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GENERALIZED METRIC TOPOLOGIES OF THE EARTH

AKIO KATO

Abstract. We propose four new topologies of the Earth inspired
by the propagation of seismic waves. All of them are Lindelöf and
stratifiable, but not metrizable. The first one is symmetrizable, but
turns out to be neither Fréchet nor simply connected. We simplify
this topology to get three locally contractible topologies, one of
which is first-countable.

1. Introduction

An earthquake propagates by two kinds of seismic waves, the body
waves and the surface waves. The former travels through the Earth, while
the latter over the Earth’s surface. Both are known to have properties
such that the propagation velocity of the body wave tends to increase
with depth, but the surface wave is relatively slower than the body wave.
We want to define new topologies on the closed unit disc D or the cross
section of the Earth so that these topologies characterize, to some extent,
the above phenomena. Of course, we must greatly simplify the cross
section of the Earth in order to discard geological details (see Figure 1).

We propose that the body wave takes the path of geodesic of the
Poincaré disc D (the open unit disc) with the hyperbolic metric ρ so that
the topology of the interior of the Earth is governed by the hyperbolic
metric ρ. On the other hand, the surface wave travels on the great circle of
the surface of the Earth, which is the boundary circle of the cross section
of the Earth. So, the surface wave is measured by the usual Euclidean arc
length on the boundary circle. Hence, we see that our simplified model D
of the Earth has a multi-metric structure, the hyperbolic metric ρ on D
and the Euclidean metric d on the boundary circle S1 = ∂D. Of course,
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Figure 1. Simplified model of the Earth.

the Euclidean metric d is defined not only on the boundary but also on
the whole D. We want to define new topologies on this closed disc D
which will respect both of these two metrics.

Our first example (X, τ) in section 3 will be Lindelöf, symmetrizable,
and stratifiable, but neither Fréchet nor simply connected. We study the
structure of this topology τ in detail in section 4, and then in section 5 we
will improve it to get three simplified topologies, all of which are locally
contractible, with the last one even being first-countable.

2. Hyperbolic Tangent Disc Topology

Throughout this paper, ρ denotes the hyperbolic metric, while d is the
Euclidean metric on the plane. Let us recall the definition of the hyperbolic
metric ρ on D (see [2]), where D is supposed to be the open unit disc
|z| < 1 in the complex plane C. For simplicity, we put X = D = D ∪ S,
where S = ∂D is the boundary unit circle |z| = 1. Any distinct points
z, w ∈ D are contained in a unique hyperbolic line or a geodesic L(α, β)
such that L(α, β) is an open circular arc (or a diameter) connecting the
end points α, β ∈ S and is orthogonal to S at both α and β. Then the
hyperbolic distance ρ(z, w) is defined as

ρ(z, w) = | log(α, z, w, β)|,
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where (α, z, w, β) denotes the cross ratio (w−α
w−β )/(

z−α
z−β ), and this cross

ratio is a positive real since the four points α, z, w, and β are on the
circle determined by the geodesic L(α, β). An important property of this
hyperbolic distance is that it is invariant under Möbius transformations.
So, for example, if a Möbius map transforms the geodesic L(α, β) to the
diameter L(−1,+1) so that the four points α, z, w, and β are mapped
to −1 < r1 < r2 < +1 correspondingly in this order, then the distance
ρ(z, w) can be calculated as

(∗) ρ(r1, r2) = | log(−1, r1, r2,+1)| = log
1 + r2
1− r2

− log
1 + r1
1− r1

.

When z or w approaches the boundary point α or β, respectively, the
distance ρ(z, w) increases to infinity. So it is natural to extend ρ to X = D
by defining ρ(x, y) = ∞ when either of x or y is on the boundary S. This
extension ρ, though not a “metric,” exhibits the idea that the boundary
S is located infinitely far away from inside and that the boundary points
are “discretely” apart from each other.

Topologically, inside D, the hyperbolic metric ρ and the Euclidean met-
ric d induce the same topology. But, when we consider the corresponding
open balls, we have to care about the positions of their centers. The
hyperbolic open ball

Bρ(z0; r0) = {z ∈ D : ρ(z0, z) < r0}
of hyperbolic center z0 ∈ D and hyperbolic radius 0 < r0 < ∞ is, as a
set, identical with some Euclidean open ball

Bd(z1; r1) = {z ∈ D : d(z1, z) < r1}
with Euclidean center z1 ∈ D and Euclidean radius 0 < r1 < 1, but the
hyperbolic center z0 is always shifted away from the Euclidean center z1
towards the boundary S; that is, z0 = t z1 for some t > 1 if z0 ∈ D\{0}. So,
if z0 approaches the boundary, the concentric hyperbolic balls Bρ(z0; r)
with radii 0 < r < ∞ look more like the horocycles or horoballs (See
Figure 2).

Taking these facts into account, we introduce a topology τρ on the
closed disc X = D as follows. For a point x ∈ S and 0 < s < 2 let V (x; s),
denote the union of the point x with the Euclidean open ball, internally
tangent at x ∈ S, of diameter of Euclidean length s. We call this V (x; s)
a horoball at x of size s. So, the definition itself of horoballs completely
depends on the Euclidean metric d:

V (x; s) = {x} ∪Bd((1− s/2)x; s/2).
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Figure 2. Hyperbolically concentric circles.

Define τρ to be a topology on X = D ∪ S generated by all of these
horoballs, plus the usual (either of ρ or d) metric topology on D. We
call this a hyperbolic tangent disc topology induced from the extended
“metric” ρ. This space (X, τρ) is the union of the Poincaré disc D with
the uncountable discrete closed space S, and this tangent disc topology is
known to be completely regular Hausdorff, but is a bit wild, that is, not
even normal. In the next section we will improve upon this defect.

Let Ct = ∂ V (x; t) denote the boundary circle of the horoball V (x; t).
Then V (x; s) can be written as

∪
0<t<s Ct , and for 0 < t1 < t2 <

s, the hyperbolic distance between Ct1\{x} and Ct2\{x} is equal with
ρ(1 − t1, 1 − t2), and this depends only on t1 and t2 (see Lemma 3.2).
Hence, we can see that the horoball V (x; s) consists of the “center” x and
the “ hyperbolically concentric” circles Ct (0 < t < s). So, suppose an
earthquake happened at x; then the body wave will spread over V (x; s)
until the time s, forming the wavefronts Ct (0 < t < s). On the other
hand, its surface wave will also propagate from x to some arc J containing
x on the boundary S. Hence, the set of the form V (x; s) ∪ J will represent
the region over which the earthquake at x will spread until the time s.
Taking this fact into account, we will next introduce a new topology.

3. Stratifiable Topology

Let J = aab be an open arc on the boundary S with end points a and
b, and let g be any function, not necessarily continuous, from the arc J
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to the interval (0, 1]. Put

V (g) =
∪
x∈J

V (x; g(x)),

which is the union of horoballs at x ∈ J of size 0 < g(x) 6 1. Define τ to
be a topology on X = D ∪ S generated by the usual topology on D and
all sets of the form V (g) where J and g are chosen arbitrarily (see Figure
3).

x
a b

S

Figure 3. Some typical neighborhoods.

Observe that this new topology is coarser than τρ (horoballs are no
longer open), and that (X, τ) is the union of the Poincaré disc D and the
Euclidean circle S = S1. This topology is one that we wanted, and we
will show (X, τ) is a regular space with a σ-closure preserving open base,
that is, an M1-space, consequently a stratifiable (or M3) space.

Remark 3.1. In the theory of generalized metric spaces, a regular space
with a σ-closure preserving open base is called an M1-space, while a regu-
lar space with a σ-closure preserving quasi-base is called an M3-space
or a stratifiable space. (A collection B of subsets of a space X is a
quasi-base if whenever x ∈ U with U open, there is some B ∈ B with
x ∈ int(B) ⊂ B ⊂ U .) So, M1 is formally stronger than stratifiable.
Though it is not yet known whether these two notions coincide or not,
they are known to be equivalent for Fσ-metrizable spaces, that is, spaces
which can be represented as a countable union of closed metrizable sub-
spaces. All of our examples in this paper are Fσ-metrizable. The class
of stratifiable spaces is well known as one of the most useful classes of
generalized metric spaces. Indeed, this class is stable under the topologi-
cal operations, such as taking “subsets,” “countable products,” and “closed
maps.” So, for example, we can take any two of our stratifiable examples
and paste them together by any closed map; then the resultant space is
also stratifiable. See [5], [6].
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An alternative construction of this topology τ can be given using an
“adjunction space” as follows. Let (X, τρ) be the space in section 2 with
the tangent disc topology τρ, and let us denote this space as X0 = D ∪
S0, where S0 denotes the boundary ∂D with the discrete topology, while
keeping the notation S for the usual Euclidean circle. Let φ : S0 → S be
the identity map; then this map φ can be seen as a continuous bijection
from the discrete closed subspace S0 of X0 onto the unit circle S. Make an
adjunction space X0∪φS and observe that this adjunction space topology
is identical with our τ . In the literature, various preservation theorems
for adjunction spaces are proved, but unfortunately, we can not apply
them here because they are mostly of the form that the adjunction space
Y ∪hZ has a property P if both Y and Z have P . As for such P , “normal,”
“monotonically normal,” and “stratifiable” are known. But in our case of
X0 ∪φ S, the space X0 is neither normal nor stratifiable.

We will first show that τ is regular; this fact is not so obvious. The
following lemma is important in showing the connection between the Eu-
clidean and hyperbolic measurements via horoballs.

Lemma 3.2. For any point x ∈ S and any 0 < s 6 1, the horoball
V (x; 3−1s) is apart from D \V (x; s) more than 1 with respect to the hy-
perbolic metric:

ρ(V (x; 3−1s)\{x}, D \V (x; s) ) > loge 3 = 1.098 · · · > 1.

Proof. By rotation we can assume that x = 1. Then the distance between
V (x; 3−1s) and D \V (x; s) is measured by ρ(r1, r2), where r1 = 1− s and
r2 = 1− 3−1s. By the formula (∗) in section 2,

ρ(r1, r2) = log
1 + r2
1 + r1

+ log
1− r1
1− r2

.

The first term is positive since r2 > r1, while the second term is log 3. �

Let V (g) be as defined above.

Lemma 3.3. The open set V (3−1g) is apart from D \V (g) more than 1
with respect to the hyperbolic metric.

Proof. By definition, V (3−1g) is the union of V (x; 3−1g(x)) for all x ∈ J .
Each V (x; 3−1g(x)) is, by Lemma 3.2, apart from D \V (g) more than 1.
Consequently, we get Lemma 3.3. �

Lemma 3.4. Let clτ denote the closure in τ . Then

clτ V (g) = [J ] ∪ clρ(V (g)\J),
where [J ] is the closed arc J ∪ {a, b} and clρ(V (g)\J) is the set of all
points z in D such that ρ(z, V (g)\J) = 0.
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Proof. Put E = [J ] ∪ clρ(V (g)\J). All we have to show is that E is
closed with respect to the topology τ . Indeed, we can even show that E
is closed with respect to the Euclidean metric topology. Take any point
z ∈ X\E. If z belongs to D, the set D\clρ(V (g)\J) is obviously a ρ-open
(hence, d-open) neighborhood of z missing E. So, suppose z ∈ S\ [J ]. Let
V (x; 1) denote the horoball V (x; 1) of size 1 together with its boundary
circle, and put F =

∪
{V (x; 1) : x ∈ [J ]}. Then this F is a Euclidean

closed set including the set V (g) and missing z. Hence, X\F is a d-open
neighborhood of z missing E. �

Property 3.5. The topology τ is regular.

Proof. We need to check the regularity only at a point x on the boundary
S. Let x ∈ V (g) and g : J → (0, 1]. Take an arc K = cad so that
x ∈ K ⊂ [K] = K ∪{c, d} ⊂ J , and let h be the restriction of g to K. By
Lemma 3.4, we get

x ∈ V (3−1h) ⊆ clτ V (3−1h) = [K] ∪ clρ(V (3−1h)\K).

Lemma 3.3 implies that clρ(V (3−1h)\K) ⊆ V (h). Hence, clτ V (3−1h) is
included in J ∪ V (h) ⊆ V (g). �

Once we know that τ is regular, we can derive its nice separation
property. Indeed, since (X, τ) is a countable union of compact sets (S is
compact!), it is Lindelöf. Hence, τ is regular Lindelöf and, consequently,
paracompact.

Next we will show that (X, τ) has a σ-closure preserving open base.
Choose a locally finite cover B of D consisting of open balls of diameter
6 1 with respect to the hyperbolic metric ρ ; we fix this open cover of D
hereafter. For any subset A ⊆ X, define its enlargement A⋆ by B as

A⋆ = A ∪
∪

{B ∈ B : A ∩B ̸= ∅}.

Note that V (x; s)⋆ = {x} ∪ (V (x; s)\{x})⋆ and V (g)⋆ = J ∪ (V (g)\J)⋆.
Lemma 3.2 and Lemma 3.3 show the inclusions

V (x; 3−1s) ⊆ V (x; 3−1s)⋆ ⊆ V (x; s) and V (3−1g) ⊆ V (3−1g)⋆ ⊆ V (g)

hold, and this means that if some collection of V (g)’s form a neighborhood
base at some point of S, so does the corresponding collection of V (g)⋆’s.
Recall that a collection of sets is called closure preserving if for any sub-
collection, the union of the closures equals the closure of the union. Fix
an open arc J on the boundary S, and let V⋆(J) denote the collection of
all open sets of the form V (g)⋆ where g ranges over all functions from J
to the interval (0, 1/3]. Then we have the following lemma.

Lemma 3.6. V⋆(J) is closure preserving in (X, τ).
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Proof. Let G be any collection of functions g : J → (0, 1/3]. We need
to show that clτ (

∪
g∈G V (g)⋆) is included in

∪
g∈G clτ (V (g)⋆). Let g ∈ G

and x ∈ J . Then, since V (x; g(x))⋆ ⊆ V (x; 3 g(x)) ⊆ V (x; 1), we have
that V (g)⋆ ⊆ F and

∪
g∈G V (g)⋆ ⊆ F , where F =

∪
{V (x; 1) : x ∈ [J ]} is

the Euclidean closed set in the proof of Lemma 3.4. Hence, in the same
way as in Lemma 3.4, we can show that

clτ (V (g)⋆) = [J ] ∪ clρ(V (g)⋆ \J)

and
clτ (

∪
g∈G

V (g)⋆) = [J ] ∪ clρ(
∪
g∈G

V (g)⋆ \J).

So we need only show that the open collection {V (g)⋆ \J : g ∈ G} is
closure preserving in (D, ρ). But this is obvious because V (g)⋆ \J consists
of elements of a locally finite cover B of D. �

Property 3.7. The space (X, τ) has a σ-closure preserving open base,
hence is stratifiable.

Proof. Choose a countable open base Ji (i ∈ ω) of S consisting of open
arcs. Then

∪
i∈ω V⋆(Ji) forms a neighborhood base for points at S, and

each V⋆(Ji) is closure-preserving by Lemma 3.6. Since (D, ρ) is second-
countable, we can take an open base

∪
i∈ω Ci such that Ci is a singleton.

Thus, we get a σ-closure preserving open base
∪

i∈ω V⋆(Ji) ∪
∪

i∈ω Ci for
τ . �

We remark that our space (X, τ) cannot be represented as an image
of any metric space by any closed map. To see this, it is enough to show
that our space is not “ Fréchet” because “ being Fréchet” is preserved under
closed maps. Recall that a space Y is called Fréchet at a point y ∈ Y if,
whenever A ⊆ Y and y ∈ cl A, there exists a convergent sequence an in
A such that an → y.

Property 3.8. The space (X, τ) is not Fréchet, hence not first-countable,
at any point on the boundary S.

Proof. Take any point x0 on the boundary S and let V (x0; 1) be the closed
horoball in the proof of Lemma 3.4. Consider a subset A = D \V (x0; 1).
Then it is obvious that x0 ∈ clτA. Suppose there were a τ -convergent
sequence {an} in A such that an → x0. Put C = {an : n ∈ ω}. Since
this convergent sequence is also a convergent sequence in the coarser Eu-
clidean topology, C ∪{x0} is a Euclidean closed set. Take any open arc J
containing the point x0, and for each point x ∈ J\{x0} choose a horoball
V (x; sx) disjoint from C ∪ {x0}. Define a function g : J → (0, 1] as
g(x0) = 1 and g(x) = sx for x ∈ J\{x0}. (This g can be chosen as being
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continuous on J\{x0}.) Then the neighborhood V (g) of x0 misses C, a
contradiction. �

Remark 3.9. In spite of Property 3.8, our space (X, τ) turns out to be
sequential , that is, a subset of X is closed if and only if it is sequentially
closed. Indeed, we can remark here that (X, τ) is symmetrizable and that
symmetrizable spaces are known to be sequential (see [5], [6]). According
to A. V. Arhangel’skǐı [1], a space (X, τ) is symmetrizable if there is a
function δ : X ×X → [0,∞) (not necessarily continuous) such that

(1) δ(x, y) = 0 iff x = y;
(2) δ(x, y) = δ(y, x);
(3) U ∈ τ iff for each x ∈ U there exists ϵ > 0 such that x ∈ Bδ(x; ϵ) ⊂

U , where Bδ(x; ϵ) = {z ∈ X : δ(x, z) < ϵ} denotes the “ball” with
regard to δ.

Here, note that, because of the lack of the triangle inequality, condition
(3) does not declare Bδ(x; ϵ) ∈ τ . For our space X = D∪S, define δ(x, y)
in such a way that in case either x, y ∈ D or x, y ∈ S, let δ(x, y) be the
Euclidean distance d(x, y); if x ∈ S and y ∈ D, then define δ(x, y) =
δ(y, x) = s, where 0 < s < 2 is such that the point y lies on the boundary
of the horoball V (x; s). It is easy to see that thus defined, δ satisfies
conditions (1), (2), and (3), and that the “ ball” at x ∈ S of “radius” s
with regard to δ is

Bδ(x; s) = V (x; s) ∪ J,

where J = aab, d(a, x) = d(x, b) = s, which is the same set as we
mentioned at the end of section 2.

4. Shape of Neighborhoods at the Boundary

Here we study the shape of neighborhoods at points on the boundary
S. Let us denote by τd the Euclidean topology on the closed disc D. If
hc : J → (0, 1] is a constant function of value c ∈ (0, 1], the pillow-shaped
neighborhood V (hc) obviously belongs to the Euclidean τd. In general,
for a neighborhood V ∈ τ , we call a point x ∈ V ∩ S a Euclidean point of
V if x has a Euclidean neighborhood U ∈ τd contained in V , while a point
of V ∩S other than Euclidean points, we call non-Euclidean points of V .
We denote the set of all Euclidean points of V by Ec(V ) and call it the
Euclidean part of V , while the set of all non-Euclidean points by Nec(V ),
we call the non-Euclidean part of V . (Incidentally, “Nec”(V ) represents
the geometrical “neck” of V .) Obviously, Ec(V ) is an open set in V ∩ S.
We can say more.

Property 4.1. Ec(V ) is an open dense subset in V ∩ S.
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Proof. It suffices to prove the case V = V (g) for some g : J → (0, 1].
Put Gn = g−1((1/n, 1]). Then J is the countable union of Gn’s (n > 2).
Since J is a homeomorph of the real line, we can apply the Baire category
theorem to get some m such that the closure of Gm has a non-empty
interior in J . That is, we can find some proper open arc I in J such that
I ∩ Gm is dense in I. By the definition of Gm, for every x ∈ I ∩ Gm,
the horoball V (x; 1/m) of the fixed size 1/m is contained in V (x; g(x)) ⊆
V (g). Since I ∩ Gm is dense in I, the set I ∪

∪
{V (x; 1/m) : x ∈ I ∩Gm}

is the same as the open set V (h) for a constant function h : I → (0, 1] of
value 1/m. Since V (h) ∈ τd , we have I ⊂ Ec(V ). Now replacing g by its
restriction to any subarc of J, we can conclude that Ec(V ) is open dense
in J . �

Thus, in other words, the non-Euclidean part Nec(V ) is nowhere dense
closed in V ∩ S. If this set were countable, life would be easy. Example
4.3 presents a neighborhood with uncountable non-Euclidean part. For
each point a in S, let ha : S → [0, 1] denote a function such that

ha(x) = (1− cos θ)/2 where 0 6 θ 6 π is the arc length of aax.

Let J = aab be an open arc of length < π on the boundary S, and define a
function hJ : J → (0, 1] by ha∧hb, that is, hJ (x) = Min{ha(x), hb(x)}.
We call this function hJ the ceiling function on J . When a function h is
defined on some disjoint union of open arcs and h is the ceiling function
on each open arc, we also call such a function h the ceiling function.

Lemma 4.2. V (hJ ) is disjoint from V (a; 1) ∪ V (b; 1), where J = aab.

Proof. Fix a point x ∈ J and let θ be the arc length of aax. By symmetry
we need only show that V (x;ha(x)) is disjoint from V (a; 1). Let Bd(x; ε)
be the Euclidean open ball (in the plane) of center x and radius ε, which
is tangent with V (a; 1). Then

ε =
√
5/4− cos θ − 1/2 ,

and this ε is bigger than (1 − cos θ)/2 = ha(x). Hence, the horoball
V (x;ha(x)) is contained in Bd(x; ε), which is disjoint from V (a; 1). �

Let Sa,b be the circular sector of the unit disc D spanned by the arc
J = aab, and put

aAb = Sa,b \(V (a; 1) ∪ V (b; 1) ∪ V (hJ)).

This set is a curvilinear triangle of the form like “arbelos,” and so let
us call this aAb as the arbelos determined by a and b. Our definition of
topology τ implies that this aAb is closed with regard to τ , but note that
this set is not closed with regard to the Euclidean topology τd, that is, it
includes the two points a and b in its Euclidean closure.
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Example 4.3. We present a typical example of a neighborhood with
uncountable non-Euclidean part. Let J = aab an open arc of length < π
on the boundary S and let C be a homeomorph of the Cantor set in J .
Then the open dense subset J\C of J can be written as a disjoint union
∪n∈ωJn of open arcs Jn = aan bn. Let h : J → (0, 1] be a function such
that h takes the constant value 1 on C and h is the ceiling function on
J\C. We show that Nec(V (h)) = C. Put VC =

∪
y∈C V (y; 1). Since

{an, bn |n ∈ ω} is dense in C, we have

VC = C ∪
∪
n∈ω

(V (an; 1) ∪ V (bn; 1)).

Hence, Lemma 4.2 shows that V (h) forms a disjoint union

V (h) = VC ∪
∪
n∈ω

V (hJn).

The points an and bn belong to the Euclidean closure of the arbelos
anAbn , and this arbelos locates outside of V (h). This means that an, bn ∈
Nec(V (h)). Since {an, bn |n ∈ ω} is dense in C and Nec(V (h)) is closed,
we get C ⊂ Nec(V (h)). Since our function h is continuous on J\C, it is
obvious that J\C ⊂ Ec(V (h)). Thus, we get Nec(V (h)) = C.

Note, in general, that if V1 ⊂ V2, then V1 ∩Nec(V2) ⊂ Nec(V1). Using
this fact and Example 4.3, we show the following proposition.

Property 4.4. Every neighborhood open base at every point of S with
regard to τ contains a member which has uncountably many non-Euclidean
points.

Proof. Let V(x0) ⊂ τ be any neighborhood base at x0 ∈ S. Choose
an open arc J of length < π and a copy of a Cantor set C such that
x0 ∈ C ⊂ J ⊂ S. Consider the neighborhood V (h), h : J → (0, 1] in
Example 4.3 with C = Nec(V (h)). Choose any W ∈ V(x0) included in
this V (h). Then W ∩ C = W ∩ Nec(V (h)) ⊂ Nec(W ). Since W ∩ C is
uncountable, this W has uncountably many non-Euclidean points. �

Property 4.5. Suppose V ∈ τ has uncountably many non-Euclidean
points. Then V contains a simple closed curve l such that l ∩ S is a
proper closed arc and the Euclidean domain enclosed by l contains some
point of D\V . Therefore, this V is not simply connected.

Proof. Suppose V ∈ τ has uncountably many non-Euclidean points. Then,
since V ∩ S is a union of at most countably many disjoint open arcs, at
least one of these open arcs contains uncountably many non-Euclidean
points. Therefore, we can assume, without loss of generality, that C ⊂
J ⊂ V (g) ⊂ V and C ⊂ Nec(V ) ⊂ Nec(V (g)) for some Cantor set
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C and some function g : J → (0, 1]. Let J\C = ∪n∈ω aan bn and put
C∗ = C\{an, bn : n ∈ ω}. Points in C∗ are usually called inner points of
C. For each inner point x ∈ C∗ consider the horoball V (x; g(x)). Since C∗
is uncountable, and no uncountable collection of disjoint balls exists in the
closed disc, we can find distinct points x1, x2 ∈ C∗ such that V (x1; g(x1))
meets V (x2; g(x2)). Put Bi = V (xi; g(xi)), where i = 1, 2, and denote
by zi the Euclidean center of Bi. Join z1 and z2 by some arc z̃1z2 inside
B1 ∪ B2. Consider the simple closed curve l which connects this z̃1z2
with z1x1 (the radius of B1), xa

1 x2 (the arc in S), and z2x2 (the radius
of B2). This simple closed curve l is contained in V (g) ⊂ V . Consider
the domain D in the plane enclosed by l. To prove that V is not simply
connected, it is sufficient to show that the domain D contains a point
outside of V . Suppose not; then xa

1 x2 ∪D ∈ τd is contained in V . Hence,
xa
1 x2 ⊂ Ec(V ). But, since points x1 and x2 are chosen from C∗, the open

arc xa
1 x2 contains some point x3 ∈ C, which must be a non-Euclidean

point of V because of our choice of C. This contradiction shows that the
domain D is not entirely contained in V . �

Remark 4.6. In general, the geometric shape of V (g), where g : J →
(0, 1], is completely determined by some countable subset of J . In-
deed, since the Euclidean open set V (g)\J is Lindelöf, its open cover∪

x∈J (V (x; g(x))\{x}) has some countable subcover
∪

i∈ω (V (xi; g(xi))\
{xi}). So we have

V (g) = J ∪
∪
i∈ω

V (xi; g(xi)).

Of course, such a countable subset {xi : i ∈ ω} of J depends on V (g).
We also note here that, for V (h1) and V (h2) where h1, h2 : J → (0, 1],
the inequality h1 6 h2 implies V (h1) ⊆ V (h2), but the converse is not
necessarily true. For example, in the above formula of V (g), define h :
J → (0, 1] to be any function such that h(xi) = g(xi), where i ∈ ω, and
0 < h(x) 6 g(x) for other x’s. Then it is always true that V (h) = V (g).

5. Simplified Topologies

In the former section we have studied the shape of neighborhoods of
the topology τ , and it turned out that their shape is fairly complicated
especially when uncountably many non-Euclidean points are involved.
Reflecting upon these results, we want to simplify a bit the topology τ .
Of course our idea is simply to avoid neighborhoods having uncountably
many non-Euclidean points. But we have to be a bit careful techni-
cally, because it is possible to find a function g such that the shrunken
V (3−1g) has uncountably many non-Euclidean points even though the
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original V (g) has not. In other words, the collection of V (g)’s with at
most countably many non-Euclidean points does not behave well for the
operation g 7→ 3−1g. To get around this difficulty, we need to examine
more about the structure of neighborhoods in τ .

For a function g : J → (0, 1], let D⟨g⟩ denote the discontinuous part
of g, that is, the set of all points x ∈ J such that g is not continuous at
x. Since every point where g is continuous belongs to the Euclidean part
Ec(V (g)), we get

Nec(V (g)) ⊂ D⟨g⟩.
But, in general, these two sets do not coincide, since D⟨g⟩ is not necessar-
ily closed in J . So, now we seek some condition which assures that these
two sets do coincide. Let us consider a function g : J → (0, 1] such that

(∗) g is continuous on some open dense subset U of J ,
and is bounded by the ceiling function hU on this U.

This means that if U is a disjoint union of open arcs Jn (n ∈ ω), then g
is continuous on each Jn and g 6 hJn . Of course, U depends on g. Let us
denote by G(∗) the set of all functions g satisfying (∗), where J ranges
over all open arcs on S, while G(J ; ∗) denotes all such g’s with the fixed
J.

Property 5.1. Nec(V (g)) = D⟨g⟩ for every g ∈ G(∗).

Proof. Let g ∈ G(∗) and put F = J\U where U is as in (∗). We can
show that F ⊂ Nec(V (g)) in the same way as shown in Example 4.3.
Consequently, F ⊂ Nec(V (g)) ⊂ D⟨g⟩. On the other hand, since g is
continuous on U , we have D⟨g⟩ ∩ U = ∅, that is, D⟨g⟩ ⊂ F . Hence, we
get F = Nec(V (g)) = D⟨g⟩. �
Property 5.2. (1) For every f : J → (0, 1], we can choose g ∈ G(J ; ∗)
such that V (g) ⊂ V (f) and Nec(V (g)) = Nec(V (f)), though we cannot
always require that g 6 f .

(2) For any g1, g2 ∈ G(J ; ∗), define g1 ∧ g2(x) = Min{g1(x), g2(x)};
then we have g1 ∧ g2 ∈ G(J ; ∗) and V (g1 ∧ g2) ⊂ V (g1) ∩ V (g2).

Proof. (1) Put U = Ec(V (f)), and express U = ∪n∈ωJn by a disjoint
union of open arcs. Let fn be the restriction of f on Jn. Then, since
V (fn) is a Euclidean open set containing Jn, we can choose a continuous
function gn 6 hJn such that Jn ⊂ V (gn) ⊂ V (fn). (We cannot require
that gn 6 fn as fn is not necessarily continuous on Jn.) Let g be a
function such that g = gn on each Jn and g = f outside of U . This g is
what we wanted.

(2) Let Ui(i = 1, 2) be the open dense set in (∗) for gi(i = 1, 2). Then
the open dense set for g1∧g2 is U1∩U2. Let the ceiling function hi(i = 1, 2)
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bound gi(i = 1, 2) on Ui(i = 1, 2). Then the ceiling function h1 ∧ h2 on
U1 ∩ U2 bounds g1 ∧ g2. �

Properties 5.1 and 5.2 tell us that G(∗) provides a neighborhood base
{V (g) : g ∈ G(∗)} of τ at points of S, with the additional property that
the non-Euclidean part of V (g) coincides with the discontinuous part of
g. Now we are ready to define a simplified topology. From G(∗) choose
g’s such that

(⋆) D⟨g⟩ is countably infinite,

and denote the set of all such g’s by G(ctbl); the set of g ∈ G(ctbl)
with the fixed dom(g) = J will be denoted by G(J ; ctbl). Because of
Property 5.1, condition (⋆) is equivalent to saying

D⟨g⟩ is countably infinite and closed in dom(g).

Define τ(ctbl) to be a topology generated by all neighborhoods V (g) such
that g ∈ G(ctbl) plus the usual topology on the open disc D. This is one
of the simplified topologies we have sought. We will show that this mod-
ified topology τ(ctbl) has a structure simpler than τ . First, observe that
g1, g2 ∈ G(J ; ctbl) implies g1∧g2 ∈ G(J ; ctbl). This follows from Property
5.2(2) and from the inclusion D⟨g1 ∧ g2⟩ ⊂ D⟨g1⟩ ∪D⟨g2⟩ which assures
that D⟨g1 ∧ g2⟩ is countable. Hence, {V (g) : g ∈ G(ctbl)} forms a neigh-
borhood base at points of S for the topology τ(ctbl). Next, observe that
G(J ; ctbl) has the property that if g ∈ G(J ; ctbl), then t · g ∈ G(J ; ctbl))
and D⟨t · g⟩ = D⟨g⟩ for any real t ∈ (0, 1]. Due to this property, we can
prove, similarly as in section 3, that the space (X, τ(ctbl)) is also regular
and stratifiable.

Now, let g ∈ G(J ; ctbl) and enumerate D⟨g⟩ = {cn : n ∈ ω} by distinct
points. Then, by induction, we can choose the sizes 0 < sn < g(cn) of
horoballs so that V (cn; sn) (n ∈ ω) become disjoint. Let g̃ be a function
which takes the value sn at cn and coincides with g on J\D⟨g⟩. Then
this g̃ also belongs to G(J ; ctbl). Letting J\D⟨g⟩ = ∪i∈ωJi be a disjoint
union of open arcs, the corresponding neighborhood V (g̃) is expressed in
the form of disjoint union∪

n∈ω

V (cn; sn) ∪
∪
i∈ω

V (g � Ji),

where each V (g � Ji) is a Euclidean open set. Think of V (t · g̃), and vary
t from 1 to 0; then V (g̃) contracts to the arc J , which obviously contracts
to one point. Hence, V (g̃) is contractible in itself. In other words, we
have the property below.

Property 5.3. The space (X, τ(ctbl)) is locally contractible.
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Since any contractible set is simply connected, Property 5.3 contrasts
with Property 4.5, and this fact proves that this modified topology τ(ctbl)
is different from τ , truly coarser than τ .

We can consider two more topologies still coarser than τ(ctbl). First,
think of the following condition instead of (⋆),

(⋆⋆) D⟨g⟩ is finite.

Denote the set of all such g’s by G(fn) and let τ(fn) be the corresponding
topology. Obviously, we can replace condition (⋆⋆) by “D⟨g⟩ is a single-
ton,” and then, at a point x ∈ S, this topology has a neighborhood base
consisting of V (g)’s such that

V (g) = V (x; g(x)) ∪ V (g � J0) ∪ V (g � J1),
where g is continuous on J\{x} = J0 ∪ J1, and the sets V (x; g(x)), V (g �
J0), and V (g � J1) are disjoint. Similar to the case of τ(ctbl), we can show
that τ(fn) is regular, Lindelöf, stratifiable, and locally contractible. Note
that no countable subset can divide the above V (g) into more than three
components, while the neighborhood V (g̃) described before Property 5.3
has a countably infinite subset which separates V (g̃) into countably in-
finite components. Hence, we can conclude that this topology τ(fn) is
strictly coarser than τ(ctbl).

Next, we will define a first-countable topology coarser than τ(fn). Let
x ∈ S and 0 < ε 6 1. Let Jx,ε be an open arc containing x such that
Jx,ε\{x} is a disjoint union of two arcs of the same length ε/2. Define
a function hx,ε on Jx,ε by setting hx,ε(x) = 1, and hx,ε is the ceiling
function on Jx,ε\{x}. Consider a new topology τ(N) on X = D which is
generated by the usual topology on D and all sets of the form

V (t · hx,ε) for x ∈ S, 0 < t, ε 6 1.

Since the sets V (t · hx,ε) only for t = ε = 1/n (n = 1, 2 · · · ) form a
neighborhood base at the point x, this space (X, τ(N)) is first-countable.
It is easy to see that this space is regular, Lindelöf, and stratifiable. A
first-countable, stratifiable space is often called a Nagata space; this is why
we used the notation τ(N). Note that the same proof as that for Property
3.8 shows that neither τ(ctbl) nor τ(fn) is Fréchet (see Remark 5.5). But
the topology τ(N) is Fréchet because it is first-countable. Nevertheless,
we can show the following property.

Property 5.4. The space (X, τ(N)) cannot be represented as a closed
image of a metric space.

Proof. The Hanai–Morita–Stone theorem (see [4, 4.4.17]) shows that any
closed image of a metric space is metrizable if and only if it is first-
countable. So, we need only show that τ(N) is not metrizable. Suppose



88 A. KATO

τ(N) were metrizable; then, since it is Lindelöf, τ(N) must be second
countable. So, we would have a countable collection V (tn · hxn,εn) where
xn ∈ S, 0 < tn, εn 6 1, and n ∈ ω, which forms an open base at
points of S (see [4, 1.1.15]). Choose some point z ∈ S other than xn’s,
and consider its neighborhood V (hz,1). Then there must be some k ∈ ω
such that z ∈ V (tk · hxk,εk) ⊂ V (hz,1). Since z is a non-Euclidean point
of V (hz,1), it must be also a non-Euclidean point of V (tk · hxk,εk), and
consequently, we get z = xk. This contradicts our choice of the point
z. �

Remark 5.5. In Remark 3.9 we pointed out that the topology τ is
symmetrizable, and consequently, sequential. We note here that neither
τ(ctbl) nor τ(fn) is sequential (hence, neither of them is symmetrizable).
To see this, we first observe that the notion of the “convergent sequence”
in X = D∪S does not depend on the choice of three topologies τ , τ(ctbl),
and τ(fn). Let

xn (n ∈ ω) → x

be an arbitrary convergent sequence in X with regard to any of the three
topologies τ ⊃ τ(ctbl) ⊃ τ(fn), and put C = {xn |n ∈ ω}. In case
x ∈ D, the convergent sequence xn → x is obviously identical with that
of the Euclidean closed disc D. So, let us consider the case x ∈ S. Since
C\S and S\{x} are disjoint closed subsets in the Euclidean space D\{x},
we can find an open arc J in S containing x and a continuous function
g : J\{x} → (0, 1] such that V (g) = V (g � J0) ∪ V (g � J1) misses
C\S where J\{x} = J0 ∪ J1. Extend g to g̃ : J → (0, 1] by setting
g̃(x) = 1. Then V (g̃) = V (g) ∪ V (x; 1) belongs to τ(fn) ⊂ τ(ctbl) ⊂ τ .
Since τ(fn) is the coarsest among the three topologies, C ∪ {x} is always
a convergent sequence with regard to τ(fn). Hence, almost all (except
finitely many) points of C are included in the neighborhood V (g̃) of x.
This means that almost all of C are included in S ∪ V (x; 1). Put Fk =
V (x; 1

k )\V (x; 1
k+1 ), k = 1, 2, · · · , where V (x; 1

k ) means the Euclidean
closure of V (x; 1

k ). Then V (x; 1)\{x} ⊂ F1 ∪ F2 ∪ · · · . Since Fk is closed
in X with regard to any of the three topologies, each Fk can include only
finitely many points of C. Summarizing, we can say that C = (C ∩ S) ∪
(C\S) has the property that

(1) if C ∩ S is infinite, (C ∩ S) ∪ {x} is a convergent sequence in the
Euclidean circle S;

(2) if C\S is infinite, (C\S)∪{x} is a convergent sequence such that
every horoball V (x; s) of any size 0 < s 6 1 at x contains almost
all of C\S.

Thus, the convergent sequences in X are the same in the three topologies
τ ⊃ τ(ctbl) ⊃ τ(fn). Now consider any set U ∈ τ with uncountably many
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non-Euclidean points, for example, U = V (h) in Example 4.3. Then U , as
an open set in τ , is obviously sequentially open with regard to τ . (A subset
U is sequentially open if every convergent sequence with a limit point in U
is almost contained in U .) Since the convergent sequences are the same in
the three topologies τ , τ(ctbl), and τ(fn), this U is sequentially open also
with regard to τ(ctbl) or τ(fn). It is easy to see, using Lindelöfness, that
every open set in τ(ctbl) or τ(fn) has only countably many non-Euclidean
points. Therefore, U is not open with regard to τ(ctbl) and τ(fn). This
proves that neither τ(ctbl) nor τ(fn) is sequential.

6. Concluding Remarks

Inspired by the propagation of seismic waves, we have found four dif-
ferent new topologies τ , τ(ctbl), τ(fn), and τ(N) on the cross section of
the Earth, which respect the two well-known metrics ρ and d:

τρ ⊃ τ ⊃ τ(ctbl) ⊃ τ(fn) ⊃ τ(N) ⊃ τd.

And these topologies have turned out to be both
(1) not so far away from “metrizable,” being regular Lindelöf and

stratifiable
and

(2) a bit far away from “metrizable,” being not a closed image of a
metric space.

Moreover, τ is symmetrizable; τ(ctbl), τ(fn), and τ(N) are locally con-
tractible; and τ(N) is first-countable. We believe these new topologies
embody some essence of the multi-metric structure of our Earth, and it
will not be so difficult to extend our results to a more complicated model
of the Earth. The real Earth is three-dimensional and it is known that its
interior consists mainly of five layers each having its own metric: inner
core, outer core, lower mantle, upper mantle, and crust.

Finally, we want to remark that all of our new topologies respect very
well the Euclidean topology on figures made by geodesics. Let L(α, β) be
a geodesic connecting two points α, β ∈ S, and put

L [α, β] = L(α, β) ∪ {α, β}.

Since the geodesic is orthogonal to S at both ends, this closed arc L [α, β]
with any of our four topologies is the same as the Euclidean closed arc.
Let P be a polyhedron enclosed by a finite number of such geodesics,
usually called an “ ideal hyperbolic polyhedron.” Then, the figure P as
well as its join P ∪ S with S, having any of our four topologies, is the
same as the one with the Euclidean topology.
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[1] A. V. Arhangel’skǐı, Mappings and spaces, Russian Math. Surveys 21 (1966), no.
4, 115–162.

[2] H. S. Bear, Part metric and hyperbolic metric, Amer. Math. Monthly 98 (1991),
no. 2, 109–123.

[3] Carlos J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), no 1, 1–16
[4] Ryszard Engelking, General Topology. Translated from the Polish by the author.

Monografie Matematyczne, Tom 60. Warsaw: PWN—Polish Scientific Publishers,
1977.

[5] Gary Gruenhage, Generalized metric spaces in Handbook of Set-Theoretic Topol-
ogy. Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: North-Holland,
1984. 423–501.

[6] , Generalized metric spaces and metrization, in Recent Progress in General
Topology. Ed. Miroslav Hušek and Jan van Mill. Amsterdam: North-Holland,
1992. 239–274.

Department of Mathematics; National Defense Academy; Yokosuka 239-
8686, Japan

E-mail address: akiokato@nda.ac.jp




