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TREE-LIKENESS OF CERTAIN INVERSE LIMITS
WITH SET-VALUED FUNCTIONS

W. T. INGRAM

Abstract. Inverse limits with set-valued functions having graphs
that are the union of mappings have attracted some attention over
the past few years. In this paper we show that if the graph of
a surjective set-valued function f : [0, 1] → 2[0,1] is the union of
two mappings having only one point (x, x) in common such that x
is not the image of any other point of the interval under f , then
its inverse limit is tree-like. Examples are included to show that
various hypotheses in this theorem cannot be weakened.

1. Introduction

Interest in inverse limits with set-valued functions whose graphs are
unions of mappings was initially kindled by potential applications to eco-
nomics. However, it is a fascinating subject in its own right and has
somewhat taken on a life of its own. In compiling a problem set for An
Introduction to Inverse Limits with Set-valued Functions [4], it occurred
to the author that it would be of interest to decide under what conditions
an inverse limit with set-valued functions on [0, 1] is a tree-like continuum;
it is listed as Problem 6.49 in that book. In the literature on set-valued in-
verse limits, many examples that have been considered are tree-like while
many others are not. In thinking some about this problem, the author
decided to consider the case that the set-valued function has a graph that
is the union of two mappings. The current literature concerned with in-
verse limits with set-valued functions having graphs that are the union
of mappings includes [3] and [8] (see also [4, §2.7]). Here we show that
under certain conditions a surjective set-valued function from [0, 1] into
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2[0,1] having a graph that is the union of two mappings produces a tree-like
continuum. We provide examples showing that without the conditions,
the inverse limit may not be tree-like.

2. Definitions and Notation

We denote the collection of closed subsets of [0, 1] by 2[0,1]. A function
f : [0, 1] → 2[0,1] is said to be upper semi-continuous at the point x of
[0, 1] provided that if V is an open set that contains f(x) then there is
an open set U containing x such that if t is a point of U then f(t) ⊆ V .
A function f : [0, 1] → 2[0,1] is called upper semi-continuous provided it
is upper semi-continuous at each point of [0, 1]. If f : [0, 1] → 2[0,1], we
say that f is surjective provided that for each y ∈ [0, 1] there is a point
x ∈ [0, 1] such that y ∈ f(x). If f : [0, 1]→ 2[0,1] is a set-valued function,
by the graph of f , denoted G(f), we mean the subset of [0, 1]× [0, 1] that
contains the point (x, y) if and only if y ∈ f(x). It is known that if M is
a subset of [0, 1]× [0, 1] such that [0, 1] is the projection of M to its set of
first coordinates then M is closed if and only if M is the graph of a upper
semi-continuous function [4, Theorem 1.2] (original source [5, Theorem
2.1]). In the case that f is upper semi-continuous and single-valued, i.e.,
f(t) is degenerate for each t ∈ [0, 1], f is a continuous function. We call
a continuous function a mapping; if f : X → Y is a surjective mapping,
we denote this by f : X →→ Y .

We denote by N the set of positive integers. If s = s1, s2, s3, . . . is a
sequence, we often denote the sequence in boldface type and its terms in
italics. If X is a sequence such that Xi = [0, 1] for each i ∈ N, we denote
the product of terms of X,

∏
i>0 Xi, by Q. The points of Q are sequences

of numbers from [0, 1] so if x ∈ Q, it should not be a problem denoting
x by x1, x2, x3, . . . . However, we adopt the usual convention of enclosing
the terms of x in parentheses, x = (x1, x2, x3, . . . ), to signify that x is
a point of the product space. A metric d compatible with the product
topology for Q is given by d(x,y) =

∑
i>0 |xi − yi|/2i.

Suppose X is a sequence such that Xi is a closed subset of [0, 1] for
each i ∈ N and f is a sequence of upper semi-continuous functions such
that fi : Xi+1 → 2Xi for each positive integer i. Such a pair of sequences
{X,f} is called an inverse limit sequence. By the inverse limit of the
inverse limit sequence {X,f}, denoted lim←−f , we mean the subset of Q
that contains the point (x1, x2, x3, . . . ) if and only if xi ∈ fi(xi+1) for each
positive integer i. In the case that each fi is a mapping, the condition
xi ∈ fi(xi+1) becomes xi = fi(xi+1) and the definition reduces to the
definition of an inverse limit with mappings on a sequence of subinter-
vals of [0, 1]. In this paper, we make use of inverse limits with mappings
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to demonstrate certain properties of inverse limits with set-valued func-
tions. For an inverse limit sequence {X,f}, the spaces Xi are called
factor spaces and the functions fi are called bonding functions. If X is a
closed subset of [0, 1], f : X → 2X is a set-valued function, and {X,f}
is an inverse limit sequence such that Xi = X and fi = f for each i ∈ N
(i.e., we have an inverse limit sequence with a single bonding function),
we still denote the inverse limit by lim←−f . We denote the projection from
the inverse limit into the ith factor space by πi. That these inverse lim-
its are nonempty and compact is a consequence of [4, Theorem 1.6] or
[5, Theorem 3.2]; they are metric spaces being subsets of the metric space
Q.

By a continuum we mean a compact, connected metric space. We
use the term dimension in the standard sense as found in [2]. If M is
a compactum, we use dim(M) to denote its dimension. A continuum is
tree-like provided it is homeomorphic to an inverse limit on trees with
mappings (or, equivalently, its dimension is 1 and every mapping of it to
a finite graph is inessential).

3. Main Theorem

We now turn to the main theorem of this paper. Our proof relies on the
following theorem of H. Cook. First we define some terms from Cook’s
paper. A collection G of continua is called a clump provided the union of
all the elements of G, denoted G∗, is a continuum and there is a continuum
C such that C is a proper subcontinuum of each element of G and C is the
intersection of each two elements of G. A clump is called usc (Cook uses
the term “upper semi-continuous,” but we use “usc” in this paper to draw
a distinction between upper semi-continuous functions and upper semi-
continuous clumps) provided that if p1, p2, p3, . . . and q1, q2, q3, . . . are
two sequences of points of G∗ converging to points p and q, respectively,
of G∗ − C and such that pi and qi belong to the same element of G for
each i ∈ N, then p and q belong to the same element of G.

Theorem 3.1 ([1, Theorem 12]). If G is a clump of tree-like continua
such that G is usc and dim(G∗)=1, then G∗ is tree-like.

Our proof also uses the following theorems. They can be found in more
general form in [4], the first being Theorem 2.11 for Theorem 3.2 (original
source [8, Theorem 3.1]) and the second being Theorem 5.3 for Theorem
3.3 (original source [7, Theorem 5.3]).

Theorem 3.2. Suppose F is a finite collection of mappings of [0, 1] into
itself and f is the function whose graph is the union of the mappings in
F . If f is surjective and G(f) is a continuum, then lim←−f is a continuum.
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Theorem 3.3. Suppose F is a finite collection of mappings of [0, 1] into
itself and f is the set-valued function whose graph is the union of the
mappings in F . Because dim(f(t)) = 0 for each t ∈ [0, 1], dim(lim←−f) ≤ 1.

Theorem 3.4. Suppose f1 and f2 are mappings of [0, 1] into [0, 1] such
that the only point of intersection of f1 and f2 is a common fixed point
x such that f−1

1 (x) = f−1
2 (x) = {x}. If f : [0, 1] → 2[0,1] is the upper

semi-continuous function whose graph is the set-theoretic union of f1 and
f2 and f is surjective, then lim←−f is a tree-like continuum.

Proof. Let M = lim←−f ; M is a continuum by Theorem 3.2. Because
f(x) = {x} and f(t) contains only two points for t ̸= x, dim(f(t))=0 for
each t ∈ [0, 1]. By Theorem 3.3, dim(M) ≤ 1. Because f is surjective,
M is nondegenerate, so dim(M)=1. From the hypothesis that f1(x) =
f2(x) = x and f−1

1 (x) = f−1
2 (x) = {x}, it follows that

(∗) if p ∈M and pi = x for some i ∈ N, then p = (x, x, x, . . . ).

The remainder of the proof consists of identifying a usc clump G such
that M = G∗ so that we may apply Theorem 3.1. Let G = {H ⊆M | H
is a subcontinuum of M and there is a sequence g of mappings of [0, 1]
into itself such that gi ∈ {f1, f2} for each i ∈ N and H = lim←− g}. It is
clear that M = G∗. Each element of G is an inverse limit with mappings
on [0, 1] and thus is tree-like. To see that G is a clump, we first observe
that if H and K belong to G and H ̸= K, then H ∩K = {(x, x, x, . . . )}.
Indeed, suppose y ∈ H ∩K with H and K in G. There exist sequences h
and k of mappings such that hi, ki ∈ {f1, f2} for each i ∈ N, H = lim←−h,
and K = lim←−k. If H ̸= K, then there is a positive integer i such that
hi ̸= ki. Thus, yi = f1(yi+1) = f2(yi+1), and therefore yi = yi+1 = x.
Then, by (∗), y = (x, x, x, . . . ).

To see that G is usc, suppose p1,p2,p3, . . . and q1, q2, q3, . . . are
two sequences of points of G∗ such that p1,p2,p3, . . . converges to p ̸=
(x, x, x, . . . ), q1, q2, q3, . . . converges to q ̸= (x, x, x, . . . ), and pi and
qi belong to the same element of G for each i ∈ N. For each positive
integer i, there is a sequence gi1, g

i
2, g

i
3, . . . such that gik ∈ {f1, f2} for

each k ∈ N and pi, qi ∈ lim←− gi. Assume p ∈ lim←−a and q ∈ lim←− b with
ai, bi ∈ {f1, f2} for each i ∈ N. If p and q do not belong to the same
element of G, q /∈ lim←−a. Thus, there is a positive integer j such that
aj(πj+1(q)) ̸= πj(q). Assume aj = f1 (the case that aj = f2 is similar
and is omitted). Then, f1(πj+1(p)) = πj(p) and f1(πj+1(q)) ̸= πj(q)
while f2(πj+1(q)) = πj(q). Consider the sequence g1j , g

2
j , g

3
j , . . . of map-

pings. Because pi and qi belong to lim←− gi for each i ∈ N, it follows
that gij(πj+1(qi)) = πj(qi) and gij(πj+1(pi)) = πj(pi) for each positive
integer i. There are two possibilities: (1) there is a positive integer N
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such that gij = f1 for i ≥ N and (2) there is an increasing sequence
n1, n2, n3, . . . such that gni

j = f2 for each positive integer i. Suppose (1)
is true. Then, for i ≥ N , f1(πj+1(qi)) = πj(qi). Because q1, q2, q3, . . .
converges to q, it follows that f1(πj+1(q)) = πj(q), contradicting that
aj = f1 and aj(πj+1(q)) ̸= πj(q). Suppose (2) holds. Then, for each
i ∈ N, f2(πj+1(pni)) = πj(pni). Because p1,p2,p3, . . . converges to p,
it follows that f2(πj+1(p)) = πj(p). Because aj = f1, it is also true that
f1(πj+1(p)) = πj(p). Thus, πj+1(p) = x, also a contradiction by (∗). So
p and q belong to the same element of G and we have that G is usc. By
Theorem 3.1, M is tree-like. �

4. Examples

That the two mappings in Theorem 3.4 cannot have two points of
intersection can be seen from the following example from [4, Example
2.11] (original source [5, Example 4]).

Example 4.1. Let f : [0, 1] → 2[0,1] be the upper semi-continuous func-
tion given by f(t) = {t + 1/2, 1/2 − t} for 0 ≤ t ≤ 1/2 and f(t) =
{3/2 − t, t − 1/2} for 1/2 < t ≤ 1. Then G(f) is the union of two map-
pings having (0, 1/2) and (1, 1/2) in common, but lim←−f contains a simple
closed curve and so is not tree-like. (See Figure 1 for the graph of f .)

Proof. Let M = lim←−f . There are numerous simple closed curves in M .
We exhibit one as follows. Let J1 = [0, 1/2] and J2 = [1/2, 1]. Let
f1 : J1 →→ J1 be given by f1(t) = 1/2 − t, f2 : J1 →→ J2 be given
by f2(t) = 1/2 + t, f3 : J2 →→ J1 be given by f3(t) = t − 1/2, and
f4 : J2 →→ J2 be given by f4(t) = 3/2 − t. Let a be the sequence ev-
ery term of which is f1 and d be the sequence every term of which is
f4. Let b be the sequence having all odd numbered terms f2 and all
even numbered terms f3; let c be the sequence having all odd numbered
terms f3 and all even numbered terms f2. Let α = lim←−a, β = lim←− b,
γ = lim←− c, and δ = lim←−d. Each of these four inverse limits is an arc
being the inverse limit on intervals with homeomorphisms [6, Theorem
200]. Further, α has endpoints (0, 1/2, 0, 1/2, . . . ) and (1/2, 0, 1/2, 0, . . . );
β has endpoints (1/2, 0, 1/2, 0, . . . ) and (1, 1/2, 1, 1/2, . . . ); γ has end-
points (0, 1/2, 0, 1/2, . . . ) and (1/2, 1, 1/2, 1, . . . ); the endpoints of δ are
(1, 1/2, 1, 1/2, . . . ) and (1/2, 1, 1/2, 1, . . . ). It is not difficult to verify
that each two of these four arcs intersect only at one common end-
point. For instance, if x ∈ α ∩ β then f1(x2) = f2(x2); thus x2 = 0
and x1 = 1/2. However, f1(x3) = f3(x3) so x3 = 1/2. Continuing, we see
that x = (1/2, 0, 1/2, 0, . . . ). It follows that the union of the four arcs is
a simple closed curve. �
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(0,1/2)

(1/2,0)

(1/2,1)

(1,1/2)

Figure 1. The graph of the function in Example 4.1.

That the two mappings in Theorem 3.4 must intersect at a common
fixed point may be seen from the following example.

Example 4.2. Let f1 : [0, 1] →→ [0, 1] be the piecewise linear mapping
whose graph consists of two straight line intervals in [0, 1]2, one from
(0, 0) to (1/2, 3/4) and the other from (1/2, 3/4) to (1, 1). Let f2 : [0, 1]→→
[0, 1] be the piecewise linear mapping whose graph consists of two straight
line intervals in [0, 1]2, one from (0, 1) to (1/2, 3/4) and the other from
(1/2, 3/4) to (1, 0). If f : [0, 1] → 2[0,1] is the upper semi-continuous
function such that G(f) = f1 ∪ f2, then lim←−f contains a simple closed
curve and so is not tree-like. (See Figure 2 for the graph of f .)

Proof. Let M = lim←−f . For the reader’s convenience we note that f(t) =

{3t/2, 1 − t/2} for 0 ≤ t ≤ 1/2 and f(t) = {(t + 1)/2,−3(t − 1)/2}
for 1/2 < t ≤ 1. To see that M contains a simple closed curve, we first
identify four arcs lying in M . Let a be the sequence every term of which is
the mapping f1 and let A1 = lim←−a. Let b be the sequence such that b1 =
f1, b2 = f2, and bi = f1 for i ≥ 3; let A2 = lim←− b. Let c be the sequence
such that c1 = f2 and ci = f1 for i ≥ 2; let A3 = lim←− c. Finally, let d be
the sequence such that d1 = d2 = f2 and di = f1 for i ≥ 3; let A4 = lim←−d.
That Ai is an arc for i ∈ {1, 2, 3, 4} is a consequence of the fact that f1
and f2 are homeomorphisms [6, Theorem 18]. The only point common to
A1 and A2 is the point (7/8, 3/4, 1/2, 1/3, 2/9, . . . ) for if x ∈ A1 ∩A2 and
x3 ̸= 1/2 then f1(x3) ̸= f2(x3). In a similar manner we may show that
A1∩A3 = {(3/4, 1/2, 1/3, 2/9, . . . )}, A2∩A4 = {(3/4, 1/2, 2/3, 4/9, . . . )},
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and A3 ∩ A4 = {(3/8, 3/4, 1/2, 1/3, 2/9, . . . )}. That A1 and A4 do not
intersect may be seen as follows. If x ∈ A1 and f2(x2) = x1 then x1 = 3/4
and x2 = 1/2. Thus, x3 = 1/3 but f2(1/3) ̸= 1/2 so x /∈ A4. Similarly,
A2 ∩ A3 = ∅. It follows that A1 ∪ A2 ∪ A3 ∪ A4 contains a simple closed
curve and M is not tree-like. �

(1/2,3/4)

(0,0) (1,0)

(0,1) (1,1)

Figure 2. The graph of the function in Example 4.2.

That the condition that f−1
1 (x) = f−1

2 (x) = {x} in Theorem 3.4 is
needed may be seen from the following example.

Example 4.3. Let f1 be the identity, Id, on [0, 1] and f2 be the map given
by f2(t) = 2t+1/2 for 0 ≤ t ≤ 1/4, f2(t) = −2t+3/2 for 1/4 < t ≤ 1/2,
and f2(t) = 1 − t for 1/2 < t ≤ 1. If f is the function whose graph is
the union of f1 and f2, then f−1(1/2) ̸= {1/2} and lim←−f is not tree-like.
(See Figure 3 for the graph of f .)

Proof. Let M = lim←−f . We show that M contains two subcontinua whose
intersection is not connected from which it follows that M is not tree-
like. Let h be the sequence the first two terms of which are f2 and all
other terms are f1; let H = lim←−h. Let k be the sequence the second
term of which is f2 and all other terms are f1; let K = lim←−k. The points
p = (1/2, 1/2, 1/2, . . . ) and q = (1/2, 1/2, 0, 0, 0, . . . ) are points of H ∩K.
Suppose x ∈ H ∩ K. If x1 ∈ [0, 1/2], because f2(x2) = x1, we see that
x2 ∈ [1/2, 1] ∪ {0}. However, f1(0) = 0 and f2(0) = 1/2, so x2 ̸= 0.
Because f1(x2) = x1, we note that x2 ∈ [0, 1/2]. Thus, x2 = 1/2, and so
x1 = 1/2. Because x2 = 1/2, x3 ∈ {0, 1/2}. From fj = Id for j ≥ 3, it
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follows that x ∈ {p, q}. Similarly, if x1 ∈ [1/2, 1], x ∈ {p, q}. Therefore,
H ∩K = {p, q}. �

(0,1/2)

(1/4,1)

(0,0)

(1/2,1/2)

(1,0)

(1,1)

Figure 3. The graph of the function in Example 4.3.
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