

http://topology.auburn.edu/tp/

# TREE-LIKENESS OF CERTAIN INVERSE LIMITS WITH SET-VALUED FUNCTIONS

by

W. T. INGRAM

Electronically published on June 18, 2012

**Topology Proceedings** 

| Web:                                                      | http://topology.auburn.edu/tp/         |
|-----------------------------------------------------------|----------------------------------------|
| Mail:                                                     | Topology Proceedings                   |
|                                                           | Department of Mathematics & Statistics |
|                                                           | Auburn University, Alabama 36849, USA  |
| E-mail:                                                   | topolog@auburn.edu                     |
| ISSN:                                                     | 0146-4124                              |
| COPYRIGHT © by Topology Proceedings. All rights reserved. |                                        |



E-Published on June 18, 2012

# TREE-LIKENESS OF CERTAIN INVERSE LIMITS WITH SET-VALUED FUNCTIONS

## W. T. INGRAM

ABSTRACT. Inverse limits with set-valued functions having graphs that are the union of mappings have attracted some attention over the past few years. In this paper we show that if the graph of a surjective set-valued function  $f : [0,1] \rightarrow 2^{[0,1]}$  is the union of two mappings having only one point (x, x) in common such that x is not the image of any other point of the interval under f, then its inverse limit is tree-like. Examples are included to show that various hypotheses in this theorem cannot be weakened.

# 1. INTRODUCTION

Interest in inverse limits with set-valued functions whose graphs are unions of mappings was initially kindled by potential applications to economics. However, it is a fascinating subject in its own right and has somewhat taken on a life of its own. In compiling a problem set for An*Introduction to Inverse Limits with Set-valued Functions* [4], it occurred to the author that it would be of interest to decide under what conditions an inverse limit with set-valued functions on [0, 1] is a tree-like continuum; it is listed as Problem 6.49 in that book. In the literature on set-valued inverse limits, many examples that have been considered are tree-like while many others are not. In thinking some about this problem, the author decided to consider the case that the set-valued function has a graph that is the union of two mappings. The current literature concerned with inverse limits with set-valued functions having graphs that are the union of mappings includes [3] and [8] (see also [4, §2.7]). Here we show that under certain conditions a surjective set-valued function from [0, 1] into

<sup>2010</sup> Mathematics Subject Classification. Primary 54F15; Secondary 54H20. Key words and phrases. continua, set-valued inverse limit, tree-like.

<sup>©2012</sup> Topology Proceedings.

 $2^{[0,1]}$  having a graph that is the union of two mappings produces a tree-like continuum. We provide examples showing that without the conditions, the inverse limit may not be tree-like.

# 2. Definitions and Notation

We denote the collection of closed subsets of [0, 1] by  $2^{[0,1]}$ . A function  $f:[0,1] \to 2^{[0,1]}$  is said to be upper semi-continuous at the point x of [0,1] provided that if V is an open set that contains f(x) then there is an open set U containing x such that if t is a point of U then  $f(t) \subseteq V$ . A function  $f: [0,1] \to 2^{[0,1]}$  is called *upper semi-continuous* provided it is upper semi-continuous at each point of [0, 1]. If  $f:[0,1] \to 2^{[0,1]}$ , we say that f is surjective provided that for each  $y \in [0,1]$  there is a point  $x \in [0,1]$  such that  $y \in f(x)$ . If  $f: [0,1] \to 2^{[0,1]}$  is a set-valued function, by the graph of f, denoted G(f), we mean the subset of  $[0,1] \times [0,1]$  that contains the point (x, y) if and only if  $y \in f(x)$ . It is known that if M is a subset of  $[0,1] \times [0,1]$  such that [0,1] is the projection of M to its set of first coordinates then M is closed if and only if M is the graph of a upper semi-continuous function [4, Theorem 1.2] (original source [5, Theorem 2.1). In the case that f is upper semi-continuous and single-valued, i.e., f(t) is degenerate for each  $t \in [0,1]$ , f is a continuous function. We call a continuous function a *mapping*; if  $f: X \to Y$  is a surjective mapping, we denote this by  $f: X \twoheadrightarrow Y$ .

We denote by  $\mathbb{N}$  the set of positive integers. If  $\boldsymbol{s} = s_1, s_2, s_3, \ldots$  is a sequence, we often denote the sequence in boldface type and its terms in italics. If  $\boldsymbol{X}$  is a sequence such that  $X_i = [0, 1]$  for each  $i \in \mathbb{N}$ , we denote the product of terms of  $\boldsymbol{X}, \prod_{i>0} X_i$ , by  $\mathcal{Q}$ . The points of  $\mathcal{Q}$  are sequences of numbers from [0, 1] so if  $\boldsymbol{x} \in \mathcal{Q}$ , it should not be a problem denoting  $\boldsymbol{x}$  by  $x_1, x_2, x_3, \ldots$ . However, we adopt the usual convention of enclosing the terms of  $\boldsymbol{x}$  in parentheses,  $\boldsymbol{x} = (x_1, x_2, x_3, \ldots)$ , to signify that  $\boldsymbol{x}$  is a point of the product space. A metric d compatible with the product topology for  $\mathcal{Q}$  is given by  $d(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i>0} |x_i - y_i|/2^i$ . Suppose  $\boldsymbol{X}$  is a sequence such that  $X_i$  is a closed subset of [0, 1] for

Suppose X is a sequence such that  $X_i$  is a closed subset of [0, 1] for each  $i \in \mathbb{N}$  and f is a sequence of upper semi-continuous functions such that  $f_i : X_{i+1} \to 2^{X_i}$  for each positive integer i. Such a pair of sequences  $\{X, f\}$  is called an *inverse limit sequence*. By the *inverse limit* of the inverse limit sequence  $\{X, f\}$ , denoted  $\lim_{i \to i} f$ , we mean the subset of Qthat contains the point  $(x_1, x_2, x_3, ...)$  if and only if  $x_i \in f_i(x_{i+1})$  for each positive integer i. In the case that each  $f_i$  is a mapping, the condition  $x_i \in f_i(x_{i+1})$  becomes  $x_i = f_i(x_{i+1})$  and the definition reduces to the definition of an inverse limit with mappings on a sequence of subintervals of [0, 1]. In this paper, we make use of inverse limits with mappings TREE-LIKENESS

to demonstrate certain properties of inverse limits with set-valued functions. For an inverse limit sequence  $\{X, f\}$ , the spaces  $X_i$  are called *factor spaces* and the functions  $f_i$  are called *bonding functions*. If X is a closed subset of [0,1],  $f: X \to 2^X$  is a set-valued function, and  $\{X, f\}$ is an inverse limit sequence such that  $X_i = X$  and  $f_i = f$  for each  $i \in \mathbb{N}$ (i.e., we have an inverse limit sequence with a single bonding function), we still denote the inverse limit by  $\lim_{i \to T} f$ . We denote the projection from the inverse limit into the *i*th factor space by  $\pi_i$ . That these inverse limits are nonempty and compact is a consequence of [4, Theorem 1.6] or [5, Theorem 3.2]; they are metric spaces being subsets of the metric space Q.

By a *continuum* we mean a compact, connected metric space. We use the term *dimension* in the standard sense as found in [2]. If M is a compactum, we use  $\dim(M)$  to denote its dimension. A continuum is *tree-like* provided it is homeomorphic to an inverse limit on trees with mappings (or, equivalently, its dimension is 1 and every mapping of it to a finite graph is inessential).

#### 3. MAIN THEOREM

We now turn to the main theorem of this paper. Our proof relies on the following theorem of H. Cook. First we define some terms from Cook's paper. A collection  $\mathcal{G}$  of continua is called a *clump* provided the union of all the elements of  $\mathcal{G}$ , denoted  $\mathcal{G}^*$ , is a continuum and there is a continuum C such that C is a proper subcontinuum of each element of  $\mathcal{G}$  and C is the intersection of each two elements of  $\mathcal{G}$ . A clump is called *usc* (Cook uses the term "upper semi-continuous," but we use "usc" in this paper to draw a distinction between upper semi-continuous functions and upper semicontinuous clumps) provided that if  $p_1, p_2, p_3, \ldots$  and  $q_1, q_2, q_3, \ldots$  are two sequences of points of  $\mathcal{G}^*$  converging to points p and q, respectively, of  $\mathcal{G}^* - C$  and such that  $p_i$  and  $q_i$  belong to the same element of  $\mathcal{G}$ .

**Theorem 3.1** ([1, Theorem 12]). If  $\mathcal{G}$  is a clump of tree-like continua such that  $\mathcal{G}$  is use and dim $(\mathcal{G}^*)=1$ , then  $\mathcal{G}^*$  is tree-like.

Our proof also uses the following theorems. They can be found in more general form in [4], the first being Theorem 2.11 for Theorem 3.2 (original source [8, Theorem 3.1]) and the second being Theorem 5.3 for Theorem 3.3 (original source [7, Theorem 5.3]).

**Theorem 3.2.** Suppose  $\mathcal{F}$  is a finite collection of mappings of [0,1] into itself and f is the function whose graph is the union of the mappings in  $\mathcal{F}$ . If f is surjective and G(f) is a continuum, then  $\lim \mathbf{f}$  is a continuum.

W. T. INGRAM

**Theorem 3.3.** Suppose  $\mathcal{F}$  is a finite collection of mappings of [0,1] into itself and f is the set-valued function whose graph is the union of the mappings in  $\mathcal{F}$ . Because dim(f(t)) = 0 for each  $t \in [0,1]$ , dim $(\lim \mathbf{f}) \leq 1$ .

**Theorem 3.4.** Suppose  $f_1$  and  $f_2$  are mappings of [0,1] into [0,1] such that the only point of intersection of  $f_1$  and  $f_2$  is a common fixed point x such that  $f_1^{-1}(x) = f_2^{-1}(x) = \{x\}$ . If  $f : [0,1] \to 2^{[0,1]}$  is the upper semi-continuous function whose graph is the set-theoretic union of  $f_1$  and  $f_2$  and f is surjective, then  $\lim \mathbf{f}$  is a tree-like continuum.

*Proof.* Let  $M = \varprojlim f$ ; M is a continuum by Theorem 3.2. Because  $f(x) = \{x\}$  and f(t) contains only two points for  $t \neq x$ ,  $\dim(f(t))=0$  for each  $t \in [0,1]$ . By Theorem 3.3,  $\dim(M) \leq 1$ . Because f is surjective, M is nondegenerate, so  $\dim(M)=1$ . From the hypothesis that  $f_1(x) = f_2(x) = x$  and  $f_1^{-1}(x) = f_2^{-1}(x) = \{x\}$ , it follows that

(\*) if  $p \in M$  and  $p_i = x$  for some  $i \in \mathbb{N}$ , then p = (x, x, x, ...).

The remainder of the proof consists of identifying a use clump  $\mathcal{G}$  such that  $M = \mathcal{G}^*$  so that we may apply Theorem 3.1. Let  $\mathcal{G} = \{H \subseteq M \mid H \text{ is a subcontinuum of } M \text{ and there is a sequence } \boldsymbol{g} \text{ of mappings of } [0,1]$  into itself such that  $g_i \in \{f_1, f_2\}$  for each  $i \in \mathbb{N}$  and  $H = \varprojlim \boldsymbol{g}\}$ . It is clear that  $M = \mathcal{G}^*$ . Each element of  $\mathcal{G}$  is an inverse limit with mappings on [0,1] and thus is tree-like. To see that  $\mathcal{G}$  is a clump, we first observe that if H and K belong to  $\mathcal{G}$  and  $H \neq K$ , then  $H \cap K = \{(x, x, x, \ldots)\}$ . Indeed, suppose  $\boldsymbol{y} \in H \cap K$  with H and K in  $\mathcal{G}$ . There exist sequences  $\boldsymbol{h}$  and  $\boldsymbol{k}$  of mappings such that  $h_i, k_i \in \{f_1, f_2\}$  for each  $i \in \mathbb{N}, H = \varprojlim \boldsymbol{h},$  and  $K = \varprojlim \boldsymbol{k}$ . If  $H \neq K$ , then there is a positive integer i such that  $h_i \neq k_i$ . Thus,  $y_i = f_1(y_{i+1}) = f_2(y_{i+1})$ , and therefore  $y_i = y_{i+1} = x$ . Then, by  $(*), \boldsymbol{y} = (x, x, x, \ldots)$ .

To see that  $\mathcal{G}$  is usc, suppose  $p_1, p_2, p_3, \ldots$  and  $q_1, q_2, q_3, \ldots$  are two sequences of points of  $\mathcal{G}^*$  such that  $p_1, p_2, p_3, \ldots$  converges to  $p \neq (x, x, x, \ldots)$ ,  $q_1, q_2, q_3, \ldots$  converges to  $q \neq (x, x, x, \ldots)$ , and  $p_i$  and  $q_i$  belong to the same element of  $\mathcal{G}$  for each  $i \in \mathbb{N}$ . For each positive integer i, there is a sequence  $g_1^i, g_2^i, g_3^i, \ldots$  such that  $g_k^i \in \{f_1, f_2\}$  for each  $k \in \mathbb{N}$  and  $p_i, q_i \in \varprojlim g^i$ . Assume  $p \in \varprojlim a$  and  $q \in \varprojlim b$  with  $a_i, b_i \in \{f_1, f_2\}$  for each  $i \in \mathbb{N}$ . If p and q do not belong to the same element of  $\mathcal{G}$ ,  $q \notin \varprojlim a$ . Thus, there is a positive integer j such that  $a_j(\pi_{j+1}(q)) \neq \pi_j(q)$ . Assume  $a_j = f_1$  (the case that  $a_j = f_2$  is similar and is omitted). Then,  $f_1(\pi_{j+1}(p)) = \pi_j(p)$  and  $f_1(\pi_{j+1}(q)) \neq \pi_j(q)$ while  $f_2(\pi_{j+1}(q)) = \pi_j(q)$ . Consider the sequence  $g_j^1, g_j^2, g_j^3, \ldots$  of mappings. Because  $p_i$  and  $q_i$  belong to  $\varprojlim g^i$  for each  $i \in \mathbb{N}$ , it follows that  $g_j^i(\pi_{j+1}(q_i)) = \pi_j(q_i)$  and  $g_j^i(\pi_{j+1}(p_i)) = \pi_j(p_i)$  for each positive integer i. There are two possibilities: (1) there is a positive integer N

20

#### TREE-LIKENESS

such that  $g_j^i = f_1$  for  $i \ge N$  and (2) there is an increasing sequence  $n_1, n_2, n_3, \ldots$  such that  $g_j^{n_i} = f_2$  for each positive integer i. Suppose (1) is true. Then, for  $i \ge N$ ,  $f_1(\pi_{j+1}(q_i)) = \pi_j(q_i)$ . Because  $q_1, q_2, q_3, \ldots$  converges to q, it follows that  $f_1(\pi_{j+1}(q)) = \pi_j(q)$ , contradicting that  $a_j = f_1$  and  $a_j(\pi_{j+1}(q)) \ne \pi_j(q)$ . Suppose (2) holds. Then, for each  $i \in \mathbb{N}, f_2(\pi_{j+1}(p_{n_i})) = \pi_j(p_{n_i})$ . Because  $p_1, p_2, p_3, \ldots$  converges to p, it follows that  $f_2(\pi_{j+1}(p)) = \pi_j(p)$ . Because  $a_j = f_1$ , it is also true that  $f_1(\pi_{j+1}(p)) = \pi_j(p)$ . Thus,  $\pi_{j+1}(p) = x$ , also a contradiction by (\*). So p and q belong to the same element of  $\mathcal{G}$  and we have that  $\mathcal{G}$  is usc. By Theorem 3.1, M is tree-like.

### 4. Examples

That the two mappings in Theorem 3.4 cannot have two points of intersection can be seen from the following example from [4, Example 2.11] (original source [5, Example 4]).

**Example 4.1.** Let  $f : [0,1] \rightarrow 2^{[0,1]}$  be the upper semi-continuous function given by  $f(t) = \{t + 1/2, 1/2 - t\}$  for  $0 \le t \le 1/2$  and  $f(t) = \{3/2 - t, t - 1/2\}$  for  $1/2 < t \le 1$ . Then G(f) is the union of two mappings having (0, 1/2) and (1, 1/2) in common, but  $\liminf \mathbf{f}$  contains a simple closed curve and so is not tree-like. (See Figure 1 for the graph of f.)

*Proof.* Let  $M = \lim f$ . There are numerous simple closed curves in M. We exhibit one as follows. Let  $J_1 = [0, 1/2]$  and  $J_2 = [1/2, 1]$ . Let  $f_1$ :  $J_1 \twoheadrightarrow J_1$  be given by  $f_1(t) = 1/2 - t$ ,  $f_2$ :  $J_1 \twoheadrightarrow J_2$  be given by  $f_2(t) = 1/2 + t$ ,  $f_3 : J_2 \twoheadrightarrow J_1$  be given by  $f_3(t) = t - 1/2$ , and  $f_4: J_2 \twoheadrightarrow J_2$  be given by  $f_4(t) = 3/2 - t$ . Let **a** be the sequence every term of which is  $f_1$  and d be the sequence every term of which is  $f_4$ . Let **b** be the sequence having all odd numbered terms  $f_2$  and all even numbered terms  $f_3$ ; let c be the sequence having all odd numbered terms  $f_3$  and all even numbered terms  $f_2$ . Let  $\alpha = \lim a$ ,  $\beta = \lim b$ ,  $\gamma = \lim_{n \to \infty} c_n$ , and  $\delta = \lim_{n \to \infty} d_n$ . Each of these four inverse limits is an arc being the inverse limit on intervals with homeomorphisms [6, Theorem 200]. Further,  $\alpha$  has endpoints (0, 1/2, 0, 1/2, ...) and (1/2, 0, 1/2, 0, ...);  $\beta$  has endpoints (1/2, 0, 1/2, 0, ...) and (1, 1/2, 1, 1/2, ...);  $\gamma$  has endpoints (0, 1/2, 0, 1/2, ...) and (1/2, 1, 1/2, 1, ...); the endpoints of  $\delta$  are (1, 1/2, 1, 1/2, ...) and (1/2, 1, 1/2, 1, ...). It is not difficult to verify that each two of these four arcs intersect only at one common endpoint. For instance, if  $x \in \alpha \cap \beta$  then  $f_1(x_2) = f_2(x_2)$ ; thus  $x_2 = 0$ and  $x_1 = 1/2$ . However,  $f_1(x_3) = f_3(x_3)$  so  $x_3 = 1/2$ . Continuing, we see that  $\boldsymbol{x} = (1/2, 0, 1/2, 0, \dots)$ . It follows that the union of the four arcs is a simple closed curve.

W. T. INGRAM



FIGURE 1. The graph of the function in Example 4.1.

That the two mappings in Theorem 3.4 must intersect at a common fixed point may be seen from the following example.

**Example 4.2.** Let  $f_1 : [0,1] \rightarrow [0,1]$  be the piecewise linear mapping whose graph consists of two straight line intervals in  $[0,1]^2$ , one from (0,0) to (1/2,3/4) and the other from (1/2,3/4) to (1,1). Let  $f_2 : [0,1] \rightarrow$ [0,1] be the piecewise linear mapping whose graph consists of two straight line intervals in  $[0,1]^2$ , one from (0,1) to (1/2,3/4) and the other from (1/2,3/4) to (1,0). If  $f : [0,1] \rightarrow 2^{[0,1]}$  is the upper semi-continuous function such that  $G(f) = f_1 \cup f_2$ , then  $\lim_{t \to 0} \mathbf{f}$  contains a simple closed curve and so is not tree-like. (See Figure 2 for the graph of f.)

Proof. Let  $M = \varprojlim \mathbf{f}$ . For the reader's convenience we note that  $f(t) = \{3t/2, 1 - t/2\}$  for  $0 \le t \le 1/2$  and  $f(t) = \{(t + 1)/2, -3(t - 1)/2\}$  for  $1/2 < t \le 1$ . To see that M contains a simple closed curve, we first identify four arcs lying in M. Let  $\mathbf{a}$  be the sequence every term of which is the mapping  $f_1$  and let  $A_1 = \varinjlim \mathbf{a}$ . Let  $\mathbf{b}$  be the sequence such that  $b_1 = f_1, b_2 = f_2$ , and  $b_i = f_1$  for  $i \ge 3$ ; let  $A_2 = \varinjlim \mathbf{b}$ . Let  $\mathbf{c}$  be the sequence such that  $d_1 = d_2 = f_2$  and  $d_i = f_1$  for  $i \ge 3$ ; let  $A_4 = \varinjlim \mathbf{d}$ . That  $A_i$  is an arc for  $i \in \{1, 2, 3, 4\}$  is a consequence of the fact that  $f_1$  and  $f_2$  are homeomorphisms [6, Theorem 18]. The only point common to  $A_1$  and  $A_2$  is the point  $(7/8, 3/4, 1/2, 1/3, 2/9, \dots)$  for if  $\mathbf{x} \in A_1 \cap A_2$  and  $x_3 \ne 1/2$  then  $f_1(x_3) \ne f_2(x_3)$ . In a similar manner we may show that  $A_1 \cap A_3 = \{(3/4, 1/2, 1/3, 2/9, \dots)\}, A_2 \cap A_4 = \{(3/4, 1/2, 2/3, 4/9, \dots)\}$ 

22

#### TREE-LIKENESS

and  $A_3 \cap A_4 = \{(3/8, 3/4, 1/2, 1/3, 2/9, \ldots)\}$ . That  $A_1$  and  $A_4$  do not intersect may be seen as follows. If  $\boldsymbol{x} \in A_1$  and  $f_2(x_2) = x_1$  then  $x_1 = 3/4$  and  $x_2 = 1/2$ . Thus,  $x_3 = 1/3$  but  $f_2(1/3) \neq 1/2$  so  $\boldsymbol{x} \notin A_4$ . Similarly,  $A_2 \cap A_3 = \emptyset$ . It follows that  $A_1 \cup A_2 \cup A_3 \cup A_4$  contains a simple closed curve and M is not tree-like.  $\Box$ 



FIGURE 2. The graph of the function in Example 4.2.

That the condition that  $f_1^{-1}(x) = f_2^{-1}(x) = \{x\}$  in Theorem 3.4 is needed may be seen from the following example.

**Example 4.3.** Let  $f_1$  be the identity, Id, on [0, 1] and  $f_2$  be the map given by  $f_2(t) = 2t + 1/2$  for  $0 \le t \le 1/4$ ,  $f_2(t) = -2t + 3/2$  for  $1/4 < t \le 1/2$ , and  $f_2(t) = 1 - t$  for  $1/2 < t \le 1$ . If f is the function whose graph is the union of  $f_1$  and  $f_2$ , then  $f^{-1}(1/2) \ne \{1/2\}$  and  $\varprojlim f$  is not tree-like. (See Figure 3 for the graph of f.)

Proof. Let  $M = \lim_{i \to \infty} f$ . We show that M contains two subcontinua whose intersection is not connected from which it follows that M is not treelike. Let h be the sequence the first two terms of which are  $f_2$  and all other terms are  $f_1$ ; let  $H = \lim_{i \to \infty} h$ . Let k be the sequence the second term of which is  $f_2$  and all other terms are  $f_1$ ; let  $K = \lim_{i \to \infty} k$ . The points  $p = (1/2, 1/2, 1/2, \ldots)$  and  $q = (1/2, 1/2, 0, 0, 0, \ldots)$  are points of  $H \cap K$ . Suppose  $x \in H \cap K$ . If  $x_1 \in [0, 1/2]$ , because  $f_2(x_2) = x_1$ , we see that  $x_2 \in [1/2, 1] \cup \{0\}$ . However,  $f_1(0) = 0$  and  $f_2(0) = 1/2$ , so  $x_2 \neq 0$ . Because  $f_1(x_2) = x_1$ , we note that  $x_2 \in [0, 1/2]$ . Thus,  $x_2 = 1/2$ , and so  $x_1 = 1/2$ . Because  $x_2 = 1/2$ ,  $x_3 \in \{0, 1/2\}$ . From  $f_j = Id$  for  $j \geq 3$ , it W. T. INGRAM

follows that  $\boldsymbol{x} \in \{\boldsymbol{p}, \boldsymbol{q}\}$ . Similarly, if  $x_1 \in [1/2, 1], \boldsymbol{x} \in \{\boldsymbol{p}, \boldsymbol{q}\}$ . Therefore,  $H \cap K = \{\boldsymbol{p}, \boldsymbol{q}\}$ .



FIGURE 3. The graph of the function in Example 4.3.

# References

- [1] H. Cook, Clumps of continua, Fund. Math. 86 (1974), 91–100.
- [2] Witold Hurewicz and Henry Wallman, Dimension Theory. Princeton Mathematical Series, v. 4. Princeton, N. J.: Princeton University Press, 1941.
- [3] W. T. Ingram, Inverse limits of upper semi-continuous functions that are unions of mappings, Topology Proc. 34 (2009), 17–26.
- [4] \_\_\_\_\_, An Introduction to Inverse Limits with Set-valued Functions. Springer-Briefs in Mathematics, XV. New York: Springer-Verlag, 2012.
- [5] W. T. Ingram and William S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math. 32 (2006), no. 1, 119–130.
- [6] \_\_\_\_\_, Inverse Limits: From Continua to Chaos. Developments in Mathematics, vol. 25. New York: Springer, 2011.
- [7] Van Nall, Inverse limits with set valued functions, Houston J. Math. 37 (2011), no. 4, 1323–1332.
- [8] \_\_\_\_\_, Connected inverse limits with a set-valued function, Topology Proc. 40 (2012), 167–177.

284 WINDMILL MOUNTAIN ROAD; SPRING BRANCH, TX 78070 *E-mail address*: ingram@mst.edu

24