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SOME RESULTS ON CSS AND
QUARTER-STRATIFIABLE GO-SPACES

JIANG GUANGHAO

Abstract. We investigate the relation between Harold W.
Martin’s c-semi-stratifiable (CSS) spaces and T. O. Banakh’s
quarter-stratifiability among generalized ordered (GO)-spaces. A
question in Compact Gδ sets (Topology Appl. 153 (2006), no.
12, 2169–2181) is partially answered. Furthermore, we study CSS
ordered extensions of GO-spaces and give some surprising results.
We show that the properties (X is CSS, X has a G∗

δ -diagonal, X
has a Gδ-diagonal, X has a quasi-G∗

δ -diagonal, X has a quasi-Gδ-
diagonal, and X is a σ♯-space) in the class of GO-spaces with a σ-
closed-discrete dense subset are equivalent. In addition, we prove
a “ local implies global” theorem for perfectly normal GO-spaces
that are locally CSS. We deduce that four special types of bases
(weakly uniform bases, σ-disjoint bases, point-countable bases, and
weak monotone ortho-bases) in the class of quarter-stratifiable GO-
spaces are equivalent.

1. Introduction and Preliminaries

The following are some basic concepts needed in the following; for
other non-explicitly stated elementary notions, please refer to [18], [19],
and [20].
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Let C be a collection of subsets of a topological space X. We say that
members of C are uniformly Gδ-sets if for each C ∈ C there are open sets
G(n,C) in X such that

(i)
∩
{G(n,C) : n ≥ 1} = C;

(ii) G(n+ 1, C) ⊆ G(n,C) for each n ≥ 1; and
(iii) if C ⊆ D are members of C, then G(n,C) ⊆ G(n,D) for each n.

In case C is the collection of all closed subsets of X, one obtains the well-
known class of semi-stratifiable spaces introduced by Geoffrey D. Creede
[13]. In case C is the collection of all compact subsets of X, one has
the class of all c-semi-stratifiable (CSS) spaces introduced by Harold W.
Martin [26]. It is easily seen that a semi-stratifiable space is CSS.

According to T. O. Banakh [1], a topological space (X, τ) is quarter-
stratifiable if there is a function g (called a quarter-stratification of X)
from {1, 2, 3, · · · } ×X into τ such that

(a) for each n ≥ 1, the collection {g(n, x) : x ∈ X} covers X;
(b) if y ∈ g(n, xn) for each n, then the sequence ⟨xn⟩ converges to y.

In this paper we investigate the relation between CSS and quarter-
stratifiability among the class of GO-spaces. A question in [2] is partially
answered. Furthermore, we show that any quarter-stratifiable GO-space is
CSS and give an example that there is a CSS LOTS that is not quarter-
stratifiable. We show that, among GO-spaces, X with either R(X) or
L(X) is dense σ-closed-discrete, being CSS and quarter-stratifiable are
equivalent properties. We study the CSS ordered extensions of GO-spaces
and give some surprising results. We show that the properties (X is CSS,
X has a G∗

δ-diagonal, X has a Gδ-diagonal, X has a quasi-G∗
δ-diagonal,

X has a quasi-Gδ-diagonal, and X is a σ♯-space) in the class of GO-spaces
with a σ-closed-discrete dense subset are equivalent. In addition, we prove
a “ local implies global” theorem for perfectly normal GO-spaces that are
locally CSS. In the paper’s final section, we deduce that four special types
of bases (weakly uniform bases, σ-disjoint bases, point-countable bases,
and weak monotone ortho-bases) in the class of quarter-stratifiable GO-
spaces are equivalent.

Recall that a generalized ordered space (GO-space) is a triple (X,<, τ)
where (X, τ) is a Hausdorff space that has a base of order-convex sets. If
τ is the usual open-interval topology of the order <, then X is a linearly
ordered topological space (LOTS). It is clear that the class of GO-spaces
is strictly larger than the class of LOTS, and it is known that GO-spaces
are exactly those topological spaces that embed (topologically) in some
LOTS.
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We reserve the symbols R, Q, P, and Z for the usual sets of real,
rational, and irrational numbers, and for the set of all integers, respec-
tively.

2. The Relation Between CSS and
Quarter-Stratifiable GO-Spaces

Here, we characterize those GO-spaces that are quarter-stratifiable in
terms of certain special subsets of any GO-space: R(X), E(X), I(X),
and L(X). For any GO-space (X, τ,<), let I(X) be the set of all isolated
points of (X, τ). Define R(X) = {x ∈ X − I(X) : [x,→) ∈ τ} and
L(X) = {x ∈ X − I(X) : (←, x] ∈ τ}. Let E(X) = X − (I(X) ∪R(X) ∪
L(X)). Thus, R(X), E(X), I(X), and L(X) are pairwise disjoint.

Lemma 2.1 (see [10]). Let X be a quarter-stratifiable GO-space. Then
(a) X has a Gδ-diagonal;
(b) X has a σ-closed-discrete dense subset and therefore is perfect;
(c) X is first-countable and hereditarily paracompact.

Lemma 2.2 (see [2]). Let X be a GO-space. If X has a quasi-Gδ-
diagonal, then X is CSS.

Proposition 2.3. Any quarter-stratifiable GO-space is CSS.

Proof. Let X be a quarter-stratifiable GO-space. By Lemma 2.1(a), X
has a Gδ-diagonal, and therefore, X has a quasi-Gδ-diagonal. In light of
Lemma 2.2, X is CSS. �
Example 2.4. The familiar Sorgenfrey line S is quarter-stratifiable (using
the function g(n, x) = (x− 1

n , x−
1
2n ) for each rational x and g(n, x) = ∅

for each irrational x) and therefore is CSS (by Proposition 2.3) but is not
semi-stratifiable (see [1] or [25]).

Example 2.5. There is a CSS LOTS that is not quarter-stratifiable.

Proof. Let M∗ = (R × {0})
∪
(P × Z), with the lexicographic order and

the associated open-interval topology. In the light of Example 4.6 in [2],
the space M∗ is CSS and cannot have a Gδ-diagonal. By Lemma 2.1(a),
M∗ is not quarter-stratifiable. �

Example 4.6 in [2] gives three CSS LOTS. But none of the three
spaces is perfect. By Lemma 2.1(b), none of the three spaces is quarter-
stratifiable. This is no accident because, for a large class of perfect GO-
spaces, being CSS is equivalent to being quarter-stratifiable, as our next
proposition shows. Recall that any GO-space having a σ-closed-discrete
dense subspace is perfect [3] and that there is no known ZFC example of
a perfect GO-space that does not have a σ-closed-discrete dense subset.
(See [9] for related material.) We begin with a lemma.
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Lemma 2.6 (see [2]). Suppose (X, τ,<) is a GO-space with a σ-closed-
discrete dense subset. Then X is CSS if and only if X has a Gδ-diagonal.

Lemma 2.7 (see [10]). Suppose that X is a perfect GO-space with a Gδ-
diagonal. If either R(X) or L(X) is σ-closed-discrete, then X is quarter-
stratifiable.

Proposition 2.8. Suppose that X is a GO-space. If either R(X) or L(X)
is dense σ-closed-discrete, then X is CSS if and only if X is quarter-
stratifiable.

Proof. Half of the proof follows from Proposition 2.3.
For the converse, suppose X is CSS. In light of Lemma 2.7, it is enough

to prove that X is perfect and X has a Gδ-diagonal. To see that X is
perfect, we have only to note that X is a GO-space with a σ-closed-
discrete dense subset. To see that X has a Gδ-diagonal, we may apply
Lemma 2.6, because X is CSS. �

Even though Proposition 2.8 does not characterize quarter-stratifiable
GO-spaces, it does allow us to put quarter-stratifiable GO-spaces into a
more familiar context. Recall M. J. Faber’s metrization theorem for GO-
spaces [16]: A perfect GO-space with a Gδ-diagonal is metrizable provided
both R(X) and L(X) are σ-closed-discrete in X. If one, but not both, of
R(X) and L(X) is σ-closed-discrete, then X is quarter-stratifiable, but
not metrizable. Therefore, we have the following corollary.

Corollary 2.9. Suppose that X is a GO-space. If both R(X) and L(X)
are σ-closed-discrete and either of them is dense, then X is CSS if and
only if X is metrizable.

3. The Relation of Various Kinds of Diagonals
in CSS GO-Spaces

Let G = {G(n) : n ≥ 1} be a countable family of collections of open
subsets of a space X. Consider the following conditions on G.

(a) For each x ∈ X,
∩
{St(x,G(n)) : n ≥ 1} = {x}.

(b) For each x ∈ X,
∩
{cl(St(x,G(n))) : n ≥ 1} = {x}.

(c) For any distinct x, y ∈ X, there exists some n such that x ∈
St(x,G(n)) ⊆ X − {y}.

(d) For any distinct x, y ∈ X, there exists some n such that x ∈
cl(St(x,G(n))) ⊆ X − {y}.

Definition 3.1 (see [27]). X has a quasi-G∗
δ-diagonal if there exists a

family G satisfying (d). Recall that X has a Gδ-diagonal (a G∗
δ-diagonal,

a quasi-Gδ-diagonal) if there exists a family G satisfying (a), ((b), and
(c), respectively).
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From the definition it is clear that if the space X has a quasi-G∗
δ-

diagonal (a G∗
δ-diagonal), then X has a quasi-Gδ-diagonal (a Gδ-diagonal).

Lemma 3.2 (see [22]). Every regular sub-metacompact (= θ-refinable)
space with a Gδ-diagonal has a G∗

δ-diagonal.

Proposition 3.3. Suppose that X is a CSS GO-space. Then X has a
Gδ-diagonal if and only if X has a G∗

δ-diagonal.

Proof. That any space with a G∗
δ-diagonal has a Gδ-diagonal. For the

converse, suppose X has a Gδ-diagonal. To see that X has a G∗
δ-diagonal,

apply Lemma 3.2, because any CSS GO-space is paracompact (see [15]),
and therefore is sub-metacompact. �

Let us note that Lemma 2.6 and Proposition 3.3 yield the following.

Corollary 3.4. Suppose X is a GO-space with a σ-closed-discrete dense
subset. Then X is CSS if and only if X has a G∗

δ-diagonal.

Note the fact that any G∗
δ-diagonal is quasi-G∗

δ-diagonal, therefore
quasi-Gδ-diagonal, so we obtain the following corollary by Lemma 2.2
and Proposition 3.3.

Corollary 3.5. Suppose X is a GO-space with a σ-closed-discrete dense
subset. Then X is CSS if and only if X has a quasi-G∗

δ-diagonal (or X
has a quasi-Gδ-diagonal).

From Lemma 2.1(b), Proposition 2.3, and Corollary 3.4, we obtain the
following.

Corollary 3.6. Any quarter-stratifiable GO-space has a G∗
δ-diagonal.

Lemma 3.7 (see [22]). Every sub-paracompact space with a Gδ-diagonal
is a σ♯-space.

Lemma 3.8 (see [2]). Let X be a Hausdorff space. If X is a σ♯-space,
(i.e., X has a σ-closure-preserving collection C of closed sets with the
property that if x ̸= y are points of X, then some C ∈ C has x ∈ C and
y ̸∈ C), then X is CSS.

Let us observe that Lemma 2.6, Lemma 3.7, and Lemma 3.8 immedi-
ately yield the following corollary.

Corollary 3.9. Suppose X is a GO-space with a σ-closed-discrete dense
subset. Then X is CSS if and only if X is a σ♯-space.

Corollary 3.9, along with Lemma 2.1(b) and Proposition 2.3, yields the
following corollary.

Corollary 3.10. Any quarter-stratifiable GO-space is a σ♯-space.
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In Question 4.9 of [2], the authors ask whether there is a GO-space
that is CSS but not a σ♯-space. In the category of GO-spaces with a
σ-closed-discrete dense subset, that question has a negative answer, as we
show in the following by virtue of Corollary 3.9.

Proposition 3.11. If X is a GO-space and if its ordered extension X∗

has a σ-closed-discrete dense subset, then X is a σ♯-space provided X is
CSS.

From Lemma 2.6, Corollary 3.4, Corollary 3.9, and Corollary 3.5, we
obtain the following.

Proposition 3.12. Suppose X is a GO-space with a σ-closed-discrete
dense subset, then the following are equivalent:

(a) X is CSS;
(b) X has a G∗

δ-diagonal;
(c) X has a Gδ-diagonal;
(d) X has a quasi-G∗

δ-diagonal;
(e) X has a quasi-Gδ-diagonal;
(f) X is σ♯-space.

Definition 3.13 (see [15]). Let σ be the set of all finite sequences of
positive integers and let Σ be the set of all infinite sequences of positive
integers. For a point n = (n1, n2, ...) of Σ and for k ≥ 1, write n|k =
(n1, ..., nk). A space X is said to have a G -Souslin diagonal if for each
p ∈ σ there is an open subset G(p) of X×X such that {(x, x) : x ∈ X} =∪
{

∞∩
k=1

G(n|k) : n ∈ Σ}.

Lemma 3.14 (see [15]). If a GO-space has a G -Souslin diagonal, then it
is a σ♯-space, and therefore is CSS.

Following the proof of Lemma 3.14 in [15], we obtain the following
corollary.

Corollary 3.15. If a GO-space has a G -Souslin diagonal, then it has a
quasi-Gδ-diagonal.

Corollary 3.16. If a GO-space has a quasi-Gδ-diagonal, then it is a
σ♯-space.

Proposition 3.12 and Lemma 3.14 yield the following corollary.

Corollary 3.17. Suppose X is a GO-space with a σ-closed-discrete dense
subset. If X has a G -Souslin diagonal, then X has a G∗

δ-diagonal.

Example 3.18. There is a non-metrizable LOTS having a G -Souslin
diagonal; hence, a LOTS can have a G -Souslin diagonal without having a
G∗

δ-diagonal.
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Proof. Let X = {(x, n) ∈ R × Z: if x is rational, then n = 0} and or-
der X lexicographically. The open-interval topology of that order has a
σ-disjoint base and is, therefore, quasi-metrizable. Then X is not metriz-
able, but X has a G -Souslin diagonal (see [15]). Clearly, X does not have
a G∗

δ-diagonal because any LOTS with a Gδ-diagonal is metrizable (see
[25]). �
Lemma 3.19 (see [15]). Suppose that each point of a space X is a Gδ in
X and that X has at most countably many non-isolated points. Then X
has a G -Souslin diagonal.

Lemma 3.19, along with Definition 3.1, yields the following corollary.

Corollary 3.20. Suppose that a space X has at most countably many
non-isolated points. If X has a Gδ-diagonal, then X has a G -Souslin
diagonal.

Definition 3.21 (see [22]). A topological space (X, τ) is an α-space if
there is a function g (called an α-function for X) from {1, 2, 3, · · · } ×X
into τ such that

(a) {x} =
∞∩

n=1
g(n, x) for each x in X;

(b) if y ∈ g(n, x), then g(n, x) ⊆ g(n, y) for each n.

Lemma 3.22 (see [22]). Every σ♯-space is an α-space.

Proposition 3.23. Let X be a LOTS. If X is CSS, then X is an α-space.

Proof. Lemma 3.22, along with the equivalence of a σ♯-space and CSS in
any LOTS [15] and Corollary 3.9, yields this result. �
Corollary 3.24. If X is a GO-space with a σ-closed-discrete dense set
and if X is CSS, then X is an α-space.

Corollary 3.25. Any quarter-stratifiable GO-space is an α-space.

4. CSS Ordered Extensions of GO-Spaces

Lemma 4.1 (see [10]). Suppose that X is a perfect GO-space and X =
Y ∪M , where, in their relative topologies, Y has a Gδ-diagonal and M is
metrizable. Then X has a Gδ-diagonal.

Lemma 4.1 yields a CSS sum theorem for GO-spaces with a σ-closed-
discrete dense subset that have a large metrizable part. (Our next result
is a variant of Proposition 4.5 in [10].)

Proposition 4.2. Let X be a GO-space with a σ-closed-discrete dense
subset. If X = Y ∪M , where Y is CSS and M is metrizable, then X has
a Gδ-diagonal and therefore X is CSS.
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Proof. Suppose X is a GO-space with a σ-closed-discrete dense subset,
then X is perfect and the subspace Y also has a σ-closed-discrete dense
subset (see [12]). In light of Y being CSS and Lemma 2.6, Y has a
Gδ-diagonal. Applying Lemma 4.1, we see that X has a Gδ-diagonal.
Therefore, Lemma 2.2 or Lemma 2.6 completes the proof. �

Lemma 4.1 and Proposition 4.2 both have a surprising corollary. Recall
that for any GO-space (X, τ,<), there is a canonical LOTS (X∗, τ∗, <∗)
that contains X as a closed subspace, where X∗ is obtained by adding
a certain collection of isolated points to X and where <∗ is a natural
lexicographic extension of < (see [25]). It is often of interest to know
which topological properties of X are passed on to X∗. Example 4.13 in
[2] shows that being a CSS space is not a property of that type. But we
can obtain the following.

Corollary 4.3. For any GO-space X, the following are equivalent:
(a) X∗ is metrizable;
(b) X is metrizable;
(c) X has a Gδ-diagonal and X∗ is perfect;
(d) X∗ has a Gδ-diagonal.

Proof. That (d) ⇒ (a) follows from the fact that any LOTS with a Gδ-
diagonal is metrizable.

Clearly, (a) ⇒ (b) and it is known (see [25]) that if X is metrizable,
then so is X∗; thus, X∗ is perfect. Hence, (b) ⇒ (c).

To see that (c) ⇒ (d), suppose X has a Gδ-diagonal. Note that X∗

is perfect and X∗ = X ∪M , where M is a certain set of isolated points.
Then applying Lemma 4.1, we see that X∗ satisfies (d). �

The following corollary is a consequence of Corollary 4.3 and the fact
that any G∗

δ-diagonal is a Gδ-diagonal.

Corollary 4.4. For any GO-space X, the following are equivalent:
(a) X∗ is metrizable;
(b) X is metrizable;
(c) X has a G∗

δ-diagonal and X∗ is perfect;
(d) X∗ has a G∗

δ-diagonal.

Lemma 2.1(a) and Corollary 4.3 allow us to obtain an analogous result
for quarter-stratifiability in GO-spaces.

Corollary 4.5 (see [10]). For any GO-space X, the following are equiv-
alent:

(a) X∗ is metrizable;
(b) X is metrizable;
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(c) X is quarter-stratifiable and X∗ is perfect;
(d) X∗ is quarter-stratifiable.

Lemma 2.1(a), Lemma 2.3, and Lemma 3.3 yield the following corol-
lary.

Corollary 4.6. Any quarter-stratifiable GO-space has a G∗
δ-diagonal.

Remark 4.7. By contrast with the best known result for quarter- stratifi-
ability in GO-spaces (see Corollary 4.7 in [2]) and the result for GO-spaces
with a G∗

δ-diagonal above, we may see that the result for GO-spaces with
a Gδ-diagonal is best.

Proposition 4.2 also has a surprising corollary for the CSS property in
GO-spaces.

Corollary 4.8. For any GO-space X, if X∗ has a σ-closed-discrete dense
subset, then the following are equivalent:

(a) X∗ is CSS;
(b) X is CSS ;
(c) X∗ is metrizable;
(d) X is metrizable.

Proof. That (a) ⇒ (b) follows from the fact that the CSS property is
hereditary.

Clearly, (c) ⇒ (d) and it is known (see [25]) that if X is metrizable,
then so is X∗; thus, X∗ is CSS. Hence, (d) ⇒ (a).

To complete the proof, we must show that (b) ⇒ (c), so suppose X is
CSS. Because X∗ = X ∪M , where M is a certain set of isolated points,
assertion Proposition 4.2 yields that X∗ is CSS, and hence (see Lemma
2.6) has a Gδ-diagonal. But any LOTS with a Gδ-diagonal is metrizable
(see [25]). Hence, X∗ satisfies (c). �

A similar result for GO-spaces with a quasi-Gδ-diagonal (a quasi-G∗
δ-

diagonal, a σ♯-space) is listed in the following corollary, which is a conse-
quence of Lemma 2.2, Corollary 3.9, and Corollary 4.8.

Corollary 4.9. For any GO-space X, if X∗ has a σ-closed-discrete dense
subset, then the following are equivalent:

(a) X∗ is metrizable;
(b) X is metrizable;
(c) X∗ has a quasi-G∗

δ-diagonal;
(d) X has a quasi-G∗

δ-diagonal;
(e) X∗ has a quasi-Gδ-diagonal;
(f) X has a quasi-Gδ-diagonal;
(g) X∗ is a σ♯-space;
(h) X is a σ♯-space.
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We obtain the following corollary from Lemma 3.19.

Corollary 4.10. Suppose that each point of a GO-space X is a Gδ in
X and that X has at most countably many non-isolated points. Then X∗

has a G -Souslin diagonal, and therefore is a σ♯-space.

Proof. Because X∗ = X ∪M , where M is a certain set of isolated points,
assertion Lemma 3.19 yields that X∗ has a G -Souslin diagonal. The other
is a consequence of Lemma 3.14. �

Corollary 4.11. For any GO-space X, if X∗ has a σ-closed-discrete
dense subset, then the following are equivalent:

(a) X has a G -Souslin diagonal;
(b) X∗ has a G -Souslin diagonal;
(c) X∗ is metrizable;
(d) X is metrizable.

Proof. Clearly, (c) ⇒ (d) ⇒ (a).
That (b) ⇒ (c) is a consequence of Corollary 3.17 and Corollary 4.4.
To complete the proof, we must show that (a) ⇒ (b), so suppose X

has a G -Souslin diagonal. Clearly, X has a σ-closed-discrete dense subset.
Using Corollary 3.17, we obtain that X has a G∗

δ-diagonal. According to
Corollary 4.4, X∗ is metrizable; thus, X∗ has a G -Souslin diagonal. Hence,
X∗ satisfies (b). �

Lemma 4.12 (see [2]). Suppose that X is normal and sub-metacompact
(= θ-refinable). If X is locally CSS, then X is CSS.

The following corollary is an immediate consequence of Lemma 4.12
and the fact that any perfectly normal GO-space is paracompact [25].

Corollary 4.13. Suppose that X is a perfectly normal GO-space. If X
is locally CSS, then X is CSS.

We close this section with some results on the role of the CSS and
quarter-stratifiable properties in metrization theory among LOTS (or GO-
spaces). First, recall a classical metrization theorem of Arhangel’skii.

Lemma 4.14 (see [8]). Suppose X is a paracompact p-space in the sense
of Arhangel’skii. Then the following are equivalent:

(a) X is metrizable;
(b) X has a Gδ-diagonal.

Proposition 4.15. Let X be a LOTS. Then X is metrizable if and only
if X is CSS with a σ-closed-discrete dense subset.
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Proof. It is enough to show that every CSS LOTS with a σ-closed-discrete
dense subset is metrizable. To that end, we invoke the corollary to Theo-
rem 2.1.6 in [30] to see that any LOTS with a σ-closed-discrete dense sub-
set must be a paracompact p-space in the sense of Arhangel’skii, and then
use Lemma 2.6 and Lemma 4.14 to conclude that X is metrizable. �

Remark 4.16. In the light of Proposition 4.15, each quarter-stratifiable
LOTS is metrizable. However, as the Sorgenfrey line shows, a GO-space
can be quarter-stratifiable and nonmetrizable.

Results in [3] allow us to extend Proposition 4.15 to a perfect CSS
LOTS that has certain other properties.

Proposition 4.17. Suppose X is a perfect CSS LOTS. Then the follow-
ing are equivalent:

(a) X is metrizable;
(b) X is the union of countably many metrizable subspaces;
(c) X can be mapped by a continuous s-mapping onto some topological

space with a Gδ-diagonal.

Lemma 4.18 (see [2]). Let X be a completely regular space. Then X
is metrizable if and only if X is a paracompact p-space in the sense of
Arhangel’skii and is CSS.

Proposition 4.19. Let X be a GO-space. Then X is metrizable if and
only if X is CSS and a p-space.

Proof. That X is a completely regular space follows from the fact that
any GO-space is collectionwise normal [25]. Half of the proof follows from
Lemma 4.18.

For the converse, suppose X is CSS and a p-space. To get the result,
we can apply Lemma 4.18, because any CSS GO-space is paracompact
[15]. �

Definition 4.20 (see [22]). A topological space (X, τ) is a β-space if
there is a function g (called a β-function for X) from {1, 2, 3, · · · } × X
into τ such that

(a) for all x ∈ X and each n ≥ 1, x ∈ g(n, x);
(b) if x ∈ g(n, xn) for each n, then the sequence ⟨xn⟩ has a cluster

point.

Definition 4.21 (see [23]). A topological space (X, τ) is a γ-space if
there is a function g (called a γ-function for X) from {1, 2, 3, · · · } × X
into τ such that

(a) x ∈
∞∩

n=1
g(n, x) for each x in X;
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(b) if yn ∈ g(n, xn) and xn ∈ g(n, yn) for each n, then the sequence
⟨xn⟩ has a cluster point. It is easily seen that a γ-space is CSS.

From Corollary 3.24 and Definition 4.21 we have the following.

Corollary 4.22. Let X be a GO-space with a σ-closed-discrete dense
subset. Then every γ-space is an α-space.

Lemma 4.23 (see [23]). Every T1 space which is a β-space and a γ-space
is developable.

Lemma 4.23, along with the equivalence of CSS and a γ-space in any
LOTS (see [15]), yields the following.

Proposition 4.24. Let X be a LOTS. Then X is metrizable if and only
if X is CSS and a β-space.

Lemma 4.25 (see [22]). Let X be a regular space. Then X is semi-
stratifiable if and only if X is a β-space with a G∗

δ-diagonal.

Lemma 4.26. Let X be a GO-space with a Gδ-diagonal. Then X has a
G∗

δ-diagonal.

Proof. Suppose X is a GO-space with a Gδ-diagonal. To get the result,
apply the fact that any GO-space with a Gδ-diagonal is paracompact [25]
and any paracompact space with a Gδ-diagonal has a G∗

δ-diagonal. �

The following proposition is a consequence of lemmas 4.25 and 4.26.

Proposition 4.27. Let X be a GO-space. Then X is metrizable if and
only if X is a β-space with a Gδ-diagonal.

Lemma 2.6 and Proposition 4.27 yield the following corollary.

Corollary 4.28. Let X be a GO-space. Then X is metrizable if and only
if X is CSS and a β-space with a σ-closed-discrete dense subset.

Corollary 4.29. Suppose X is a perfect CSS GO-space that is also a
β-space. Then the following are equivalent:

(a) X is metrizable;
(b) X is the union of countably many metrizable subspaces;
(c) X can be mapped by a continuous s-mapping onto some topological

space with a Gδ-diagonal.

Corollary 4.30. Let X be a GO-space. Then X is metrizable if and only
if X is quarter-stratifiable and a β-space.
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5. Special Bases in Quarter-Stratifiable GO-Spaces

Lemma 5.1 (see [7]). Let X be a GO-space. Then the following asser-
tions are equivalent:

(a) X has a σ-disjoint base (equivalently, is quasi-developable);
(b) X has a point-countable base and a quasi-Gδ-diagonal.

Lemma 2.1(a) and Lemma 5.1 give the following corollary.

Corollary 5.2. Any GO-space with a σ-disjoint base is CSS.

Example 5.3. There is a GO-space with a point-countable base which
is not CSS (see Example 5.8).

Lemma 5.4 (see [5]). A GO-space X has a weakly uniform base if and
only if X has a σ-disjoint base (equivalently, is quasi-developable) and has
a Gδ-diagonal.

We obtain the following corollary from Lemma 5.1 and Lemma 5.4.

Corollary 5.5. A GO-space X has a weakly uniform base if and only if
X has a point-countable base and a Gδ-diagonal.

Lemma 5.6 (see [3]). Let X be a GO-space. Then the following asser-
tions are equivalent:

(a) X is metrizable;
(b) X has a point-countable base and a σ-closed-discrete dense subset;
(c) X has a weak monotone ortho-base and a σ-closed-discrete dense

subset.

The following proposition is an immediate consequence of Lemma 2.1,
Corollary 5.5, and Lemma 5.6.

Proposition 5.7. Let X be a GO-space. Then the following assertions
are equivalent:

(a) X is metrizable;
(b) X is quarter-stratifiable and has a point-countable base;
(c) X is quarter-stratifiable and has a weakly uniform base;
(d) X is quarter-stratifiable and has a weak monotone ortho-base.

Example 5.8. In [17], Gary Gruenhage constructed a LOTS with a
point-countable base that is not quasi-metrizable. In light of Proposi-
tion 4.7 in [2], that space cannot be CSS. Therefore, the space is not
quarter-stratifiable.

Example 5.9. There is a GO-space with a weakly uniform base that is
CSS but not quarter-stratifiable.
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Proof. The Michael line M , which is a non-metrizable CSS GO-space, was
shown by R. W. Heath and W. F. Lindgren to have a weakly uniform base
[21]. Therefore, by Proposition 5.7, M is not quarter-stratifiable. �
Example 5.10. There is a LOTS with a weak monotone ortho-base that
is not quarter-stratifiable.

Proof. Using the extended Big Bush appearing in section 3 of [6], we can
obtain a LOTS X that has a weak monotone ortho-base but not a point-
countable base. Then, by Proposition 5.7, X is not quarter-stratifiable.

�
We close this section with a proposition which is a consequence of

Lemma 5.1 and Proposition 5.7.

Proposition 5.11. Let X be a quarter-stratifiable GO-space. Then the
following assertions are equivalent:

(a) X has a point-countable base;
(b) X has a σ-disjoint base;
(c) X has a weakly uniform base;
(d) X has a weak monotone ortho-base.

Recall that a space X is called weak-σ if and only if there exists a σ-

disjoint network M =
∞∩

n=1
Mk such that, for each k ∈ N,Mk is discrete

with respect to M∗
k [28].

Theorem 5.12. A GO-space is metrizable if and only if it is a weak-σ-
space and a quarter-stratifiable space.

Proof. Apply [4, Theorem 7.1], which states that a GO-space is quasi-
developable if and only if it is a weak-σ-space with a quasi-Gδ-diagonal,
and Lemma 2.1. Since a space X is developable if and only if X is quasi-
developable and perfect, and every developable GO-space is metrizable,
the proof is complete. �
Lemma 5.13 (see [11]). A GO-space is metrizable if and only if it is a
quasi-developable β-space.

Proposition 5.14. A GO-space is metrizable if and only if it is a weak-
σ-space and a β-space with a quasi-Gδ-diagonal.

Proof. Apply [4, Theorem 7.1], (as in the proof of Theorem 5.12) and
Lemma 5.13. �
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