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SOME PROPERTIES OF
MINIMAL S(α) AND S(α)FC SPACES

ALEXANDER V. OSIPOV

Abstract. An S(n)-space is S(n)-functionally compact (S(n)FC)
if every continuous function onto an S(n)-space is closed. S(n)-
closed, S(n)-θ-closed, minimal S(n), and S(n)FC spaces are char-
acterized in terms of θ(n)-complete accumulation points. In this
paper we also give new characteristics of R-closed and regular func-
tionally compact spaces. The obtained results answer some ques-
tions raised by D. Dikranjan and E. Giuli and Louis M. Friedler,
Mike Girou, Dix H. Pettey, and Jack R. Porter.

1. Introduction

D. Dikranjan and E. Giuli [3] introduced a notion of the θn-closure
operator and developed a theory of S(n)-closed and S(n)-θ-closed spaces.
Shouli Jiang, Ivan Reilly, and Shuquan Wang [7] used the θn-closure in
studying properties of minimal S(n)-spaces.

In [10] we continue the study of properties inherent in S(n)-closed and
S(n)-θ-closed spaces, using the θn-closure operator; in addition, wider
classes of spaces (weakly S(n)-closed and weakly S(n)-θ-closed spaces)
are introduced.
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In this paper we continue the investigation of S(n)-closed, S(n)-θ-
closed, and minimal S(n) spaces with the use of θ(n)-complete accu-
mulation points. As we define a new class of S(n)-spaces called S(n)-
functionally compact spaces, we also answer some questions raised in [3]
and [4].

Section 2 acquaints the reader with main definitions and known prop-
erties in the theory of S(n)-spaces. Section 3 is completely devoted to the
study of weakly S(n)-closed and weakly S(n)-θ-closed spaces. It is proved
that any S(n)-closed (S(n)-θ-closed) space is weakly S(n)-closed (weakly
S(n)-θ-closed). In the remaining sections, we characterize S(n)-closed,
S(n)-θ-closed, minimal S(n), S(n)-functionally compact, R-closed, min-
imal regular, and regular functionally compact spaces with the use of
θ(n)-complete accumulation and θ(ω)-complete accumulation points.

2. Main Definitions and Notation

Let X be a topological space, M ⊆ X, and x ∈ X. For any n ∈ N, we
consider the θn-closure operator: x /∈ clθnM if there exists a set of open
neighborhoods U1, U2, ..., Un of the point x such that clUi ⊆ Ui+1 for
i = 1, 2, ..., n− 1 and clUn

∩
M = ∅ if n > 1; clθ0M = clM if n = 0; and,

for n = 1, we get the θ-closure operator, i.e., clθ1M = clθM . A set M
is θn-closed if M = clθnM . Denote by IntθnM = X \ clθn(X \ M) the
θn-interior of the set M . Evidently, clθn(clθsM) = clθn+sM for M ⊆ X
and n, s ∈ N. For n ∈ N and a filter F on X, denote by adθnF the set
of θn-adherent points, i.e., adθnF =

∩
{clθnFα : Fα ∈ F}. In particular,

adθ0F = adF is the set of adherent points of the filter F . For any n ∈ N,
a point x ∈ X is S(n)-separated from a subset M if x /∈ clθnM . For
example, x is S(0)-separated from M if x /∈ clM . For n > 0, the relation
of S(n)-separability of points is symmetric. On the other hand, S(0)-
separability may be not symmetric in some not T1-spaces. Therefore, we
say that points x and y are S(0)-separated if x /∈ clX{y} and y /∈ clX{x}.

Let n ∈ N and X be a topological space.
1. X is called an S(n)-space if any two distinct points of X are S(n)-

separated.
2. A filter F on X is called an S(n)-filter if every point, not being an

adherent point of the filter F , is S(n)-separated from some element of the
filter F .

3. An open cover {Uα} of the space X is called an S(n)-cover if every
point of X lies in the θn-interior of some Uα.

It is obvious that S(0)-spaces are T1-spaces, S(1)-spaces are Hausdorff
spaces, and S(2)-spaces are Urysohn spaces. It is clear that every filter is
an S(0)-filter, every open cover is an S(0)-cover, and every open filter is an
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S(1)-filter. Open S(2)-filters are called Urysohn filters. For n > 1, open
S(n)-filters are defined in [12]. S(1)-covers are called Urysohn covers. In
a regular space, every filter (every cover) is an S(n)-filter (S(n)-cover) for
any n ∈ N.

S(n)-closed and S(n)-θ-closed spaces are S(n)-spaces, closed and, re-
spectively, θ-closed in any S(n)-space containing them.

Jack R. Porter and Charles Votaw [12] characterize S(n)-closed spaces
by means of open S(n)-filters and S(n− 1)-covers.

Let n ∈ N+ and X be an S(n)-space. Then the following conditions
are equivalent:

(1) adθnF ̸= ∅ for any open filter F on X;
(2) adF ̸= ∅ for any open S(n)-filter F on X;
(3) for any S(n−1)-cover {Uα} of the space X there exist α1, α2, ..., αk

such that X =
∪k

i=1 Uαi ;
(4) X is an S(n)-closed space.
Dikranjan and Giuli [3] characterize S(n)-θ-closed spaces in terms of

S(n− 1)-filters and S(n− 1)-covers.
Let n ∈ N+ and X be an S(n)-space. Then the following conditions

are equivalent:
(1) adF ̸= ∅ for any closed S(n− 1)-filter F on X;
(2) any S(n− 1)-cover of X has a finite subcover;
(3) adθ(n−1)F ̸= ∅ for any closed filter F on X;
(4) X is an S(n)-θ-closed space.
Note that, for n = 1, S(1)-closedness is H-closedness and S(1)-θ-

closedness is compactness. For n = 2, S(2)-closedness is U -closedness
and S(2)-θ-closedness is U -θ-closedness. From the characteristics them-
selves, it follows that any S(n)-θ-closed subspace of an S(n)-space is an
S(n)-closed space.

Recall that an open cover V is a shrinkable refinement of an open cover
U if and only if for each V ∈ V, there is a U ∈ U such that V ⊆ U . An
open cover V is a regular refinement of U if and only if V refines U is a
shrinkable refinement of itself. An open cover is regular if and only if it
has an open refinement.

An open filter base F in X is a regular filter base if and only if for each
U ∈ F , there exists V ∈ F such that V ⊆ U .

An R-closed space is a regular space closed in any regular space con-
taining them.

Manuel P. Berri and R. H. Sorgenfrey [2] characterize R-closed spaces
by means of regular filters and regular covers.

Let X be a regular space. The following are equivalent:
(1) X is R-closed;
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(2) every regular filter base in X is fixed;
(3) every regular cover has a finite subcover.
For undefined notions and related theorems, we refer the readers to [3].

3. Weakly S(n)-Closed and Weakly S(n)-θ-Closed Spaces

In [1], P. S. Aleksandrov and P. S. Urysohn introduce the notion of a
θ-complete accumulation point. A point x is called a θ-complete accumu-
lation point of a set F if |F

∩
U | = |F | for any neighborhood U of the

point x. It was noted that any H-closed space has the following property:
(*) any infinite set of regular cardinality has a θ-complete accumulation

point.
However, the converse is not true. The first example of a space pos-
sessing property (*) and not being H-closed was constructed by G. A.
Kirtadze [8]. Simple examples in [10] and [11] also show the converse is
not true.

Example 3.1 ([10, Example 1]). Let T1 and T2 be two copies of the
Tychonoff plane T = ((ω1 +1)× (ω0 +1)) \ {ω1, ω0}, whose elements will
be denoted by (α, n, 1) and (α, n, 2), respectively. On the topological sum
T1 ⊕ T2, we consider the identifications (ω1, k, 1) ∼ (ω1, 2k, 2) for every
k ∈ N, and we identify all points (ω1, 2k − 1, 2) for any k ∈ N with the
same point b. Adding, to the obtained space, a point a with the base of
neighborhoods Uβ,k(a) = {a}

∪
{(α, n, 1) : β < α < ω1, k < n ≤ ω0} for

arbitrary β < ω1 and k < ω0, we get a Urysohn space X. (See Figure 1.)

Figure 1. The space X
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Note that space X is an example of a non-H-closed, Urysohn space
with the property that for every chain of non-empty sets, the intersection
of the θ-closures of the sets is nonempty; also, every infinite set has a
θ-complete accumulation point. Porter investigated the space with the
same properties in [11].

Definition 3.2. A neighborhood U of a set A is called an n-hull of the
set A if there exists a set of neighborhoods U1, U2, ..., Un = U of the set
A such that clUi ⊆ Ui+1 for i = 1, ..., n− 1.

Definition 3.3. A point x from X is called a θ0(n)-complete accumula-
tion (θ(n)-complete accumulation) point of an infinite set F if |F

∩
U | =

|F | (|F
∩
U | = |F |) for any U , where U is an n-hull of the point x.

Note that, for n = 1, a θ0(1)-complete accumulation point is a point
of complete accumulation, and a θ(1)-complete accumulation point is a
θ-complete accumulation point.

Definition 3.4. A topological space X is called weakly S(n)-θ-closed
(weakly S(n)-closed) if any infinite set of regular cardinality of the space X
has a θ0(n)-complete accumulation (θ(n)-complete accumulation) point.

Note that any θ0(n)-complete accumulation point is a θ(n)-complete
accumulation point; hence, any weakly S(n)-θ-closed space is weakly
S(n)-closed. Moreover, since a θ(n)-complete accumulation point is a
θ0(n + 1)-complete accumulation point, it follows that a weakly S(n)-
closed space will be weakly S(n+ 1)-θ-closed. For n = 1, weakly S(1)-θ-
closed and weakly S(1)-closed spaces are compact Hausdorff spaces and
spaces with property (*), respectively.

Theorem 3.5. Let X be an S(n)-closed S(n)-space. Then X is weakly
S(n)-closed.

Proof. Suppose the contrary. Let X be S(n)-closed but not weakly S(n)-
closed. Then in the space X there exists an infinite set F of regular power
that has no θ(n)-complete accumulation point. For any point x ∈ X, there
exists an n-hull U of the point x with the property |F

∩
U | < |F |. If we

take such n-hull for every point x ∈ X, we derive an S(n − 1)-cover of
the space X. By S(n)-closedness, there exists a finite family U of n-hulls
such that |F

∩
U | < |F | for all U ∈ U and

∪
U = X. This contradicts the

fact that F is an infinite set of regular power. �

Theorem 3.6. Let X be an S(n)-θ-closed S(n)-space. Then X is weakly
S(n)-θ-closed space.

Proof. The proof of Theorem 3.6 is analogous to that of Theorem 3.5. �
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It was proved in [3] that S(n)-closedness implies S(n+1)-θ-closedness.
Thus, for S(n)-spaces, classes of the considered spaces are presented in
the following diagram:

compact Hausdorff space ⇐⇒ weakly S(1)-θ-closed
⇓ ⇓

H-closed =⇒ weakly H-closed
⇓ ⇓

U -θ-closed =⇒ weakly U -θ-closed
⇓ ⇓

U -closed =⇒ weakly U -closed
⇓ ⇓
. . . . . . . . .
⇓ ⇓

S(n− 1)-θ-closed =⇒ weakly S(n− 1)-θ-closed
⇓ ⇓

S(n− 1)-closed =⇒ weakly S(n− 1)-closed
⇓ ⇓

S(n)-θ-closed =⇒ weakly S(n)-θ-closed
⇓ ⇓

S(n)-closed =⇒ weakly S(n)-closed

Note that all implications in the diagram are irreversible. Examples
of S(n)-closed but not S(n)-θ-closed spaces and S(n)-θ-closed but not
S(n − 1)-closed spaces are considered in [3]. Examples showing that the
remaining implications are irreversible are considered in [10].

Theorem 3.7. Let X be a Lindelöf (finally compact) weakly S(n)-closed
S(n)-space. Then X is an S(n)-closed space.

Proof. Suppose the contrary. Let X be Lindelöf weakly S(n)-closed but
not S(n)-closed. Then in the spaces X there exists an open filter F such
that adθnF = ∅. For each point x ∈ X, there are Fx ∈ F and an n-hull
Ux of Fx such that x /∈ Ux. Note that

∩
x∈X Ux = ∅. Since X is Lindelöf,

there exists a countable family {Uxi} such that
∩
Uxi = ∅. Consider a

sequence {yj} such that yj ∈
∩j

i=1 Fxi . Clearly, the infinite set {yj} does
not have a θ(n)-complete accumulation point. This contradicts the fact
that X is a weakly S(n)-closed space. �

Corollary 3.8. Let X be a countable weakly S(n)-θ-closed S(n)-space.
Then X is S(n)-closed.

Corollary 3.9. Let X be a second-countable weakly S(n)-θ-closed S(n)-
space. Then X is S(n)-closed.
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Recall, that a space is linearly Lindelöf (finally compact in the sense
of accumulation points) if every increasing open cover {Uα : α ∈ κ} has
a countable subcover (by increasing, we mean that α < β < κ implies
Uα ⊆ Uβ).

Theorem 3.10. Let n > 1 and X be a linearly Lindelöf weakly S(n)-θ-
closed S(n)-space. Then X is weakly S(n− 1)-closed.

Proof. Suppose the contrary. Then there is a countable set S such that
the set S has not a θ(n−1)-complete accumulation point. Let x ∈ X and
U be an (n − 1)-hull of x such that U

∩
S = ∅. For every y ∈ U , there

exists a neighborhood Wy of y such that Wy

∩
S = ∅. Consider an open

set W =
∪

y∈U Wy. Then U ⊆ W and W is an n-hull of the point x. Note
that W

∩
S = ∅. It follows that x is not a θ0(n)-complete accumulation

point of S. This contradicts the fact that X is weakly S(n)-θ-closed. �
Corollary 3.11. Let n > 1 and X be a Lindelöf weakly S(n)-θ-closed
S(n)-space. Then X is S(n− 1)-closed.

Problem 5 in [3] is to prove or disprove that the product of U -θ-closed
spaces is feebly compact. In particular, it was not known if every Lindelöf
U -θ-closed space is H-closed.

In [9], two Urysohn U -θ-closed spaces whose product is not feebly com-
pact are constructed. Thus, the question is negatively solved.

Corollary 3.12. Let X be a Lindelöf U -θ-closed Urysohn space. Then
X is H-closed.

Remark 3.13. Observe that every H-closed space is feebly compact.
By Corollary 3.12, the product of Lindelöf U -θ-closed spaces is feebly
compact.

Corollary 3.14. Let n > 1 and X be a Lindelöf weakly S(n)-θ-closed
S(n)-space. Then X is S(n)-θ-closed.

Thus, for Lindelöf S(n)-spaces, classes of the considered spaces are
presented in the following diagram:

compact Hausdorff space ⇐⇒ weakly S(1)-θ-closed
⇓ ⇓

H-closed ⇐⇒ weakly H-closed
⇕ ⇕

U -θ-closed ⇐⇒ weakly U -θ-closed
⇓ ⇓

U -closed ⇐⇒ weakly U -closed
⇕ ⇕
. . . . . . . . .
⇕ ⇕
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S(n− 1)-θ-closed ⇐⇒ weakly S(n− 1)-θ-closed
⇓ ⇓

S(n− 1)-closed ⇐⇒ weakly S(n− 1)-closed
⇕ ⇕

S(n)-θ-closed ⇐⇒ weakly S(n)-θ-closed
⇓ ⇓

S(n)-closed ⇐⇒ weakly S(n)-closed

Question 3.15. For n > 1, is there a Lindelöf S(n)-closed space that is
not S(n)-θ-closed?

4. Characterizations of
S(n)-Closed and S(n)-θ-Closed Spaces

Now for every n ∈ N we introduce an operator of θn0 -closure; for M ⊆ X
and x ∈ X, x /∈ clθn

0
M if there is an n-hull U of x such that U

∩
M = ∅.

A set M ⊆ X is θn0 -closed if M = clθn
0
M .

Definition 4.1. A subset M of a topological space X is an S(n)-θn0 -set
if every S(n)-cover γ covering M (M ⊆

∪
{IntθnUα : Uα ∈ γ}) by open

sets of X has a finite subfamily which covers M with the θn0 -closures of
its members.

Definition 4.2. A subset A of a space X weakly θ(n)-converges to the
set B if, for any S(n−1)-cover γ = {Uα} of B, there exists a finite family
{Uαi}ki=1 ⊆ γ such that |A \ Int(

∪k
i=1 Uαi)| < |A|.

Theorem 4.3. For n ∈ N, an S(n)-space X is S(n)-closed if and only if
each infinite subset A of X weakly θ(n)-converges to the set of the θ(n)-
complete accumulation points of A.

Proof. Necessary. Let B denote the θ(n)-complete accumulation points of
A. Take any S(n−1)-cover γ of B where B is the set of θ(n)-complete ac-
cumulation points of A. For each point x /∈ B we take an n-hull O(x) such
that |O(x)

∩
A| < |A|. Then we have an S(n− 1)-cover γ′ = γ

∪
{O(x) :

x /∈ B} of X. As the space X is S(n)-closed there are finite families
{Ui}si=1 ⊆ γ and {O(xj)}kj=1 such that (

∪s
i=1 Ui)

∪
(
∪k

j=1 O(xj)) = X.
Note that A \ Int(

∪s
i=1 Ui) ⊆

∪k
j=1 O(xj). As |A

∩
(
∪k

j=1 O(xj)| < |A|,
we have |A \ Int(

∪s
i=1 Ui)| < |A|. Thus, A weakly θ(n)-converges to the

set B.
Note that B is an S(n)-θn0 -set. Also, (A

∩
Int(

∪s
i=1 Ui))

∩
S(x) ̸= ∅

for every x ∈ B and for any n-hull S(x) of the point x. It follows that
S(x)

∩
(
∪s

i=1 Ui) ̸= ∅ and x is contained in θn0 -closure of
∪s

i=1 Ui. Thus,
B ⊆ clθn

0

∪s
i=1 Ui.
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Sufficiency. Let φ = {Vα} be an open S(n)-filter on X. Assume
that ad φ = ∅. Choose V0 ∈ φ such that |V0| = inf{|Vα| : Vα ∈ φ}.
Since

∩
Vα = ∅, we have ξ = {Uα : Uα = X \ Vα} is an S(n − 1)-

cover of B where B is the set of θ(n)-complete accumulation points of
V0. By the condition, there exists a finite family {Uαi}ki=1 ⊆ ξ such that
|V0 \ Int(

∪k
i=1 Uαi

)| < |V0|. Consider Vαi
∈ φ such that Uαi

= X \ Vαi
.

Let V =
∩k

i=1 Vαi ; then V
∩

V0 ⊆ V0 \ Int(
∪k

i=1 Uαi) and |V
∩

V0| < |V0|.
This contradicts our choice of V0. Thus, X is an S(n)-closed space. �

Corollary 4.4. Let X be an S(n)-closed space and A be an infinite set
of X. Then a set B of θ(n)-complete accumulation points of A is an
S(n)-θn0 -set.

Definition 4.5. A subset A of a space X weakly θ0(n)-converges to the
set B if, for any S(n−1)-cover γ = {Uα} of B, there exists a finite family
{Uαi}ki=1 ⊆ γ such that |A \

∪k
i=1 Uαi | < |A|.

Theorem 4.6. For n ∈ N, an S(n)-space X is S(n)-θ-closed if and only
if each infinite subset A of X θ0(n)-converges to the set of θ0(n)-complete
accumulation points of A.

5. Characterization of Minimal S(n)-Spaces

A P space is minimal P if it has no strictly coarser P topology. The
terms “minimal Urysohn” and “minimal regular” are abbreviated as MU
and MR, respectively.

Definition 5.1. A subset A of a space X θ(n)-converges to the set B
if, for any S(n − 1)-cover γ = {Uα} of B, there exists a finite family
{Uαi}ki=1 ⊆ γ such that |A \

∪k
i=1 Uαi)| < |A|.

Theorem 5.2. For n ∈ N, an S(n)-space X is a minimal S(n)-space
if and only if each infinite subset A of X θ(n)-converges to the set of
the θ(n)-complete accumulation points of A, and, if there exists a point
x such that A does not θ(n)-converge to X \ {x}, then x is a complete
accumulation point of A.

Proof. Necessary. Let X be a minimal S(n)-space and A ⊆ X. Then X is
an S(n)-closed space [7, Corollary 2.3] and A (weakly) θ(n)-converges to
the set B of its θ(n)-complete accumulation points. Let x ∈ X such that
A does not θ(n)-converge to X \ {x}. Consider S(n− 1)-cover γ = {Uα}
of X \{x} such that |A\

∪k
i=1 Uαi | = |A| holds for any γ′ = {Uαi}ki=1 ⊆ γ.

Let ω be an open S(n)-filter generated by {X \ Uα : Uα ∈ γ}. Then
ω has a unique adherent point x. Since X is a minimal S(n)-space,
we have that the open S(n)-filter ω converges to x. Thus, for every
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open neighborhood O(x) of x, there is V ∈ ω such that V ⊆ O(x). So
|V

∩
A| = |A| and x is a complete accumulation point of A.

Sufficiency. We need to show that any open S(n)-filter φ with unique
adherent point x is convergent.

Suppose that ad φ = {x}, but φ does not converge. Then there is
an open neighborhood O(x) of x such that Wα = Vα \ O(x) ̸= ∅ for
any Vα ∈ φ. Choose Wα0 such that |Wα0 | = inf{|Wα| : Vα ∈ φ}. Let
B be the set of θ(n)-complete accumulation points of Wα0 . Note that
x ∈ B. To the contrary, assume that x /∈ B, then for every y ∈ B, there
are n-hull neighborhoods O(y) of y and Wα such that O(y)

∩
Wα = ∅.

Consider S(n− 1)-cover γ = {O(y) : y ∈ B} of B. For every finite family
{O(yi)}ki=1 ⊆ γ, there is Wα such that

(
k∪

i=1

O(yi))
∩

(Wα

∩
Wα0) = ∅.

By the choice of Wα0 , we have |Wα

∩
Wα0 | = |Wα0 |. Thus, Wα0 does

not θ(n)-converge to B. It follows that x ∈ B and Wα0 does not θ(n)-
converge to B \ {x}. For each point y ∈ X \ B, we take an n-hull O1(y)

such that |O1(y)
∩
A| < |A|. Consider S(n − 1)-cover γ1 = γ

∪
{O1(y) :

y ∈ X \ B} of X \ {x}. For every finite family {Vi}ki=1 ⊆ γ1, there is
Wα such that (

∪k
i=1 Vi)

∩
(Wα

∩
Wα0) = ∅. Thus, Wα0 does not θ(n)-

converge to X \ {x}. By the condition, x is a complete accumulation
point of Wα0 . This contradicts the fact that Wα0 = Vα0 \O(x). �

Clearly, the weakly θ(n)-convergence implies θ(n)-convergence. By
Theorem 4.3 and Theorem 5.2, we have the following.

Theorem 5.3. For n ∈ N, an S(n)-space X is a minimal S(n)-space if
and only if X is S(n)-closed, and, if there exists a point x such that an
infinite set A does not θ(n)-converge to X \ {x}, then x is a complete
accumulation point of A.

In [4, Q40], we are asked to find a property Q which does not imply
U -closed such that a space is MU if and only if it is U -closed and has
property Q.

The following theorem answers this question.

Theorem 5.4. A Urysohn space X is MU if and only if X is U -closed,
and, if there exists a point x such that infinite A does not θ(2)-converge
to X \ {x}, then x is a complete accumulation point of A.

In [4, Q35] it is asked, Does every MU space have a base of open sets
with U -closed complements?
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Note that the negative answer to this question is the following exam-
ple [6]. This is an example of an MU space that has no open base with
U -closed complements.

Example 5.5 (Herrlich). For any ordinal number α, let W (α) be the
set of all ordinals strictly less than α. Let ω0 be the first infinite ordinal
and ω1 the first uncountable ordinal. Let R = (W (ω1 + 1) × W (ω0 +
1)) \ {(ω1, ω0)} and Rn = R × {n} where n = 0,±1,±2, .... Denote the
elements of Rn by (x, y, n). Identify (ω1, y, n) with (ω1, y, n + 1) if n is
odd and (x, ω0, n) with (x, ω0, n+1) if n is even. Call the resulting space
T . To the subspace E = R1

∪
R2

∪
R3 of T , add two points a and b, and

let X = E
∪
{a, b}. A set V ⊂ X is open if and only if

(1) V
∩
E is open in E,

(2) a ∈ V implies there exists α0 < ω0 such that {(α, β, 1) : β0 < β ≤
ω0, α0 < α < ω1} ⊂ V , and

(3) b ∈ V implies there exist α0 < ω1 and β0 < ω0 such that
{(α, β, 3) : β0 < β < ω0, α0 < α ≤ ω1} ⊂ V .

Really, for any open V ∋ a, if a ∈ O(a) = {(α, β, 1) : β0 < β ≤ ω0, α0 <
α < ω1} ⊂ V , then X \O(a) is not U -closed.

For A = {(α, ω0, 2) : α0 < α < ω1}, A does not weakly θ(2)-converge
to the set of its θ(2)-complete accumulation points.

6. Characterization S(n)FC Spaces

Definition 6.1. An S(n)-space is S(n)-functionally compact (S(n)FC)
if every continuous function onto an S(n)-space is closed.

A set C will be called a complete accumulation set of a set A if |U
∩
A| =

|A| for any open set U ⊇ C.

Theorem 6.2. For n ∈ N, an S(n)-space X is S(n)FC if and only if
each infinite subset A of X θ(n)-converges to the set of the θ(n)-complete
accumulation points of A, and, if there exists a θn-closed set C such that
A does not θ(n)-converge to X \ C, then C is a complete accumulation
set of A.

Proof. Necessary. Let X be S(n)FC and A ⊆ X. Then X is an S(n)-
closed space and A (weakly) θ(n)-converges to the set B of its θ(n)-
complete accumulation points. Let C be a θn-closed set such that A does
not θ(n)-converge to X \ C.

Consider S(n−1)-cover γ = {Uα} of X\C such that |A\
∪k

i=1 Uαi
| = |A|

holds for any γ′ = {Uαi}ki=1 ⊆ γ.
Consider the ω open S(n)-filter generated by {X \ Uα : Uα ∈ γ}.
Suppose that there exists an open set W ⊇ C such that |A

∩
W | < |A|.

Consider the quotient space (X/C, τ) of X with C identified to a point
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c. Now τ1 = {V ∈ τ : c ∈ V implies V ∈ ω} is a topology on X/C.
In (X/C, τ1), we have adθnNx for any x where Nx is the neighborhood
filter at the point x, and thus, (X/C, τ1) is an S(n)-space. It is clear that
τ1 is strictly coarser than τ . The quotient function from X to X/C is
denoted as pC , and qC denotes s ◦ pC where s : (X/C, τ) → (X/C, τ1) is
the identity function. Note that qC(X \ W ) is not closed in (X/C, τ1).
Thus, qC is continuous but is not closed. This is a contradiction that X
is an S(n)FC space.

Sufficiency. Suppose that X is not an S(n)FC space. Then there is
a continuous function f from X onto an S(n)-space Y such that f is
not closed. Consider the closed set A ⊆ X such that f(A) is not closed.
Let y ∈ f(A) \ f(A) and Ny = {Vα} is the neighborhood S(n)-filter at
the point y. Then B = f−1(y) =

∩
{f−1(Vα)} and B is a θn-closed

subset of X. Note that X \ A is an open set containing B such that
Wα = Uα \ (X \A) ̸= ∅ for any Uα ∈ {f−1(Vα)}.

Choose Wα0 such that |Wα0 | = inf
α
{|Wα|}.

Let D be the set of θ(n)-complete accumulation points of Wα0 . By the
condition, set Wα0 θ(n)-converges to the set D. We claim that θn-closed
set B such that Wα0 does not θ(n)-converge to X \ B. Indeed, for any
x ∈ X \B, there is Uαx such that x is S(n)-separated from Uαx . Let O(x)

be an n-hull neighborhood of x such that O(x)
∩
Uαx = ∅. Consider an

S(n − 1)-cover γ = {O(x) : x ∈ X \ B} of X \ B. For any finite family

{O(xi)}ki=1 ⊆ γ, there is U =
k∩

i=1

Uαxi
such that

k∪
i=1

O(xi)
∩
(U

∩
Wα0) =

∅. By the choice of Wα0 , we have |U
∩

Wα0 | = |Wα0 |. It follows that
Wα0 does not θ(n)-converge to X \B. By the condition, B is a complete
accumulation set of Wα0 . This contradicts the fact that X \A is an open
set containing B. �

Corollary 6.3. A Urysohn space X is UFC if and only if X is U -closed,
and, if there exists a θ2-closed set C such that infinite set A does not θ(2)-
converge to X \ C, then C is a complete accumulation set of A.

Definition 6.4. An S(n)-space X is S(n)FFC (S(n)CFC) if every con-
tinuous function f onto an S(n)-space Y with f−1(y) finite (compact) is
a closed function.

Theorem 6.5. For n ∈ N, an S(n)-space X is S(n)FFC (S(n)CFC) if
and only if X is S(n)-closed, and, if there exists a finite (compact) set C
such that an infinite set A does not θ(n)-converge to B \ C, then C is a
complete accumulation set of A.

Proof. A proof of Theorem 6.5 is analogous to that of Theorem 6.2. �
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Question 6.6. Is every S(n)FC (S(n)FFC; S(n)CFC) space necessar-
ily compact (n > 1)?

7. S(ω)-Closed and Minimal S(ω) Spaces

Two filters F and Q on a space X are S(ω)-separated if there are
open families {Uβ : β < ω} ⊆ F} and {Vβ : β < ω} ⊆ Q} such that
U0

∩
V0 = ∅ and for γ + 1 < ω, clUγ+1 ⊆ Uγ and clVγ+1 ⊆ Vγ . A space

X is S(ω) if for distinct points x, y ∈ X, the neighborhood filters Nx and
Ny are S(ω)-separated.

An S(ω)-closed space is an S(ω) space closed in any S(ω) space con-
taining them.

In 1973, Porter and Votaw [12] established next results.
(1) A minimal S(ω) space is S(ω)-closed and semiregular.
(2) A minimal S(ω) space is regular.
(3) A space is R-closed if and only if it is S(ω)-closed and regular.
(4) A space is MR if and only if it is minimal S(ω).

Definition 7.1. A neighborhood U of a point x is called an ω-hull of the
point x if there exists a set of neighborhoods {Ui}∞i=1 of the point x such
that clUi ⊆ Ui+1 and Ui ⊆ U for every i ∈ N.

Definition 7.2. A point x ∈ X is called a θ(ω)-complete accumulation
point of an infinite set F if |F

∩
U | = |F | for any U , where U is an ω-hull

of the point x.

Definition 7.3. The set A θ(ω)-converges to the set B if, for any regular
cover γ = {Uα} of B, there exists a finite family {Uαi}si=1 ⊆ γ such that
|A \

∪s
i=1 Uαi | < |A|.

Theorem 7.4. A regular space X is R-closed if and only if each infinite
subset A of X θ(ω)-converges to the set of the θ(ω)-complete accumulation
points of A.

Proof. A proof of Theorem 7.4 is analogous to that of Theorem 4.3. �

In [4], Q39 asks us to find a property P which does not imply R-closed
such that a space is MR if and only if it is R-closed and has property P.

The following theorem answers this question.

Theorem 7.5. A regular space X is an MR space if and only if X is
R-closed, and, if there exists a point x ∈ B such that infinite set A does
not θ(ω)-converge to X \ {x}, then x is a complete accumulation point of
A.

Proof. A proof of Theorem 7.5 is analogous to that of Theorem 5.2. �
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We introduce an operator of θω-closure; for M ⊆ X and x ∈ X x /∈
clθωM if there is an ω-hull U of x such that U

∩
M = ∅. A set M ⊆ X is

θω-closed if M = clθωM .

Definition 7.6. A regular space is regular functionally compact (RFC)
if every continuous function onto a regular space is closed.

Theorem 7.7. A regular space X is RFC if and only if X is R-closed,
and, if there exists a θω-closed set C such that infinite set A does not
θ(ω)-converge to X \ C, then C is a complete accumulation set of A.

Proof. A proof of Theorem 7.7 is analogous to that of Theorem 6.2. �
Question 7.8. Is every RFC space necessarily compact?

Remark 7.9. Note that any non-compact H-closed Urysohn space is U -
closed and the closure of any open set is also U -closed. This provides a
negative answer to question Q27 in [4].

Question 7.10 ([4, Q26]). Is an R-closed space in which the closure of
every open set is R-closed necessarily compact?
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