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CONCERNING THE MUTUALLY APOSYNDETIC
DECOMPOSITION OF PRODUCTS
OF HOMOGENEOUS CONTINUA

KAREN VILLARREAL

Abstract. We prove that the product of a homogeneous mutu-
ally aposyndetic continuum and any continuum is mutually aposyn-
detic. We give some conditions for which a product of two homo-
geneous decomposable continua is mutually aposyndetic. Certain
products involving continuous curves of pseudo-arcs are shown to
be mutually aposyndetic. In particular, if a product of two sole-
noids is mutually aposyndetic, related products involving solenoids
of pseudo-arcs are shown to be mutually aposyndetic. We also de-
termine the mutually aposyndetic decomposition of a pseudo-arc
and certain other homogeneous continua.

1. Introduction

A continuum X is aposyndetic at x with respect to y if there exists a
subcontinuum of X containing x in its interior, but not containing y. A
stronger condition is that X be mutually aposyndetic with respect to x
and y, which means that there are two disjoint subcontinua of X, with
x contained in the interior of one of the subcontinua and y contained in
the interior of the other subcontinuum. Since the product of two non-
degenerate continua is always aposyndetic, it is interesting to study the
mutual aposyndesis of products.

C. L. Hagopian proved that the product of two aposyndetic continua is
always mutually aposyndetic, which means it is mutually aposyndetic with
respect to any two of its distinct points [1, Theorem 1]. He proved that the
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26 K. VILLARREAL

product of three non-degenerate continua is always mutually aposyndetic
[1, Theorem 2]. He also proved that the product of two pseudo-arcs
is semi-indecomposable, which means it is not mutually aposyndetic with
respect to any pair of its points [1, Theorem 10]. (Hagopian used the term
“strictly nonmutually aposyndetic” rather than “semi-indecomposable.”)

Alejandro Illanes proved that the product of a p-adic solenoid and a
q-adic solenoid is mutually aposyndetic if p and q are relatively prime
[2]. Janusz R. Prajs proved that the product of any two solenoids is
either mutually aposyndetic or semi-indecomposable, and he character-
ized which ones are mutually aposyndetic and which are semi-indecom-
posable [5, Corrollary 4.2].

Prajs also determined the mutually aposyndetic decomposition of the
product of a pseudo-arc and a continuous curve of pseudo-arcs with quo-
tient a circle or a Menger curve [7, Example 9.5].

In this paper, we will continue the study of the mutual aposyndesis of
products of homogeneous continua.

2. Preliminaries

A continuum is a compact, connected metric space, and a curve is a
one-dimensional continuum. A continuum X is homogeneous if, for every
x, y ∈ X, there exists a homeomorphism h : (X,x) → (X, y).

A continuum is decomposable if it is the union of two of its proper
subcontinua; otherwise, it is indecomposable. It is known that every
proper subcontinuum of an indecomposable continuum has empty interior.
This follows from [4, Proposition 6.3].

A continuum is hereditarily indecomposable if every subcontinuum of
the continuum is indecomposable. It is easy to prove that if A and B are
subcontinua of a hereditarily indecomposable continuum and A ∩B ̸= ∅,
then A ⊆ B or B ⊆ A.

We use the symbol N(A, ϵ) to represent the set of points less than ϵ
distance from the set A.

A map is a continuous function. A map is monotone if the inverse
image of each point is connected. It is known that the inverse image
of a continuum under a monotone surjective map between continua is a
continuum. This follows from [4, Exercise 8.46].

For a product X×Y , we will use π1 : X×Y → X and π2 : X×Y → Y
to represent the projections. The domain will be determined from the
context.

A decomposition of a space is a partition of the space, where each
partition element is considered to be a point in a space endowed with the
quotient topology. If the quotient map is closed, the decomposition is
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upper-semicontinuous. If it is both open and closed, the decomposition is
continuous.

A subcontinuum T is terminal in X if, for every subcontinuum C such
that C ∩T ̸= ∅, then C ⊂ T or T ⊂ C. A decomposition of X is terminal
if each decomposition element is a terminal subcontinuum. In this case,
each subcontinuum of X is either contained in a decomposition element
or is a union of decomposition elements.

A subcontinuum S of a continuum X is semi-terminal in X if whenever
K1 and K2 are subcontinua of X each intersecting both S and its comple-
ment, K1 ∩K2 ̸= ∅. We will use the fact that any proper semi-terminal
subcontinuum of a mutually aposyndetic homogeneous continuum has
empty interior [7, Theorem 5.4].

The continuum X̂ is a continuous curve of pseudo-arcs with quotient X
if it has a continuous terminal decomposition into pseudo-arcs with quo-
tient space X. A circle of pseudo-arcs is a continuous curve of pseudo-arcs
with quotient a circle, and a solenoid of pseudo-arcs is a continuous curve
of pseudo-arcs with quotient a solenoid. It is known that any two con-
tinuous curves of pseudo-arcs with the same quotient are homeomorphic,
and that for each homogeneous curve X, there is a continuous curve of
pseudo-arcs with quotient X [3].

The aposyndetic decomposition of a homogeneous continuum X is the
decomposition {L(x) : x ∈ X}, where L(x) is the set of points y in X such
that X is not aposyndetic at y with respect to x. It is known that the
aposyndetic decomposition of a homogeneous decomposable continuum
X is continuous and has elements that are terminal, mutually homeomor-
phic, homogeneous, indecomposable continua, and the quotient space is a
homogeneous aposyndetic continuum [8, Theorem 1]. If X is decompos-
able but not aposyndetic, the quotient space is a curve [9, p. 3285].

The mutually aposyndetic decomposition of a homogeneous continuum
X is the decomposition {M(x) : x ∈ X}, where M(x) is the set of points
y in X such that X is not mutually aposyndetic with respect to x and y.
It is known that the mutually aposyndetic decomposition of a homoge-
neous continuum is a continuous decomposition whose elements are closed,
homogeneous, and mutually homeomorphic, and the quotient space is a
homogeneous mutually aposyndetic continuum [6, Theorem 3.1].

It follows easily from the definitions that a mutually aposyndetic con-
tinuum is aposyndetic. Since an indecomposable continuum contains no
proper subcontinuum with interior, it follows easily that an indecompos-
able continuum is semi-indecomposable.

A subcontinuum A of a continuum X is ample in X if, for every open
set U such that A ⊆ U , there is a subcontinuum L of X such that A ⊆
int(L) ⊆ U . A subcontinuum with non-empty interior in a homogeneous
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continuum is always ample. This follows from [6, Proposition 1.1]. A
homogeneous continuum is mutually aposyndetic with respect to x and
y if and only if there exist disjoint ample continua A1 and A2 such that
x ∈ A1 and y ∈ A2 [6, p. 4].

We will make use of the following three lemmas below.

Lemma 2.1 (Prajs [6, Remark 4.7]). If X is a homogeneous continuum
that is not mutually aposyndetic, then the closure of each arc component
of X is contained in a single element of the mutually aposyndetic decom-
position of X.

Lemma 2.2 (Prajs [7, Proposition 4.7]). Let A1 and A2 be subcontinua
of the product P × P of two pseudo-arcs. If π1(A1) = P = π2(A2), then
A1 ∩A2 ̸= ∅.

The following easy lemma was assumed but not explicitly proven by
Prajs in [7, Example 9.5]. We provide the proof for the convenience of
the reader.

Lemma 2.3. Let D be an upper semi-continuous decomposition of the
homogeneous continuum X whose elements are subcontinua of X. If the
quotient space for D is mutually aposyndetic, then each element of the
mutually aposyndetic decomposition of X is contained in a single element
of D.

Proof. Let x, y ∈ X such that x and y belong to different elements of
D. Let q : X → Y be the quotient map for D. Then q(x) ̸= q(y).
Since Y is mutually aposyndetic, there exist disjoint subcontinua K1 and
K2 of Y such that q(x) ∈ int(K1) and q(y) ∈ int(K2). Since the ele-
ments of D are continua, q is monotone. Then q−1(K1) and q−1(K2)
are disjoint subcontinua of X. Since x ∈ q−1(int(K1)) ⊆ q−1(K1) and
y ∈ q−1(int(K2)) ⊆ q−1(K2), and q−1(int(K1)) and q−1(int(K2)) are
open, X is mutually aposyndetic with respect to x and y. Therefore,
each element of the mutually aposyndetic decomposition of X must be
contained in a single element of D. �

3. Main Results

Our first theorem concerns the case where one of the factor spaces in
a product is a mutually aposyndetic continuum.

Theorem 3.1. The product of a non-degenerate homogeneous mutually
aposyndetic continuum and any continuum is mutually aposyndetic.

Proof. Let X be a non-degenerate homogeneous mutually aposyndetic
continuum, and let Y be a continuum. Since X × Y is clearly mutually
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aposyndetic if Y is degenerate, we may assume Y is non-degenerate. Let
(x1, y1) and (x2, y2) be distinct points in X × Y .

Case 1: x1 ̸= x2. Since X is mutually aposyndetic, there exists disjoint
subcontinua K1 and K2 of X such that x1 ∈ int(K1) and x2 ∈ int(K2).
Then, since projection onto the first coordinate is a monotone map, C1 =
π−1
1 (K1) and C2 = π−1

1 (K2) are disjoint subcontinua of X × Y . Also,
since π−1

1 (int(K1)) ⊆ C1 and π−1
1 (int(K2)) ⊆ C2, (x1, y1) ∈ int(C1) and

(x2, y2) ∈ int(C2).

Case 2: x1 = x2. Let x = x1 = x2. Since X is aposyndetic, there
exists a proper subcontinuum C of X such that x ∈ int(C). Since X
is a homogeneous mutually aposyndetic continuum, every proper semi-
terminal subcontinuum of X has empty interior [7, Theorem 5.4]. Then
C is not semi-terminal. Hence, there exist disjoint subcontinua K1 and K2

of X that each intersects both C and its complement. Then A1 = C ∪K1

and A2 = C ∪K2 are subcontinua of X, and x ∈ int(A1) and x ∈ int(A2).
Let p1 ∈ K1 − C. Then, since K1 and K2 are disjoint, p1 ∈ A1 − A2.

A similar argument shows there exists p2 ∈ A2 −A1. Clearly, p1 ̸= p2.
Since (x1, y1) and (x2, y2) are distinct and x1 = x2 and y1 ̸= y2, there

exist open neighborhoods U1 and U2 in Y of y1 and y2, respectively,
such that Ū1 ∩ Ū2 = ∅. Then (x, y1) ∈ int(A1 × Ū1), and A1 × Ū1 is
closed, and hence compact. Likewise, (x, y2) ∈ int(A2 × Ū2) and A2 × Ū2

is compact. Also, A1 × Ū1 = ∪{A1 × {y} : y ∈ Ū1} and A2 × Ū2 =
∪{A2 × {y} : y ∈ Ū2} are each unions of continua. Since p1 ∈ A1 and
p2 ∈ A2, C1 = (A1× Ū1)∪({p1}×Y ) and C2 = (A2× Ū2)∪({p2}×Y ) are
continua, and (x1, y1) = (x, y1) ∈ int(C1) and (x2, y2) = (x, y2) ∈ int(C2).

Since Ū1 ∩ Ū2 = ∅, (A1 × Ū1) ∩ (A2 × Ū2) = ∅. Since p1 ̸= p2, ({p1} ×
Y ) ∩ ({p2} × Y ) = ∅. Since p1 /∈ A2, ({p1} × Y ) ∩ (A2 × Ū2) = ∅. Since
p2 /∈ A1, ({p2} × Y ) ∩ (A1 × Ū1) = ∅. Then C1 and C2 are disjoint.

Since in both cases there exist disjoint subcontinua C1 and C2 of X×Y
such that (x1, y1) ∈ int(C1) and (x2, y2) ∈ int(C2), it follows that X × Y
is mutually aposyndetic with respect to (x1, y1) and (x2, y2). Since these
two points are arbitrary distinct points in X × Y , it follows that X × Y
is mutually aposyndetic. �

The following example, suggested by the referee of this paper, shows
that the requirement in Theorem 3.1 that the mutually aposyndetic con-
tinuum be homogeneous is necessary.

Example 3.2. Let P be a pseudo-arc, and consider the product of the arc
[0, 1] and P . The arc is mutually aposyndetic and nearly homogeneous,
but we show that [0, 1]× P is not mutually aposyndetic.
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Let p1 and p2 be distinct points in P . Let K1 and K2 be subcontinua
of [0, 1] × P such that (0, p1) ∈ int(K1) and (0, p2) ∈ int(K2). Suppose
K1 and K2 are disjoint.

Since K1 and K2 each has non-empty interior, π1(K1) and π1(K2) are
non-degenerate subcontinua of [0, 1]. Then both π1(K1) and π1(K2) are
subarcs of [0, 1] containing 0. It follows that either π1(K1) ⊆ π1(K2) or
π1(K2) ⊆ π1(K1). Without loss of generality, assume π1(K1) ⊆ π1(K2).

Also, since K1 and K2 each has non-empty interior, π2(K1) and π2(K2)
are each subcontinua of P with non-empty interior. Since P is indecom-
posable, π2(K1) = π2(K2) = P .

Since K1 and K2 are disjoint, there exists an ϵ > 0 such that the ϵ-
neighborhood of K1 does not intersect K2. Since P is chainable, there
exists a surjective ϵ-map g : P → [0, 1]. If id : [0, 1] → [0, 1] is the identity
map, then f = id×g : [0, 1]× P → [0, 1]× [0, 1] is an ϵ-map.

Let ρ1 : [0, 1]×[0, 1] → [0, 1] and ρ2 : [0, 1]×[0, 1] → [0, 1] be projections
onto the first and second coordinates, respectively. Then ρ1(f(K1)) =
π1(K1) ⊆ π2(K2) and ρ1(f(K2)) = π1(K2). Then both f(K1) and f(K2)
are subcontinua of π1(K2)× [0, 1], a product of two arcs. Also note that
ρ2(f(K1)) = g(π2(K1)) = g(P ) = [0, 1]. Since ρ1(f(K2)) = π1(K2) and
ρ2(f(K1)) = [0, 1], f(K1) and f(K2) must intersect. Since f is an ϵ-map,
there is a point of K1 and a point of K2 such that the distance between
the points is less than ϵ. This is impossible, since the ϵ-neighborhood
of K1 does not intersect K2. Hence, K1 and K2 cannot be disjoint, so
[0, 1]× P is not mutually aposyndetic with respect to (0, p1) and (0, p2).

Now we consider products involving spaces with dense arc components.

Theorem 3.3. Let X and Y be non-degenerate homogeneous continua.

(1) If X has dense arc components, and q : Y → Q is the quotient
map for an upper-semicontinuous decomposition of Y into subcon-
tinua, and X×Q is mutually aposyndetic, then X×Y is mutually
aposyndetic.

(2) If q1 : X → Q1 and q2 : Y → Q2 are quotient maps for upper-
semicontinuous decompositions consisting of subcontinua, and both
Q1 and Q2 are homogeneous and have dense arc components, and
Q1×Q2 is mutually aposyndetic, then X×Y is mutually aposyn-
detic.

Proof. We prove statement (1): Let D = {{x}× q−1(z) : (x, z) ∈ X×Q}.
Since the mutually aposyndetic space X ×Q is the quotient space for D,
and the elements of D are continua, it follows from Lemma 2.3 that each
element of the mutually aposyndetic decomposition of X×Y is contained
in a single element of D.
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Let (x, y) ∈ X × Y , and let M be the element of the mutually aposyn-
detic decomposition of X × Y containing (x, y). Since X has dense arc
components, the closure of the arc component of X × Y containing (x, y)
contains X × {y}. If X × Y is not mutually aposyndetic, it follows from
Lemma 2.1 that X ×{y} ⊆ M . However, since the element of D contain-
ing (x, y) is {x} × q−1(q(y)), we must have M ⊆ {x} × q−1(q(y)). This
is impossible, since X × {y} is not a subset of {x} × q−1(q(y)). Hence,
X × Y is mutually aposyndetic.

Now we prove statement (2): Let D1 = {{x}×q−1
2 (z) : (x, z) ∈ X×Q2}

and D2 = {q−1
1 (z)×{y} : (z, y) ∈ Q1×Y }. Since Q2 and X and Q1 and Y

each satisfies the hypotheses of (1), X×Q2 and Q1×Y are each mutually
aposyndetic. Then, by Lemma 2.3, since X×Q2 is the quotient space for
D1 and Q1×Y is the quotient space for D2, each element of the mutually
aposyndetic decomposition of X×Y must be contained in a single element
of D1 and also in a single element of D2. Then, if M is the element of
the mutually aposyndetic decomposition of X × Y containing a point
(x, y), M ⊆

[
{x} × q−1

2 (q2(y))
]
∩
[
q−1
1 (q1(x))× {y}

]
= {(x, y)}. Hence,

each element of the mutually aposyndetic decomposition is degenerate.
Therefore, X × Y is mutually aposyndetic. �

Corollary 3.4. Let X be a non-degenerate homogeneous continuum with
dense arc components, Y be a homogeneous curve, and Ŷ be the contin-
uous curve of pseudo-arcs with quotient Y . If either X or Y is mutually
aposyndetic, or if both X and Y are aposyndetic, then X × Ŷ is mutually
aposyndetic. If, in addition, Y has dense arc components, X is one-
dimensional, and X̂ is the continuous curve of pseudo-arcs with quotient
X, then X̂ × Ŷ is mutually aposyndetic.

Proof. The corollary follows easily from Theorem 3.3, Theorem 3.1, and
the fact that the product of two aposyndetic continua is mutually aposyn-
detic [1, Theorem 1]. �

Since every known homogeneous aposyndetic curve is mutually aposyn-
detic and has dense arc components, and solenoids have dense arc com-
ponents, the above corollary has many applications. For example, the
product of a solenoid and a circle of pseudo-arcs is mutually aposynde-
tic, and the product of a circle of pseudo-arcs and a continuous curve of
pseudo-arcs with quotient a Menger curve is mutually aposyndetic.

Corollary 3.5. Let S1 and S2 be solenoids, and let Ŝ1 and Ŝ2 be solenoids
of pseudo-arcs with quotients S1 and S2, respectively. If S1 × S2 is mu-
tually aposyndetic, then S1 × Ŝ2, Ŝ1 × S2, and Ŝ1 × Ŝ2 are mutually
aposyndetic.



32 K. VILLARREAL

Proof. The corollary follows easily from Theorem 3.3 and the fact that
solenoids have dense arc components. �

Now we prove a theorem about the product of two homogeneous de-
composable continua.

Theorem 3.6. Let X and Y be homogeneous decomposable continua.
Then X×Y is mutually aposyndetic if at least one of the following holds:

(1) Either X or Y is mutually aposyndetic.
(2) X and Y are both aposyndetic.
(3) Either X or Y is an aposyndetic continuum with dense arc com-

ponents.
(4) Each of the quotient spaces for the aposyndetic decompositions of

X and Y is either mutually aposyndetic or has dense arc compo-
nents.

Proof. If X and Y satisfy (1), the conclusion follows from Theorem 3.1.
If X and Y satisfy (2), the conclusion follows from [1, Theorem 1].
Suppose X and Y satisfy (3). Without loss of generality, assume X

is an aposyndetic continuum with dense arc components. If Y is also
aposyndetic, (2) is satisfied, so we may assume Y is not aposyndetic.
The aposyndetic decomposition of Y is an upper-semicontinuous decom-
position of Y into subcontinua, and the quotient space is a homogeneous
aposyndetic curve Q. Since both X and Q are aposyndetic, X×Q is mu-
tually aposyndetic. It follows from Theorem 3.3 that X × Y is mutually
aposyndetic.

Suppose (4) is satisfied. Since we have already shown that X × Y is
mutually aposyndetic if (1), (2), or (3) holds, we may assume, without loss
of generality, that neither X nor Y is aposyndetic. Let q1 : X → Q1 and
q2 : Y → Q2 be the quotient maps for the aposyndetic decompositions
of X and Y , respectively. Since each of Q1 and Q2 is either mutually
aposyndetic or aposyndetic and has dense arc components, X and Q2,
and Q1 and Y , each satisfies either (1) or (3). Then X ×Q2 and Q1 × Y
are mutually aposyndetic.

Let D1 = {{x} × q−1
2 (z) : (x, z) ∈ X ×Q2} and D2 = {q−1

1 (z) × {y} :
(z, y) ∈ Q1 × Y }. Since the elements of both D1 and D2 are continua,
and the quotient spaces for D1 and D2 are the mutually aposyndetic
continua X ×Q2 and Q1 × Y , each element of the mutually aposyndetic
decomposition of X×Y must be contained in a single element of D1, and
also in a single element of D2, by Lemma 2.3. Then, if M is the element
of the mutually aposyndetic decomposition of X × Y containing a point
(x, y), M ⊆

[
{x} × q−1

2 (q2(y))
]
∩
[
q−1
1 (q1(x))× {y}

]
= {(x, y)}. It follows

that X × Y is mutually aposyndetic. �
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Prajs asked if every homogeneous aposyndetic curve is mutually aposyn-
detic [6, Question 2]. If the answer is yes, then it would follow from The-
orem 3.6 that the product of homogeneous decomposable curves is always
mutually aposyndetic. Also, if it is true that every homogeneous aposyn-
detic curve has dense arc components, it would follow that the product
of homogeneous decomposable curves is always mutually aposyndetic.

The quotient space of the aposyndetic decomposition of a homogeneous
decomposable, nonaposyndetic continuum is a curve. Then, if it is true
that either every homogeneous aposyndetic curve is mutually aposyndetic
or every homogeneous aposyndetic curve has dense arc components, it
would follow that the product of homogeneous decomposable nonaposyn-
detic continua is mutually aposyndetic.

Prajs determined the mutually aposyndetic decomposition of the prod-
uct of a pseudo-arc and a continuous curve of pseudo-arcs with quotient
a circle or a Menger curve [7, Example 9.5]. In explaining this example,
Prajs essentially proved the lemma below, although the hypothesis he
used is less general than the one in the lemma. We provide the proof for
the convenience of the reader.

Lemma 3.7 (Prajs). Suppose X is a homogeneous continuum with a
continuous terminal decomposition into pseudo-arcs with quotient map q :
X → Y , and P is a pseudo-arc. Let D = {q−1(y)×{p} : (y, p) ∈ Y ×P}.
Then X×P is not mutually aposyndetic with respect to any pair of points
belonging to the same element of D.

Proof. Let (x1, p) and (x2, p) be distinct points belonging to the same
element of D. Then x1 ̸= x2 and q(x1) = q(x2). Let y = q(x1). Let K1

and K2 be subcontinua of X×P such that (x1, p) ∈ int(K1) and (x2, p) ∈
int(K2). Let C1 be the component of π−1

1 (q−1(y))∩K1 containing (x1, p),
and let C2 be the component of π−1

1 (q−1(y)) ∩K2 containing (x2, p).
Since K1 has nonempty interior, and π1 and q are open, q(π1(K1))

is non-degenerate. Then C1 is a proper subcontinuum of K1. Then,
for each positive integer n, there exists a subcontinuum Ln of K1 such
that C1 is a proper subset of Ln and Ln ⊆ N(C1,

1
n ). Then π1(Ln) is

not a subset of q−1(y), since Ln is connected and C1 is a component of
π−1
1 (q−1(y)) ∩ K1. Then π1(Ln) must intersect more than one element

of the terminal decomposition of X into pseudo-arcs. Then π1(Ln) must
contain each element of that terminal decomposition that it intersects.
In particular, q−1(y) ⊆ π1(Ln). Since this is true for each n, π1(C1) =
q−1(y). A similar argument shows π1(C2) = q−1(y).

Since p ∈ π2(C1) ∩ π2(C2) and π2(C1) and π2(C2) are subcontinua of
the hereditarily indecomposable continuum P , either π2(C1) ⊆ π2(C2) or
π2(C2) ⊆ π2(C1). Without loss of generality, assume π2(C1) ⊆ π2(C2).
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Case 1: π2(C2) = {p}. Then π2(C1) = {p}, so C1 = q−1(y)×{p} = C2.
In this case, clearly C1 ∩ C2 ̸= ∅.

Case 2: π2(C2) is a pseudo-arc. Then both C1 and C2 are subcontinua
in the product of pseudo-arcs q−1(y) × π2(C2). Since π1(C1) = q−1(y),
by Lemma 2.2, C1 ∩ C2 ̸= ∅.

Since, in both cases, C1 ∩C2 ̸= ∅, we have K1 ∩K2 ̸= ∅. Hence, X×P
is not mutually aposyndetic with respect to (x1, p) and (x2, p). �

The following is a generalization of Prajs’s Example 9.5 [7].

Corollary 3.8. Let X be a homogeneous decomposable, but not aposyn-
detic, continuum, such that the quotient space for the aposyndetic de-
composition is mutually aposyndetic. Let q : X → Q be the quotient
map for the aposyndetic decomposition of X, P be a pseudo-arc, and
D = {q−1(y) × {p} : (y, p) ∈ Q × P}. Then each element of the mutu-
ally aposyndetic decomposition of X×P is contained in an element of D.
Furthermore, if the elements of the aposyndetic decomposition of X are
pseudo-arcs, then the mutually aposyndetic decomposition of X ×P is D.

Proof. Since Q is mutually aposyndetic, by Theorem 3.1, Q × P is mu-
tually aposyndetic. Since Q × P is the quotient space for D, and the
elements of D are continua, by Lemma 2.3, each element of the mutually
aposyndetic decomposition of X × P is contained in an element of D. If
the elements of the aposyndetic decomposition of X are pseudo-arcs, by
Lemma 3.7, X × P is not mutually aposyndetic with respect to any pair
of points belonging to the same element of D. Then, in this case, D is the
mutually aposyndetic decomposition of X × P . �

Lemma 3.9. Let X be a homogeneous continuum with a continuous de-
composition into closed sets such that the quotient space is semi-inde-
composable, and X is not mutually aposyndetic with respect to any pair
of points belonging to the same decomposition element. Then X is semi-
indecomposable.

Proof. Let D be the continuous decomposition of X mentioned in the
theorem, and let q : X → Y be the quotient map for the decomposition.
Let K1 and K2 be subcontinua of X with nonempty interiors. Since D is
a continuous decomposition, q is open. Then q(K1) and q(K2) are sub-
continua of Y with nonempty interiors. Since Y is semi-indecomposable,
q(K1) ∩ q(K2) ̸= ∅. Then there exists x1 ∈ K1 and x2 ∈ K2 such that
x1 and x2 belong to the same element of D. Then X is not mutually
aposyndetic with respect to x1 and x2. Since K1 and K2 have nonempty
interiors, they are ample subcontinua of X. Hence, K1 ∩K2 ̸= ∅. Since
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K1 and K2 were arbitrary subcontinua of X with nonempty interiors, it
follows that X is semi-indecomposable. �

We noted in the introduction that the product of two solenoids is either
mutually aposyndetic or semi-indecomposable. We now generalize this
statement.

Lemma 3.10. The product of a homogeneous continuum with dense arc
components and a homogeneous semi-indecomposable continuum is either
mutually aposyndetic or semi-indecomposable.

Proof. Let X be a homogeneous continuum with dense arc components
and Y be a homogeneous semi-indecomposable continuum. If X × Y
is not mutually aposyndetic, then, by Lemma 2.1, the closure of each
arc component of X × Y must be contained in a single element of the
mutually aposyndetic decomposition of X × Y . Since X has dense arc
components, X × {y} is contained in the closure of the arc component of
a point (x, y) ∈ X × Y . Let D = {X × {y} : y ∈ Y }. If X × Y is not
mutually aposyndetic, then X×Y is not mutually aposyndetic at any pair
of points in the same element of D. Since the quotient map for D is π2,
which is open, this decomposition is continuous. Since the quotient space
is Y , which is semi-indecomposable, if X×Y is not mutually aposyndetic,
then it is semi-indecomposable by Lemma 3.9. �

Corollary 3.11. Let X be a homogeneous curve with dense arc compo-
nents, X̂ be the continuous curve of pseudo-arcs with quotient X, and P
be a pseudo-arc. Then X × P is either mutually aposyndetic or semi-
indecomposable. If X × P is semi-indecomposable, then X̂ × P is semi-
indecomposable. If X × P is mutually aposyndetic, and q : X̂ → X is the
quotient map for the decomposition of X̂ into maximal pseudo-arcs, then
{q−1(x)×{p} : (x, p) ∈ X×P} is the mutually aposyndetic decomposition
of X̂ × P .

Proof. Since P is semi-indecomposable, and X has dense arc compo-
nents, by Lemma 3.10, X × P is either mutually aposyndetic or semi-
indecomposable.

Let D = {q−1(x) × {p} : (x, p) ∈ X × P}. Since the decomposition
of X̂ into maximal pseudo-arcs is a continuous, terminal decomposition,
by Lemma 3.7, X̂ × P is not mutually aposyndetic with respect to any
pair of points belonging to the same element of D. Note that the quotient
space for D is X × P .

If X × P is semi-indecomposable, then so is X̂ × P , by Lemma 3.9.
If X × P is mutually aposyndetic, then each element of the mutually

aposyndetic decomposition of X̂ × P is contained in an element of D by
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Lemma 2.3. Then, in this case, D is the mutually aposyndetic decompo-
sition of X̂ × P . �

Note that the corollary above holds in particular if X is a solenoid.

4. Questions

There are several questions prompted by the results in this paper.

Question 4.1. If S1 and S2 are solenoids such that S1 × S2 is semi-
indecomposable, and Ŝ1 and Ŝ2 are solenoids of pseudo-arcs with quotients
S1 and S2, respectively, can we conclude anything about the mutually
aposyndetic decompositions of S1 × Ŝ2 and Ŝ1 × Ŝ2?

Question 4.2. Is the product of two homogeneous decomposable con-
tinua always mutually aposyndetic? What about the product of two ho-
mogeneous decomposable curves?

Question 4.3. In Corollary 3.8 and Corollary 3.11, can we replace the
pseudo-arc P with an arbitrary homogeneous hereditarily indecomposable
continuum?

Question 4.4. From Lemma 3.10 it follows that the product of a solenoid
and a pseudo-arc is either mutually aposyndetic or semi-indecomposable.
Is such product always semi-indecomposable?

Question 4.5. Must the product of two homogeneous hereditarily inde-
composable continua be semi-indecomposable? What about the product
of a pseudo-arc and a homogeneous hereditarily indecomposable contin-
uum?

Another relevant question is the following.

Question 4.6. If a homogeneous continuum has dimension at least 3,
must it be mutually aposyndetic?

If the answer to the last question is yes, this would reduce the study
of the mutually aposyndetic decompositions of products of homogeneous
continua to the study of the decompositions of products of two homoge-
neous curves.
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