

http://topology.auburn.edu/tp/

Some Results on CSS and Quarter-Stratifiable GO-Spaces

by

JIANG GUANGHAO

Electronically published on December 17, 2012

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT \textcircled{O} by Topology Proceedings. All rights reserved.	

E-Published on December 17, 2012

SOME RESULTS ON CSS AND QUARTER-STRATIFIABLE GO-SPACES

JIANG GUANGHAO

ABSTRACT. We investigate the relation between Harold W. Martin's c-semi-stratifiable (CSS) spaces and T. O. Banakh's quarter-stratifiability among generalized ordered (GO)-spaces. A question in *Compact* G_{δ} sets (Topology Appl. **153** (2006), no. 12, 2169–2181) is partially answered. Furthermore, we study CSS ordered extensions of GO-spaces and give some surprising results. We show that the properties (X is CSS, X has a G_{δ}^{*} -diagonal, X has a G_{δ} -diagonal, X has a quasi- G_{δ}^{*} -diagonal, X has a quasi- G_{δ}^{-} -diagonal, and X is a σ^{\sharp} -space) in the class of GO-spaces with a σ closed-discrete dense subset are equivalent. In addition, we prove a "local implies global" theorem for perfectly normal GO-spaces that are locally CSS. We deduce that four special types of bases (weakly uniform bases, σ -disjoint bases, point-countable bases, and weak monotone ortho-bases) in the class of quarter-stratifiable GOspaces are equivalent.

1. INTRODUCTION AND PRELIMINARIES

The following are some basic concepts needed in the following; for other non-explicitly stated elementary notions, please refer to [18], [19], and [20].

²⁰¹⁰ Mathematics Subject Classification. 06A11; 06B35; 54H10.

Key words and phrases. bases, compact semi-stratifiable space, dense σ -closed-discrete subset, G_{δ} -diagonal, generalized ordered space, linearly ordered space, quarter-stratifiable space.

Research supported by the NSF of China (11001001,11171156), the NSF (KJ2013A236) from Education Section of Anhui Province China, and Jiangsu Planned Projects for Postdoctoral Research Funds (1202030C).

^{©2012} Topology Proceedings.

Let \mathcal{C} be a collection of subsets of a topological space X. We say that members of \mathcal{C} are uniformly G_{δ} -sets if for each $C \in \mathcal{C}$ there are open sets G(n, C) in X such that

- (i) $\bigcap \{G(n, C) : n \ge 1\} = C;$
- (ii) $G(n+1, C) \subseteq G(n, C)$ for each $n \ge 1$; and
- (iii) if $C \subseteq D$ are members of C, then $G(n, C) \subseteq G(n, D)$ for each n.

In case C is the collection of all closed subsets of X, one obtains the wellknown class of semi-stratifiable spaces introduced by Geoffrey D. Creede [13]. In case C is the collection of all compact subsets of X, one has the class of all c-semi-stratifiable (CSS) spaces introduced by Harold W. Martin [26]. It is easily seen that a semi-stratifiable space is CSS.

According to T. O. Banakh [1], a topological space (X, τ) is quarterstratifiable if there is a function g (called a quarter-stratification of X) from $\{1, 2, 3, \dots\} \times X$ into τ such that

- (a) for each $n \ge 1$, the collection $\{g(n, x) : x \in X\}$ covers X;
- (b) if $y \in g(n, x_n)$ for each n, then the sequence $\langle x_n \rangle$ converges to y.

In this paper we investigate the relation between CSS and quarterstratifiability among the class of GO-spaces. A question in [2] is partially answered. Furthermore, we show that any quarter-stratifiable GO-space is CSS and give an example that there is a CSS LOTS that is not quarterstratifiable. We show that, among GO-spaces, X with either R(X) or L(X) is dense σ -closed-discrete, being CSS and quarter-stratifiable are equivalent properties. We study the CSS ordered extensions of GO-spaces and give some surprising results. We show that the properties (X is CSS, X has a G^*_{δ} -diagonal, X has a G_{δ} -diagonal, X has a quasi- G^*_{δ} -diagonal, X has a quasi- G_{δ} -diagonal, and X is a σ^{\sharp} -space) in the class of GO-spaces with a σ -closed-discrete dense subset are equivalent. In addition, we prove a "local implies global" theorem for perfectly normal GO-spaces that are locally CSS. In the paper's final section, we deduce that four special types of bases (weakly uniform bases, σ -disjoint bases, point-countable bases, and weak monotone ortho-bases) in the class of quarter-stratifiable GOspaces are equivalent.

Recall that a generalized ordered space (GO-space) is a triple $(X, <, \tau)$ where (X, τ) is a Hausdorff space that has a base of order-convex sets. If τ is the usual open-interval topology of the order <, then X is a *linearly* ordered topological space (LOTS). It is clear that the class of GO-spaces is strictly larger than the class of LOTS, and it is known that GO-spaces are exactly those topological spaces that embed (topologically) in some LOTS.

We reserve the symbols \mathbb{R} , \mathbb{Q} , \mathbb{P} , and \mathbb{Z} for the usual sets of real, rational, and irrational numbers, and for the set of all integers, respectively.

2. THE RELATION BETWEEN CSS AND QUARTER-STRATIFIABLE GO-SPACES

Here, we characterize those GO-spaces that are quarter-stratifiable in terms of certain special subsets of any GO-space: R(X), E(X), I(X), and L(X). For any GO-space $(X, \tau, <)$, let I(X) be the set of all isolated points of (X, τ) . Define $R(X) = \{x \in X - I(X) : [x, \rightarrow) \in \tau\}$ and $L(X) = \{x \in X - I(X) : (\leftarrow, x] \in \tau\}$. Let $E(X) = X - (I(X) \cup R(X) \cup L(X))$. Thus, R(X), E(X), I(X), and L(X) are pairwise disjoint.

Lemma 2.1 (see [10]). Let X be a quarter-stratifiable GO-space. Then

(a) X has a G_{δ} -diagonal;

(b) X has a σ -closed-discrete dense subset and therefore is perfect;

(c) X is first-countable and hereditarily paracompact.

Lemma 2.2 (see [2]). Let X be a GO-space. If X has a quasi- G_{δ} -diagonal, then X is CSS.

Proposition 2.3. Any quarter-stratifiable GO-space is CSS.

Proof. Let X be a quarter-stratifiable GO-space. By Lemma 2.1(a), X has a G_{δ} -diagonal, and therefore, X has a quasi- G_{δ} -diagonal. In light of Lemma 2.2, X is CSS.

Example 2.4. The familiar Sorgenfrey line S is quarter-stratifiable (using the function $g(n, x) = (x - \frac{1}{n}, x - \frac{1}{2n})$ for each rational x and $g(n, x) = \emptyset$ for each irrational x) and therefore is CSS (by Proposition 2.3) but is not semi-stratifiable (see [1] or [25]).

Example 2.5. There is a CSS LOTS that is not quarter-stratifiable.

Proof. Let $M^* = (\mathbb{R} \times \{0\}) \bigcup (\mathbb{P} \times \mathbb{Z})$, with the lexicographic order and the associated open-interval topology. In the light of Example 4.6 in [2], the space M^* is CSS and cannot have a G_{δ} -diagonal. By Lemma 2.1(a), M^* is not quarter-stratifiable.

Example 4.6 in [2] gives three CSS LOTS. But none of the three spaces is perfect. By Lemma 2.1(b), none of the three spaces is quarterstratifiable. This is no accident because, for a large class of perfect GOspaces, being CSS is equivalent to being quarter-stratifiable, as our next proposition shows. Recall that any GO-space having a σ -closed-discrete dense subspace is perfect [3] and that there is no known ZFC example of a perfect GO-space that does not have a σ -closed-discrete dense subset. (See [9] for related material.) We begin with a lemma.

Lemma 2.6 (see [2]). Suppose $(X, \tau, <)$ is a GO-space with a σ -closeddiscrete dense subset. Then X is CSS if and only if X has a G_{δ} -diagonal.

Lemma 2.7 (see [10]). Suppose that X is a perfect GO-space with a G_{δ} -diagonal. If either R(X) or L(X) is σ -closed-discrete, then X is quarter-stratifiable.

Proposition 2.8. Suppose that X is a GO-space. If either R(X) or L(X) is dense σ -closed-discrete, then X is CSS if and only if X is quarter-stratifiable.

Proof. Half of the proof follows from Proposition 2.3.

For the converse, suppose X is CSS. In light of Lemma 2.7, it is enough to prove that X is perfect and X has a G_{δ} -diagonal. To see that X is perfect, we have only to note that X is a GO-space with a σ -closeddiscrete dense subset. To see that X has a G_{δ} -diagonal, we may apply Lemma 2.6, because X is CSS.

Even though Proposition 2.8 does not characterize quarter-stratifiable GO-spaces, it does allow us to put quarter-stratifiable GO-spaces into a more familiar context. Recall M. J. Faber's metrization theorem for GO-spaces [16]: A perfect GO-space with a G_{δ} -diagonal is metrizable provided both R(X) and L(X) are σ -closed-discrete in X. If one, but not both, of R(X) and L(X) is σ -closed-discrete, then X is quarter-stratifiable, but not metrizable. Therefore, we have the following corollary.

Corollary 2.9. Suppose that X is a GO-space. If both R(X) and L(X) are σ -closed-discrete and either of them is dense, then X is CSS if and only if X is metrizable.

3. The Relation of Various Kinds of Diagonals in CSS GO-Spaces

Let $\mathcal{G} = {\mathcal{G}(n) : n \ge 1}$ be a countable family of collections of open subsets of a space X. Consider the following conditions on \mathcal{G} .

- (a) For each $x \in X$, $\bigcap \{St(x, \mathcal{G}(n)) : n \ge 1\} = \{x\}.$
- (b) For each $x \in X$, $\bigcap \{ cl(St(x, \mathcal{G}(n))) : n \ge 1 \} = \{x\}.$
- (c) For any distinct $x, y \in X$, there exists some n such that $x \in St(x, \mathcal{G}(n)) \subseteq X \{y\}$.
- (d) For any distinct $x, y \in X$, there exists some n such that $x \in cl(St(x, \mathcal{G}(n))) \subseteq X \{y\}.$

Definition 3.1 (see [27]). X has a quasi- G_{δ}^* -diagonal if there exists a family \mathcal{G} satisfying (d). Recall that X has a G_{δ} -diagonal (a G_{δ}^* -diagonal, a quasi- G_{δ} -diagonal) if there exists a family \mathcal{G} satisfying (a), ((b), and (c), respectively).

From the definition it is clear that if the space X has a quasi- G_{δ}^* -diagonal (a G_{δ}^* -diagonal), then X has a quasi- G_{δ} -diagonal (a G_{δ} -diagonal).

Lemma 3.2 (see [22]). Every regular sub-metacompact (= θ -refinable) space with a G_{δ} -diagonal has a G_{δ}^* -diagonal.

Proposition 3.3. Suppose that X is a CSS GO-space. Then X has a G_{δ} -diagonal if and only if X has a G_{δ}^* -diagonal.

Proof. That any space with a G_{δ}^* -diagonal has a G_{δ} -diagonal. For the converse, suppose X has a G_{δ} -diagonal. To see that X has a G_{δ}^* -diagonal, apply Lemma 3.2, because any CSS GO-space is paracompact (see [15]), and therefore is sub-metacompact.

Let us note that Lemma 2.6 and Proposition 3.3 yield the following.

Corollary 3.4. Suppose X is a GO-space with a σ -closed-discrete dense subset. Then X is CSS if and only if X has a G^*_{δ} -diagonal.

Note the fact that any G_{δ}^* -diagonal is quasi- G_{δ}^* -diagonal, therefore quasi- G_{δ} -diagonal, so we obtain the following corollary by Lemma 2.2 and Proposition 3.3.

Corollary 3.5. Suppose X is a GO-space with a σ -closed-discrete dense subset. Then X is CSS if and only if X has a quasi- G^*_{δ} -diagonal (or X has a quasi- G_{δ} -diagonal).

From Lemma 2.1(b), Proposition 2.3, and Corollary 3.4, we obtain the following.

Corollary 3.6. Any quarter-stratifiable GO-space has a G^*_{δ} -diagonal.

Lemma 3.7 (see [22]). Every sub-paracompact space with a G_{δ} -diagonal is a σ^{\sharp} -space.

Lemma 3.8 (see [2]). Let X be a Hausdorff space. If X is a σ^{\sharp} -space, (i.e., X has a σ -closure-preserving collection C of closed sets with the property that if $x \neq y$ are points of X, then some $C \in C$ has $x \in C$ and $y \notin C$), then X is CSS.

Let us observe that Lemma 2.6, Lemma 3.7, and Lemma 3.8 immediately yield the following corollary.

Corollary 3.9. Suppose X is a GO-space with a σ -closed-discrete dense subset. Then X is CSS if and only if X is a σ^{\sharp} -space.

Corollary 3.9, along with Lemma 2.1(b) and Proposition 2.3, yields the following corollary.

Corollary 3.10. Any quarter-stratifiable GO-space is a σ^{\sharp} -space.

In Question 4.9 of [2], the authors ask whether there is a GO-space that is CSS but not a σ^{\sharp} -space. In the category of GO-spaces with a σ -closed-discrete dense subset, that question has a negative answer, as we show in the following by virtue of Corollary 3.9.

Proposition 3.11. If X is a GO-space and if its ordered extension X^* has a σ -closed-discrete dense subset, then X is a σ^{\sharp} -space provided X is CSS.

From Lemma 2.6, Corollary 3.4, Corollary 3.9, and Corollary 3.5, we obtain the following.

Proposition 3.12. Suppose X is a GO-space with a σ -closed-discrete dense subset, then the following are equivalent:

- (a) X is CSS;
- (b) X has a G^*_{δ} -diagonal;
- (c) X has a G_{δ} -diagonal;
- (d) X has a quasi- G^*_{δ} -diagonal;
- (e) X has a quasi- G_{δ} -diagonal;
- (f) X is σ^{\sharp} -space.

Definition 3.13 (see [15]). Let σ be the set of all finite sequences of positive integers and let Σ be the set of all infinite sequences of positive integers. For a point $n = (n_1, n_2, ...)$ of Σ and for $k \ge 1$, write $n|k = (n_1, ..., n_k)$. A space X is said to have a \mathscr{G} -Souslin diagonal if for each $p \in \sigma$ there is an open subset G(p) of $X \times X$ such that $\{(x, x) : x \in X\} = \bigcup \{\bigcap_{k=1}^{\infty} G(n|k) : n \in \Sigma\}.$

Lemma 3.14 (see [15]). If a GO-space has a \mathscr{G} -Souslin diagonal, then it is a σ^{\sharp} -space, and therefore is CSS.

Following the proof of Lemma 3.14 in [15], we obtain the following corollary.

Corollary 3.15. If a GO-space has a \mathscr{G} -Souslin diagonal, then it has a quasi- G_{δ} -diagonal.

Corollary 3.16. If a GO-space has a quasi- G_{δ} -diagonal, then it is a σ^{\sharp} -space.

Proposition 3.12 and Lemma 3.14 yield the following corollary.

Corollary 3.17. Suppose X is a GO-space with a σ -closed-discrete dense subset. If X has a \mathscr{G} -Souslin diagonal, then X has a G_{δ}^* -diagonal.

Example 3.18. There is a non-metrizable LOTS having a \mathscr{G} -Souslin diagonal; hence, a LOTS can have a \mathscr{G} -Souslin diagonal without having a G^*_{δ} -diagonal.

Proof. Let $X = \{(x, n) \in \mathbb{R} \times \mathbb{Z}: \text{ if } x \text{ is rational, then } n = 0\}$ and order X lexicographically. The open-interval topology of that order has a σ -disjoint base and is, therefore, quasi-metrizable. Then X is not metrizable, but X has a \mathscr{G} -Souslin diagonal (see [15]). Clearly, X does not have a G_{δ}^* -diagonal because any LOTS with a G_{δ} -diagonal is metrizable (see [25]). \square

Lemma 3.19 (see [15]). Suppose that each point of a space X is a G_{δ} in X and that X has at most countably many non-isolated points. Then Xhas a G-Souslin diagonal.

Lemma 3.19, along with Definition 3.1, yields the following corollary.

Corollary 3.20. Suppose that a space X has at most countably many non-isolated points. If X has a G_{δ} -diagonal, then X has a \mathscr{G} -Souslin diagonal.

Definition 3.21 (see [22]). A topological space (X, τ) is an α -space if there is a function q (called an α -function for X) from $\{1, 2, 3, \dots\} \times X$ into τ such that

- (a) $\{x\} = \bigcap_{n=1}^{\infty} g(n, x)$ for each x in X; (b) if $y \in g(n, x)$, then $g(n, x) \subseteq g(n, y)$ for each n.

Lemma 3.22 (see [22]). Every σ^{\sharp} -space is an α -space.

Proposition 3.23. Let X be a LOTS. If X is CSS, then X is an α -space.

Proof. Lemma 3.22, along with the equivalence of a σ^{\sharp} -space and CSS in any LOTS [15] and Corollary 3.9, yields this result. \square

Corollary 3.24. If X is a GO-space with a σ -closed-discrete dense set and if X is CSS, then X is an α -space.

Corollary 3.25. Any quarter-stratifiable GO-space is an α -space.

4. CSS Ordered Extensions of GO-Spaces

Lemma 4.1 (see [10]). Suppose that X is a perfect GO-space and X = $Y \cup M$, where, in their relative topologies, Y has a G_{δ} -diagonal and M is metrizable. Then X has a G_{δ} -diagonal.

Lemma 4.1 yields a CSS sum theorem for GO-spaces with a σ -closeddiscrete dense subset that have a large metrizable part. (Our next result is a variant of Proposition 4.5 in [10].)

Proposition 4.2. Let X be a GO-space with a σ -closed-discrete dense subset. If $X = Y \cup M$, where Y is CSS and M is metrizable, then X has a G_{δ} -diagonal and therefore X is CSS.

Proof. Suppose X is a GO-space with a σ -closed-discrete dense subset, then X is perfect and the subspace Y also has a σ -closed-discrete dense subset (see [12]). In light of Y being CSS and Lemma 2.6, Y has a G_{δ} -diagonal. Applying Lemma 4.1, we see that X has a G_{δ} -diagonal. Therefore, Lemma 2.2 or Lemma 2.6 completes the proof.

Lemma 4.1 and Proposition 4.2 both have a surprising corollary. Recall that for any GO-space $(X, \tau, <)$, there is a canonical LOTS $(X^*, \tau^*, <^*)$ that contains X as a closed subspace, where X^* is obtained by adding a certain collection of isolated points to X and where $<^*$ is a natural lexicographic extension of < (see [25]). It is often of interest to know which topological properties of X are passed on to X^* . Example 4.13 in [2] shows that being a CSS space is not a property of that type. But we can obtain the following.

Corollary 4.3. For any GO-space X, the following are equivalent:

- (a) X^* is metrizable;
- (b) X is metrizable;
- (c) X has a G_{δ} -diagonal and X^* is perfect;
- (d) X^* has a G_{δ} -diagonal.

Proof. That (d) \Rightarrow (a) follows from the fact that any LOTS with a G_{δ} -diagonal is metrizable.

Clearly, (a) \Rightarrow (b) and it is known (see [25]) that if X is metrizable, then so is X^* ; thus, X^* is perfect. Hence, (b) \Rightarrow (c).

To see that (c) \Rightarrow (d), suppose X has a G_{δ} -diagonal. Note that X^* is perfect and $X^* = X \cup M$, where M is a certain set of isolated points. Then applying Lemma 4.1, we see that X^* satisfies (d).

The following corollary is a consequence of Corollary 4.3 and the fact that any G^*_{δ} -diagonal is a G_{δ} -diagonal.

Corollary 4.4. For any GO-space X, the following are equivalent:

- (a) X^* is metrizable;
- (b) X is metrizable;
- (c) X has a G^*_{δ} -diagonal and X^* is perfect;
- (d) X^* has a G^*_{δ} -diagonal.

Lemma 2.1(a) and Corollary 4.3 allow us to obtain an analogous result for quarter-stratifiability in GO-spaces.

Corollary 4.5 (see [10]). For any GO-space X, the following are equivalent:

- (a) X^* is metrizable;
- (b) X is metrizable;

SOME RESULTS ON CSS AND QUARTER-STRATIFIABLE GO-SPACES 229

- (c) X is quarter-stratifiable and X^* is perfect;
- (d) X^* is quarter-stratifiable.

Lemma 2.1(a), Lemma 2.3, and Lemma 3.3 yield the following corollary.

Corollary 4.6. Any quarter-stratifiable GO-space has a G^*_{δ} -diagonal.

Remark 4.7. By contrast with the best known result for quarter- stratifiability in GO-spaces (see Corollary 4.7 in [2]) and the result for GO-spaces with a G_{δ}^* -diagonal above, we may see that the result for GO-spaces with a G_{δ} -diagonal is best.

Proposition 4.2 also has a surprising corollary for the CSS property in GO-spaces.

Corollary 4.8. For any GO-space X, if X^* has a σ -closed-discrete dense subset, then the following are equivalent:

- (a) X^* is CSS;
- (b) X is CSS;
- (c) X^* is metrizable:
- (d) X is metrizable.

Proof. That (a) \Rightarrow (b) follows from the fact that the CSS property is hereditary.

Clearly, (c) \Rightarrow (d) and it is known (see [25]) that if X is metrizable, then so is X^* ; thus, X^* is CSS. Hence, (d) \Rightarrow (a).

To complete the proof, we must show that (b) \Rightarrow (c), so suppose X is CSS. Because $X^* = X \cup M$, where M is a certain set of isolated points, assertion Proposition 4.2 yields that X^* is CSS, and hence (see Lemma 2.6) has a G_{δ} -diagonal. But any LOTS with a G_{δ} -diagonal is metrizable (see [25]). Hence, X^* satisfies (c).

A similar result for GO-spaces with a quasi- G_{δ} -diagonal (a quasi- G_{δ}^* -diagonal, a σ^{\sharp} -space) is listed in the following corollary, which is a consequence of Lemma 2.2, Corollary 3.9, and Corollary 4.8.

Corollary 4.9. For any GO-space X, if X^* has a σ -closed-discrete dense subset, then the following are equivalent:

- (a) X^* is metrizable;
- (b) X is metrizable;
- (c) X^* has a quasi- G^*_{δ} -diagonal;
- (d) X has a quasi- G^*_{δ} -diagonal;
- (e) X^* has a quasi- G_{δ} -diagonal;
- (f) X has a quasi- G_{δ} -diagonal;
- (g) X^* is a σ^{\sharp} -space;
- (h) X is a σ^{\sharp} -space.

We obtain the following corollary from Lemma 3.19.

Corollary 4.10. Suppose that each point of a GO-space X is a G_{δ} in X and that X has at most countably many non-isolated points. Then X^* has a \mathscr{G} -Souslin diagonal, and therefore is a σ^{\sharp} -space.

Proof. Because $X^* = X \cup M$, where M is a certain set of isolated points, assertion Lemma 3.19 yields that X^* has a \mathscr{G} -Souslin diagonal. The other is a consequence of Lemma 3.14.

Corollary 4.11. For any GO-space X, if X^* has a σ -closed-discrete dense subset, then the following are equivalent:

- (a) X has a G-Souslin diagonal;
- (b) X^* has a \mathscr{G} -Souslin diagonal;
- (c) X^* is metrizable;
- (d) X is metrizable.

Proof. Clearly, (c) \Rightarrow (d) \Rightarrow (a).

That (b) \Rightarrow (c) is a consequence of Corollary 3.17 and Corollary 4.4.

To complete the proof, we must show that (a) \Rightarrow (b), so suppose X has a \mathscr{G} -Souslin diagonal. Clearly, X has a σ -closed-discrete dense subset. Using Corollary 3.17, we obtain that X has a G_{δ}^* -diagonal. According to Corollary 4.4, X* is metrizable; thus, X* has a \mathscr{G} -Souslin diagonal. Hence, X* satisfies (b).

Lemma 4.12 (see [2]). Suppose that X is normal and sub-metacompact $(= \theta$ -refinable). If X is locally CSS, then X is CSS.

The following corollary is an immediate consequence of Lemma 4.12 and the fact that any perfectly normal GO-space is paracompact [25].

Corollary 4.13. Suppose that X is a perfectly normal GO-space. If X is locally CSS, then X is CSS.

We close this section with some results on the role of the CSS and quarter-stratifiable properties in metrization theory among LOTS (or GOspaces). First, recall a classical metrization theorem of Arhangel'skii.

Lemma 4.14 (see [8]). Suppose X is a paracompact p-space in the sense of Arhangel'skii. Then the following are equivalent:

(a) X is metrizable;

(b) X has a G_{δ} -diagonal.

Proposition 4.15. Let X be a LOTS. Then X is metrizable if and only if X is CSS with a σ -closed-discrete dense subset.

Proof. It is enough to show that every CSS LOTS with a σ -closed-discrete dense subset is metrizable. To that end, we invoke the corollary to Theorem 2.1.6 in [30] to see that any LOTS with a σ -closed-discrete dense subset must be a paracompact p-space in the sense of Arhangel'skii, and then use Lemma 2.6 and Lemma 4.14 to conclude that X is metrizable.

Remark 4.16. In the light of Proposition 4.15, each quarter-stratifiable LOTS is metrizable. However, as the Sorgenfrey line shows, a GO-space can be quarter-stratifiable and nonmetrizable.

Results in [3] allow us to extend Proposition 4.15 to a perfect CSS LOTS that has certain other properties.

Proposition 4.17. Suppose X is a perfect CSS LOTS. Then the following are equivalent:

- (a) X is metrizable;
- (b) X is the union of countably many metrizable subspaces;

(c) X can be mapped by a continuous s-mapping onto some topological space with a G_{δ} -diagonal.

Lemma 4.18 (see [2]). Let X be a completely regular space. Then X is metrizable if and only if X is a paracompact p-space in the sense of Arhangel'skii and is CSS.

Proposition 4.19. Let X be a GO-space. Then X is metrizable if and only if X is CSS and a p-space.

Proof. That X is a completely regular space follows from the fact that any GO-space is collectionwise normal [25]. Half of the proof follows from Lemma 4.18.

For the converse, suppose X is CSS and a p-space. To get the result, we can apply Lemma 4.18, because any CSS GO-space is paracompact [15]. \Box

Definition 4.20 (see [22]). A topological space (X, τ) is a β -space if there is a function g (called a β -function for X) from $\{1, 2, 3, \dots\} \times X$ into τ such that

(a) for all $x \in X$ and each $n \ge 1$, $x \in g(n, x)$;

(b) if $x \in g(n, x_n)$ for each n, then the sequence $\langle x_n \rangle$ has a cluster point.

Definition 4.21 (see [23]). A topological space (X, τ) is a γ -space if there is a function g (called a γ -function for X) from $\{1, 2, 3, \dots\} \times X$ into τ such that

(a) $x \in \bigcap_{n=1}^{\infty} g(n, x)$ for each x in X;

(b) if $y_n \in g(n, x_n)$ and $x_n \in g(n, y_n)$ for each n, then the sequence $\langle x_n \rangle$ has a cluster point. It is easily seen that a γ -space is CSS.

From Corollary 3.24 and Definition 4.21 we have the following.

Corollary 4.22. Let X be a GO-space with a σ -closed-discrete dense subset. Then every γ -space is an α -space.

Lemma 4.23 (see [23]). Every T_1 space which is a β -space and a γ -space is developable.

Lemma 4.23, along with the equivalence of CSS and a γ -space in any LOTS (see [15]), yields the following.

Proposition 4.24. Let X be a LOTS. Then X is metrizable if and only if X is CSS and a β -space.

Lemma 4.25 (see [22]). Let X be a regular space. Then X is semistratifiable if and only if X is a β -space with a G^*_{δ} -diagonal.

Lemma 4.26. Let X be a GO-space with a G_{δ} -diagonal. Then X has a G_{δ}^* -diagonal.

Proof. Suppose X is a GO-space with a G_{δ} -diagonal. To get the result, apply the fact that any GO-space with a G_{δ} -diagonal is paracompact [25] and any paracompact space with a G_{δ} -diagonal has a G_{δ}^* -diagonal.

The following proposition is a consequence of lemmas 4.25 and 4.26.

Proposition 4.27. Let X be a GO-space. Then X is metrizable if and only if X is a β -space with a G_{δ} -diagonal.

Lemma 2.6 and Proposition 4.27 yield the following corollary.

Corollary 4.28. Let X be a GO-space. Then X is metrizable if and only if X is CSS and a β -space with a σ -closed-discrete dense subset.

Corollary 4.29. Suppose X is a perfect CSS GO-space that is also a β -space. Then the following are equivalent:

- (a) X is metrizable;
- (b) X is the union of countably many metrizable subspaces;
- (c) X can be mapped by a continuous s-mapping onto some topological space with a G_{δ} -diagonal.

Corollary 4.30. Let X be a GO-space. Then X is metrizable if and only if X is quarter-stratifiable and a β -space.

SOME RESULTS ON CSS AND QUARTER-STRATIFIABLE GO-SPACES 233

5. Special Bases in Quarter-Stratifiable GO-Spaces

Lemma 5.1 (see [7]). Let X be a GO-space. Then the following assertions are equivalent:

- (a) X has a σ -disjoint base (equivalently, is quasi-developable);
- (b) X has a point-countable base and a quasi- G_{δ} -diagonal.

Lemma 2.1(a) and Lemma 5.1 give the following corollary.

Corollary 5.2. Any GO-space with a σ -disjoint base is CSS.

Example 5.3. There is a GO-space with a point-countable base which is not CSS (see Example 5.8).

Lemma 5.4 (see [5]). A GO-space X has a weakly uniform base if and only if X has a σ -disjoint base (equivalently, is quasi-developable) and has a G_{δ} -diagonal.

We obtain the following corollary from Lemma 5.1 and Lemma 5.4.

Corollary 5.5. A GO-space X has a weakly uniform base if and only if X has a point-countable base and a G_{δ} -diagonal.

Lemma 5.6 (see [3]). Let X be a GO-space. Then the following assertions are equivalent:

- (a) X is metrizable;
- (b) X has a point-countable base and a σ -closed-discrete dense subset;
- (c) X has a weak monotone ortho-base and a σ -closed-discrete dense subset.

The following proposition is an immediate consequence of Lemma 2.1, Corollary 5.5, and Lemma 5.6.

Proposition 5.7. Let X be a GO-space. Then the following assertions are equivalent:

- (a) X is metrizable;
- (b) X is quarter-stratifiable and has a point-countable base;
- (c) X is quarter-stratifiable and has a weakly uniform base;
- (d) X is quarter-stratifiable and has a weak monotone ortho-base.

Example 5.8. In [17], Gary Gruenhage constructed a LOTS with a point-countable base that is not quasi-metrizable. In light of Proposition 4.7 in [2], that space cannot be CSS. Therefore, the space is not quarter-stratifiable.

Example 5.9. There is a GO-space with a weakly uniform base that is CSS but not quarter-stratifiable.

Proof. The Michael line M, which is a non-metrizable CSS GO-space, was shown by R. W. Heath and W. F. Lindgren to have a weakly uniform base [21]. Therefore, by Proposition 5.7, M is not quarter-stratifiable.

Example 5.10. There is a LOTS with a weak monotone ortho-base that is not quarter-stratifiable.

Proof. Using the extended Big Bush appearing in section 3 of [6], we can obtain a LOTS X that has a weak monotone ortho-base but not a point-countable base. Then, by Proposition 5.7, X is not quarter-stratifiable.

We close this section with a proposition which is a consequence of Lemma 5.1 and Proposition 5.7.

Proposition 5.11. Let X be a quarter-stratifiable GO-space. Then the following assertions are equivalent:

- (a) X has a point-countable base;
- (b) X has a σ -disjoint base;
- (c) X has a weakly uniform base;
- (d) X has a weak monotone ortho-base.

Recall that a space X is called *weak-* σ if and only if there exists a σ disjoint network $\mathcal{M} = \bigcap_{n=1}^{\infty} \mathcal{M}_k$ such that, for each $k \in \mathbb{N}$, \mathcal{M}_k is discrete with respect to \mathcal{M}_k^* [28].

Theorem 5.12. A GO-space is metrizable if and only if it is a weak- σ -space and a quarter-stratifiable space.

Proof. Apply [4, Theorem 7.1], which states that a GO-space is quasidevelopable if and only if it is a weak- σ -space with a quasi- G_{δ} -diagonal, and Lemma 2.1. Since a space X is developable if and only if X is quasidevelopable and perfect, and every developable GO-space is metrizable, the proof is complete.

Lemma 5.13 (see [11]). A GO-space is metrizable if and only if it is a quasi-developable β -space.

Proposition 5.14. A GO-space is metrizable if and only if it is a weak- σ -space and a β -space with a quasi- G_{δ} -diagonal.

Proof. Apply [4, Theorem 7.1], (as in the proof of Theorem 5.12) and Lemma 5.13. $\hfill \Box$

Acknowledgment. The author is very grateful to the referee and the editors for their valuable suggestions to improve and modify the earlier and recents versions of the paper.

SOME RESULTS ON CSS AND QUARTER-STRATIFIABLE GO-SPACES 235

References

- T. O. Banakh, (Metrically) quarter-stratifiable spaces and their applications in the theory of separately continuous functions, Mat. Stud. 18 (2002), no. 1, 10–28.
- [2] Harold Bennett, Robert Byerly, and David Lutzer, Compact G_{δ} sets, Topology Appl. 153 (2006), no. 12, 2169–2181.
- [3] Harold R. Bennett, Robert W. Heath, and David J. Lutzer, GO-spaces with σ-closed discrete dense subsets, Proc. Amer. Math. Soc. 129 (2001), no. 3, 931– 939.
- [4] Harold R. Bennett and Masami Hosobuchi, Quasi-G_δ-diagonals and weak σspaces in GO-spaces, Tsukuba J. Math. 18 (1994), no. 2, 497–503.
- [5] Harold R. Bennett and David J. Lutzer, Generalized ordered spaces with capacities, Pacific J. Math. 112 (1984), no. 1, 11–19.
- [6] _____, A note on property III in generalized ordered spaces, Topology Proc. 21 (1996), 15–24.
- [7] _____, Ordered spaces with special bases, Fund. Math. 158 (1998), no. 3, 289– 299.
- [8] _____, Continuous separating families in ordered spaces and strong base conditions, Topology Appl. 119 (2002), no. 3, 305–314.
- [9] _____, Recent developments in the topology of ordered spaces in Recent Progress in General Topology, II. Ed. Miroslav Hušek and Jan van Mill. Amsterdam: North-Holland, 2002. 83–114.
- [10] _____, Quarter-stratifiability in ordered spaces, Proc. Amer. Math. Soc. 134 (2006), no. 6, 1835–1847.
- [11] _____, The β-space property in monotonically normal spaces and GO-spaces, Topology Appl. 153 (2006), no. 13, 2218–2228.
- [12] Harold R. Bennett, David J. Lutzer, and Steven D. Purisch, On dense subspaces of generalized ordered spaces, Topology Appl. 93 (1999), no. 3, 191–205.
- [13] Geoffrey D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47–54.
- [14] Ryszard Engelking, General Topology. Translated from the Polish by the author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.
- [15] R. Engelking and D. Lutzer, Paracompactness in ordered spaces, Fund. Math. 94 (1977), no. 1, 49–58.
- [16] M. J. Faber, Metrizability in generalized ordered spaces, Mathematical Centre Tracts, No. 53. Amsterdam: Mathematisch Centrum, 1974.
- [17] Gary Gruenhage, A note on quasi-metrizability, Canad. J. Math. 29 (1977), no. 2, 360–366.
- [18] _____, Generalized metric spaces and metrization in Recent Progress in General Topology (Prague, 1991). Ed. Miroslav Hušek and Jan van Mill. Amsterdam: North-Holland, 1992. 239–274.
- [19] _____, Metrizable spaces and generalizations in Recent Progress in General Topology, II. Ed. Miroslav Hušek and Jan van Mill. Amsterdam: North-Holland, 2002. 201–225.
- [20] _____, Generalized metrizable spaces. To appear in Recent Progress in General Topology, III. Ed. Miroslav Hušek and Jan van Mill.

- [21] R. W. Heath and W. F. Lindgren, Weakly uniform bases, Houston J. Math. 2 (1976), no. 1, 85–90.
- [22] R. E. Hodel, Moore spaces and $\omega \triangle$ -spaces, Pacific J. Math. 38 (1971), 641–652.
- [23] _____, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253–263.
- [24] Jacob Kofner, Transitivity and the γ -space conjecture in ordered spaces, Proc. Amer. Math. Soc. 81 (1981), no. 4, 629–635.
- [25] D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. (Rozprawy Mat.) 89 (1971), 1–32.
- [26] Harold W. Martin, Metrizability of M-spaces, Canad. J. Math. 25 (1973), 840– 841.
- [27] A. M. Mohamad, Generalization of G^*_{δ} -diagonals and $\omega \triangle$ -spaces, Acta Math. Hungar. 80 (1998), no. 4, 285–291.
- [28] _____, Some results on quasi- σ and θ -spaces, Houston J. Math. **27** (2001), no. 1, 59–65.
- [29] Wei-Xue Shi, Extensions of perfect GO-spaces and σ -discrete dense sets, Proc. Amer. Math. Soc. **127** (1999), no. 2, 615–618.
- [30] J. M. van Wouwe, GO-spaces and Generalizations of Metrizability. Mathematical Centre Tracts, 104. Amsterdam: Mathematisch Centrum, 1979.

Department of Mathematics; Nanjing Normal University; Nanjing 201124, P. R. China

Department of Mathematics; Huaibei Normal University; Huaibei 235000, P. R. China

E-mail address: guanghaoj@126.com