiction. O

Gruenhage proved the following characterization of monotonic mono-
lithity.

Theorem 2.8 ([12, Theorem 3.2|). An arbitrary space X is (strongly)
monotonically monolithic if and only if, for any finite set H C X, we can
choose a countable family Ag of (open) subsets of X such that, for every
A C X, the family | J{Ag : H € [A]<%} is an external network for A.

We will apply Theorem 2.8 to show that in some cases monotonic k-
monolithity implies monotonic monolithity. It is a folklore fact that an
w-monolithic space of countable tightness is monolithic. Our purpose is
to show that an analogous result holds for monotonic w-monolithity.

Lemma 2.9. Let O be an operator of (strong) monotonic k-monolithity
on a space X. For any finite set H C X, let Ay = O(H) and consider
the family G(A) = |J{Ag : H € [A]<%} for every set A C X. Then G(A)
coincides with O(A) for every A C X with |A| < k.

Proof. Tt is immediate that G(A) C O(A) for any A C X with |4| < &,
so we need only to show that O(A) C G(A). Proceeding by transfinite
induction, assume first that |A| < w; then it is possible to represent A
as (J{Hp : n € w} where the set H, is finite and H,, C H,; for every
n € w. It follows from the properties of the operator O that O(A) =
U{O(H,) :new} = J{Apn, :n€w} CG(A).

Now assume that A < k is a cardinal and we proved, for any p < A,
that if A C X and |A4| < u, then O(4) C G(A). Take any set A C X
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with |A| = A; we can find an increasing A-sequence {B,, : & < A} such
that A = |J{Ba : @ < A} and |B,| < A for any o < A. If E € O(A), then
there exists a < A such that E € O(B,). By our induction hypothesis,
O(By) CG(Ba) CG(A), s0o E € G(A), ie., O(A) C G(A). O

Theorem 2.10. Given an infinite cardinal k suppose that X is a mono-
tonically k-monolithic space such that t(X) < k. Then X is monotonically
monolithic.

Proof. Take an operator O that witnesses monotonic k-monolithity of X.
Given a finite set H C X, let Ay = O(H); this makes it possible to define
the family G(A) = J{Apy : H € [A]<¥} for every A C X.

Now take an arbitrary set A C X, a point + € A and U € 7(z, X).
There exists a set B C A with |B| < k such that x € B. The family
O(B) is an external network for the set B 3 z so there exists G € O(B)
with z € G C U. It follows from Lemma 2.9 that G € G(B) C G(A), and
hence G(A) is an external network for A. Finally, apply Theorem 2.8 to

conclude that X is monotonically monolithic. O

Corollary 2.11. If X is a monotonically w-monolithic countably compact
space, then X is a monotonically monolithic Corson compact space.

Proof. A countably compact monotonically w-monolithic space is compact
by [1, Corollary 2.24], so X is a monotonically monolithic Corson compact
space by Theorem 2.10 and [12, Corollary 2.2]. O

Theorem 2.12. A space X is strongly monotonically w-monolithic if and
only if it is strongly monotonically monolithic.

Proof. We must only prove necessity, so assume that X strongly mono-
tonically w-monolithic. Then x(X) < w, and hence #(X) < w. Take
an operator O that witnesses strong monotonic w-monolithity of X. Let
Ap = O(H) for any finite H C X and consider the family G(A) = |J{Ap :
H € [A]<%} for every set A C X. Fix any set A C X, a point x € A, and
U € 7(x,X). There exists a countable set B C A with x € B. The family
O(B) is an external base for the set B 3 x so there exists G € O(B) with
x € G CU. It follows from Lemma 2.9 that G € G(B) C G(A), and hence
G(A) is an external base for A. Finally, apply Theorem 2.8 to conclude
that X is strongly monotonically monolithic. O

It follows from a general result of Chaber [7] that every Lindelof Y-space
with a point-countable base is second countable. The following theorem
shows that the assumption on a point-countable base can be weakened to
strong monotonic monolithity.
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Theorem 2.13. If X is a strongly monotonically monolithic Lindelof
Y.-space, then X is second countable.

Proof. Let O be a strong monotonic monolithity operator on X and fix
a countable network A with respect to a compact cover C of the space
X. Take an arbitrary point g € X and let Ay = {xo}. Proceeding by
induction, assume that we have countable subsets Ay, ..., A, of the space
X with the following properties:

(1) Ag C ... C Ap;

(2) for every i < n, if there exists a finite family V C O(4;) and

N € N such that N\ (UV) # 0, then (N \ (JV)) N Ait1 # 0.

For every finite V C O(A4,,), if N € N and N\ JV # 0, then choose
a point a(V,N) € N\JV. Let A,y1 = A, U{a(V,N) : V is a finite
subfamily of O(A,,) and, for N € N, we have N \ JV # 0}. It is
immediate that conditions (1) and (2) are now satisfied for all i < n + 1,
so we can construct a sequence {A; : i € } of countable subsets of X such
that (1) and (2) hold for all n € w.

To see that A = |J{4, : n € w} is dense in X suppose not and pick a
point € X \ A. There exists C € C with z € C. Theset K =CnNA
is compact and the family O(A) is an external base at all points of A4, so
we can choose a finite family V C O(A) such that = ¢ |JV and K C V.
The set G = (V) U (X \ 4) is an open neighborhood of C so there exists
N € N such that C C N C G.

Since O(A) = U{O(A,) : n € w} and the family {O(A4,) : n € w}
is increasing, we can find n € w such that V C O(A,). Observe that
x € N\ (UV), so the point y = a(V, N) must belong to A, 1. However,
ye N\ (UV)C X\ A4, soy¢ A, which is a contradiction. Therefore, A
is a dense subset of X, so O(A) is a countable base of X. O

3. CoLLINS—ROSCOE PROPERTY AND CONDENSATIONS

It turns out that the Collins—Roscoe property is also “lifted” by con-
densations of Lindel6f -spaces. This makes it possible to generalize
Gruenhage’s theorem on Collins—Roscoe property of Gul’ko compact spaces
in the context of their mappings into ¥s-products.

Theorem 3.1. Suppose that a Lindeldf YX-space X condenses onto a
Collins—Roscoe space. Then X is a Collins—Roscoe space.

Proof. Fix a countable network A with respect to a compact cover of the
space X and take a condensation f: X — Y of X onto a Collins—Roscoe
space Y; let {O, : y € Y} be the respective Collins-Roscoe family in Y.
For any point z € X, the family G(z) = {f""(F)NN : F € Oy, and
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N € N'} is countable. Take any set A C X; if x € A and y = f(z), then
E = U{Oy(z) : z € A} is a network at the point y = f(x) € f(A), so we
can apply Lemma 2.3 to conclude that the family {f~'(F)N N : F € £
and N € N} = [J{G(2) : 2 € A} is a network at the point z, i.e.,
{G(x) : x € X} is a Collins-Roscoe family on X. O

The concept of Ys-product was introduced in [17] by G. A. Sokolov
who proved that a compact space X is Gul’ko compact (i.e., Cp(X) is a
Lindelof X-space) if and only if X embeds into a 3s-product of real lines.

Given a family of spaces {X; : t € T'}, suppose that s = {T}, : n € w}
is a sequence of subsets of T'; let X = [[,. X; and fix a point a € X.
Given any z € X, let supp(z) ={t € T : z(t) #a(t)} and N, = {n € w:
|supp(z) NT,| < w}. Then theset S={z e X : T ={T,:n € N,}} is
called the ¥s-product centered at a with respect to the sequence s.

Theorem 3.2. Any X,-product of compact spaces is a Lindelof X-space.

Proof. Take a family {K; : ¢ € T} of compact spaces and an arbitrary
sequence s = {7}, : n € w} of subsets of T’; let K = [[,., K; and fix a
point a € K. Given any x € K, let supp(z) = {t € T : z(t) # a(t)} and
N, ={n € w : |supp(z) N T},| < w}. We must prove that S = {z € K :
T =|J{T : n € N, }} is a Lindel6f E-space.

Given any set E C T, let Kg = [[{K; : t € E} and define a point
ag € Kg by the equality ag(t) = a(t) for every t € E. For each n € w,
consider the o-product E, = {z € Kr, : |{t € T, : z(t) # a(t)}| < w}; it
is standard to see that F, is o-compact so the set H, = E, X Kp\7, is
also o-compact. Fix any x € S and y € K \ S; there exists t € T such
that t ¢ {7, : n € N,}. Take n € N, with t € T,,; then supp(y) N T, is
infinite and supp(z) N7, is finite which shows that © € H,,, while y ¢ H,,.
Thus, the family {H,, : n € w} of o-compact subsets separates the points
of S from the points of K \ S, so S is a Lindelsf X-space. O

A family U of subsets of a space X is called weakly o-point-finite if
there exists a sequence {U,, : n € w} of subfamilies of U such that, for
every x € X, we have the equality U = |J{U,, : U, has finite order at
the point x}. The family U is said to Ty-separate the points of X if, for
any distinct points z,y € X, there exists U € U such that U N {z,y} is a
singleton.

Lemma 3.3. Any X4-product S of spaces of countable i-weight has a
weakly o-point-finite family of cozero sets that Ty-separates the points of

S.

Proof. Observe first that the existence of a weakly o-point-finite Ty-
separating family of cozero sets is preserved by stronger topologies. Every
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Ys-product of spaces of countable i-weight condenses into a X -product
of spaces of countable weight, so it suffices to prove our lemma for second
countable spaces.

To do so, take a family {X; : ¢t € T'} of second countable spaces and
a sequence s = {71}, : n € w} of subsets of T'; let X = [],., X; and fix
a point ¢ € X. Given any z € X, let supp(z) = {t € T : x(t) # a(t)}
and N, = {n € w : [supp(z) N T},| < w}. We must show that the space
S={zxe X :T=U{T, : n € Ny}} has a weakly o-point-finite Tp-
separating family of cozero sets.

Given any t € T, let B; be a countable base in X; \ {a(¢)} such that
a(t) ¢ U for any U € B;. Choose an enumeration {B! : n € w} of the
family B;. Denote by p; the projection of X onto X; and observe that
the family {p; (B%) : t € T, n € w} is Tp-separating in X and consists
of cozero sets. It is easy to see that the countable union of weakly o-
point-finite families is weakly o-point-finite, so it suffices to show that the
family U, = {p; *(BL)NS :t € T} is weakly o-point-finite for every
m e .

We have Uy, = J{V, : n € w} where V,, = {p; *(B%,)NS : t € T,} for
each n € w; let us show that this decomposition of U,,, witnesses that it is
weakly o-point-finite. Take any xz € S, then T = |J{T}, : n € N, } which
shows that Uy, = |J{Vn : n € N, }. For any n € N, theset Q = {t € T}, :
x(t) # a(t)} is finite; if z € p,; '(BY,), then 2(t) = pi(z) € B, € X; {a(t)}
which shows that x(t) # a(t), and therefore ¢t € Q. This proves that the
cardinality of the family {V € V,, : € V'} does not exceed the number
of the elements of the set {t € T), : x € p; (Bt,)} C Q, so V, has a finite
order at x, and hence the family U, is weakly o-point-finite for every
m € w. ]

Corollary 3.4. Any Xs-product of second countable spaces has the Collins—
Roscoe property.

Proof. Take a family {X; : t € T} of second countable spaces and a
sequence s = {1}, : n € w} of subsets of T'; let X = [],., X; and fix a
point a € X. Given any xz € X, let supp(xz) = {t € T : z(t) # a(t)} and
N, ={n € w: |supp(z) N T},| < w}. We have to prove that S = {x € X :
T = J{T), : n € N, }} has the Collins—Roscoe property.

Choose a second countable compactification K; of the space X for all
t € T. Denote by K the space [[,., K¢ and let Sk be the ¥,-product in
K centered at a with respect to the same sequence s. The space Sk has
the Lindel6f Y-property by Theorem 3.2; observe that Lemma 3.3 implies
that Sk has a weakly o-point-finite Ty-separating family of cozero sets, so
we can apply [19, Theorem 2.14] to see that Sk is a Collins—Roscoe space.
Since S C Sk, the space S also has the Collins—Roscoe property. O
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A compact space X is Gul’ko compact if and only if it embeds into a
Y¢-product of real lines; therefore, the following corollary gives one more
generalization of Gruenhage’s result on the Collins—Roscoe property of
Gul’ko compact spaces.

Corollary 3.5. If a Lindelof X-space X condenses into a Xg-product of
spaces of countable i-weight, then X has the Collins—Roscoe property.

Proof. Since every X ;-product of spaces of countable i-weight can be con-
densed into a Y¢-product of spaces of countable weight, we can apply
Theorem 3.1 and Corollary 3.4. ]

It is still an open question whether every strong Collins—Roscoe space
has a point-countable base. The Corollary to Theorem 5 of [14, p. 76]
establishes that every strong Collins—Roscoe space X has a dense subspace
Y with a point-countable base. It is possible to extract from the proof of
Theorem 5 of [14] that Y actually has a point-countable external base B
in X. It is clear that B is a point-countable m-base of X.

We will show that a weaker condition suffices to derive existence of a
point-countable m-base. Given a space X and a family A of subsets of
X say that a family € = {O4 : A € A} is an open expansion of A if
ECT(X)and AC O4 for any A € A. A family £ is an open expansion
ofaset ACX ifE={U,:2€ A} and U, € 7(z, X) for each z € A.

Theorem 3.6. Let X be a Collins—Roscoe space. Then every left-separated
subspace Y C X has a point-countable open expansion.

Proof. Let {P, : x € X} be a Collins—Roscoe collection in X. Take a
well-order < on Y which witnesses that Y is left-separated. For every
y €Y theset L, = {z €Y : 2 <y} is closed in Y, so we can find a
set U, € 7(y,X) such that, for every point z € U, there exists P € P,
with y € P and PN L, = (. The family 4 = {U, : y € Y} is an open
expansion of Y; we claim that U is point-countable.

To see this, suppose that x € X and there exists an uncountable set
A C Y such that z € (\{U, : y € A}. For each y € A there is a set
P, € P, such that y € P, C X \ L,. The family P, being countable, we
can find y,z € A such that y < z and P, = P,. Observe that y € L,
while y € P, = P, C X \ L., which is a contradiction. |

Corollary 3.7. If X is a Collins—Roscoe space and wx(X) < w, then X
has a point-countable m-base.

Proof. Take a dense left-separated subspace Y of the space X and fix a
countable 7-base B, at every point x € X. By Theorem 3.6 we can find a
point-countable open expansion {U, : € Y} of the set Y in X. It is easy
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to see that the family B={BNU,:x €Y, B € B, and BNU, # 0} is
a point-countable m-base of X. O

Our next statement is an easy consequence of Corollary 3.7; it is
worth noting that in [8] it was mentioned after Theorem 14 that ev-
ery strong Collins—Roscoe space has a dense subspace with an external
point-countable base, so the following corollary was known to the authors.

Corollary 3.8. Fvery strong Collins—Roscoe space has a point-countable
m-base.

Proof. If X is a strong Collins—Roscoe space, then x(X) < w, so Corollary
3.7 is applicable. O

Corollary 3.9. Suppose that X is a Collins—Roscoe space and s(X) < wy.
If rx(X) < w, then d(X) < wy.

Proof. By Corollary 3.7, we can find a point-countable base B in the space
X. It is a theorem of B. E. Shapirovskii (see [16, Lemma 3.1]) that there
exists a family D = {D, : a@ < w1} of discrete subspaces of X such that
BN (UD) # 0 for any B € B. In particular, the set D = [ J{Dy : & < w1}
is dense in X. Tt follows from s(X) < w; that |D| < wp,s0d(X) <w;. O

Corollary 3.10. Suppose that X is a hereditarily Lindeldf strong Collins—
Roscoe space. Then X has a point-countable base.

Proof. We have the inequalities s(X) < hl(X) < w and x(X) < w which
show that Corollary 3.9 is applicable to conclude that d(X) < wq, and
hence the space X has a point-countable base by [14, Theorem 7]. ([

In [10], A. Dow, H. Junnila, and J. Pelant considered several prop-
erties implied by the existence of a stronger metric topology on function
spaces. Among other things, they introduced spaces with point-countably
expandable networks. Recall that a family A of subsets of a space X is
point-countably expandable if it has a point-countable open expansion in
X. The class of spaces with a point-countably expandable network is
important because it contains all Gul’ko compact spaces. The follow-
ing proposition provides an alternative way to prove that every Gul’ko
compact space has the Collins—Roscoe property.

Proposition 3.11. If a space X has a point-countably expandable net-
work, then X is a Collins—Roscoe space.

Proof. Suppose that N is a network in X and {Oy : N € N'} is its point-
countable open expansion. Given any point x € X, let G(z) = {N € N :
x € On}; it is clear that the collection G(z) is countable. Take any set
A C X and a point @ € A; for any U € 7(z,X), there exists N € N
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such that x € N C U. Pick a point a € ANOn. Then N € G(a), so the
family |J{G(a) : @ € A} contains an external network at all points of A,
and therefore {G(z) : © € X} is a Collins—Roscoe family. O

Gruenhage proved in [12] that every compact space X which is mono-
tonically w-monolithic must be Corson compact. Therefore, it is a nat-
ural question ([12, Question 3.4]) whether every compact space with the
Collins—Roscoe property must be Gul’ko compact. The last result of this
paper is an example that answers this question in the negative. Recall
that a family A of subsets of a space X is called relatively discrete if,
for any N € N and z € N, we can find a set U € 7(x,X) such that
UNM =0 for any M € N\ {N}. In other words, A is relatively dis-
crete if it is discrete in JN. If N =, ¢, N and every N, is relatively
discrete, then N is called o-relatively discrete.

Example 3.12. There exists a compact space K which is not Gul’ko
compact but has the Collins—Roscoe property.

Proof. We will make use of the space constructed for other purposes by
S. Argyros and S. Mercourakis (Lemma 3.4 of [2]), and S. Argyros,
S. Mercourakis, and S. Negrepontis (Example 4.4 of [3]). Take a faithfully
indexed set T' = {x, : @ <wi} C L. A finite set A C T is called admis-
sible if A = {xq,,...,Ta,} Where a1 < ... < a, and |24, — 24| < 1/i
whenever 1 <17 < j < n.

Let us define an almost disjoint family {E,, : @ < 1} of subsets of w as
follows. Choose a countably infinite set F,, C w for every n € w in such
a way that {E, : n € w} is a partition of w. If 8 < w; and an almost
disjoint family {F,, : & < 3} has been defined, take a faithful enumeration
{Bn : n € w} of the ordinal B and choose a set F,, C Eg, \|J{E3, : i <n}
with |F,| = n for each n € w. Finally, let Eg = |J{F,, : n € w}.

Once we have the almost disjoint family {E, : & < 1}, call a finite set
A C T appropriate if A = {x4,,...,%q,} where oy < ... < oy, and we
have the inequality |E,, N Eq;| > max{i,j — i} whenever 1 <i < j < n.
The family A = {A C T : every finite subset of A is both admissible and
appropriate} is easily checked to be adequate in the sense of [6, IV.6] so
the space {xa : A € A} C D7 is compact. It was proved in [3, Theorem
4.4] that K is Corson compact but fails to be Gul’ko compact.

L. Oncina and M. Raja (see [15, Lemma 4.6]) proved that the set F =
{xa: A€ Aand |A| < 1} is Eberlein compact and the space K obtained
from K by contracting F' to a point is also Eberlein compact. Every
Eberlein compact space must have a o-relatively discrete network [13] so
we can find such networks Ny and N7 in F' and K \ F, respectively. Then
N = NMyUN is a o-relatively discrete network in K. Any Corson compact
space is hereditarily metalindeldf and it is standard that in a hereditarily
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metalindelof space every relatively discrete family has a point-countable
open expansion. Therefore, the network A has a point-countable open
expansion so the space K has the Collins—Roscoe property by Proposition
3.11. |

4. OPEN QUESTIONS

Now that we have a considerable amount of information about mono-
tonically monolithic spaces and Collins—Roscoe spaces, it is important to
find out what we can expect of the respective properties in the presence of
compactness. At the present moment we don’t even know whether they
coincide in the class of compact spaces.

Question 4.1. Suppose that X is a monotonically w-monolithic Lindelof
>-space. Must X be monotonically monolithic?

Question 4.2. Suppose that X is a monotonically monolithic compact
space. Must X have the Collins—Roscoe property?

Question 4.3. Suppose that X is a monotonically monolithic Lindelof
Y-space. Must X have the Collins—Roscoe property?

Question 4.4. Is it true that every >,-product of Collins—Roscoe spaces
has the Collins—Roscoe property?

Question 4.5. Is it true that every ¥s-product of Collins—Roscoe com-
pact spaces has the Collins—Roscoe property?

Question 4.6. Is it true that every X,-product of monotonically mono-
lithic spaces is monotonically monolithic?

Question 4.7. Is it true that every X -product of monotonically mono-
lithic compact spaces is monotonically monolithic?

Question 4.8. Suppose that X is a Collins—Roscoe compact space. Must
X have a dense metrizable subspace?

Question 4.9. Suppose that X is a monotonically monolithic compact
space. Must X have a dense metrizable subspace?

Question 4.10. Suppose that X is a monotonically monolithic compact
space with ¢(X) < w. Must X be metrizable?
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