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SPAN OF SUBCONTINUA

NADEEKA DE SILVA

Abstract. Let Y be a continuum consisting of a ray limiting to
a continuum X. We prove that σ(Y ) ≤ max{σ(X), σ∗

0(X)}. When
σ(X) = 0 or when X is a simple closed curve, we have that σ(Y ) =

σ(X). Using this, we construct for each closed subset G of [0, 1]
with 0 ∈ G a one-dimensional continuum YG such that the set of
values of the span of subcontinua of YG is the set G. Some other
results related to this are also presented.

1. Introduction

The concept of the span of a metric space was introduced by A. Lelek
[4]. In [5], he defined three other versions of span called surjective span,
semispan, and surjective semispan. A continuum is a nonempty, compact,
connected metric space, and a ray is a homeomorphic copy of (0, 1]. Our
focus is directed on studying the span of a continuum Y, consisting of
a ray limiting to continuum X, and on the set of values of the span of
subcontinua of a continuum.

Definition 1.1 (S(A)). Let X be a metric space with distance d. Let A
be a nonempty subset of X ×X. S(A) is defined by

S(A) = inf{d(x, y) : (x, y) ∈ A}.

Definition 1.2 (Span). Let X be a continuum with distance d. For each
nonempty subset A of X×X, let S(A) be as in the above definition. The
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span of continuum X is defined by

span(X) = σ(X) =

sup{S(A) : A ⊂ X ×X, A is connected, and π1(A) = π2(A)}
where π1 and π2 are the projection maps. The set A in this definition can
be considered to be closed.

The surjective span σ∗(X) of X is defined similarly. The only difference
is that we impose one additional condition π1(A) = π2(A) = X on sets
A. To obtain the definition of the semispan σ0(X) of X, we replace
the condition π1(A) = π2(A) in the definition of σ(X) by the inclusion
π1(A) ⊂ π2(A), and to define the surjective semispan σ∗

0(X) of X we
additionally require that π2(A) = X.

It follows directly from the definitions that the following inequalities
hold:

0 ≤ σ∗(X) ≤ σ(X) ≤ σ0(X) ≤ diam(X)(1.1)
0 ≤ σ∗(X) ≤ σ∗

0(X) ≤ σ0(X) ≤ diam(X)(1.2)
σ(H) ≤ σ(X), σ0(H) ≤ σ0(X) for H ⊂ X.(1.3)

Consider a continuum Y consisting of a ray limiting to continuum X.
For arcs and arc-like continua, all versions of span are zero. Thus, it
is interesting to study the span of Y . Does σ(X) = σ(Y )? We obtain
a partial result in answering this question: σ(Y ) ≤ max(σ(X), σ∗

0(X)).
In [5], Lelek gives an example of a 4-od such that the span is less than
the surjective semispan. In [3], L. C. Hoehn and A. Karasev also give
an example of such a triod. Thus, it remains an open question whether
σ(Y ) = σ(X) in general. This inequality can be improved to σ(Y ) = σ(X)
under any of the following conditions:

• σ(X) = 0.
• X is a simple closed curve.
• σ∗

0(X) ≤ σ(X).
If the second condition is satisfied, that is, if X is a simple closed curve,
then σ∗

0(X) = σ(X). So the second condition implies the third condition.
We also explore how these results can be applied to other versions of span.

We use the above results to construct continua such that the set of
values of the span of subcontinua is equal to specific sets. There are other
uses of these results. In private communication, we learned that Tina
Sovič has recently given an independent proof of the span zero case and
she is using it to construct more examples of nonchainable continua with
span zero.

Furthermore, if Y is a continuum consisting of a ray limiting to con-
tinuum X and Z is a continuum formed by a ray limiting to Y , then
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σ(Z) ≤ max(σ(X), σ∗
0(X)). Thus, if we start from a continuum and keep

adding limiting rays in this fashion, the span of the resulting continuum
is bounded by the maximum of the span and the surjective semispan of
the starting continuum, and equality is obtained under any of the above
conditions.

For a given continuum X, our focus is directed on the set of values of
the span of subcontinua of X.

Definition 1.3 (B(X)). Let X be a continuum. B(X) is defined by:

B(X) = {σ(H) : H is a subcontinuum of X } .

In most of the cases, we shall assume that the span of X is 1. The
following facts are straightforward.

• If X is a simple closed curve with σ(X) = 1, then B(X) = {0, 1}.
• If X is a simple triod with σ(X) = 1, then B(X) = [0, 1].
• 0 ∈ B(X).

Due to the above observations, we study the possibilities of B(X) be-
tween the two extreme cases of {0, 1} and [0, 1]. This leads us to the
following question.

Question 1.4. Given that M ⊂ [0, 1] with 0, 1 ∈ M , does there exist a
continuum XM such that B(XM ) = M?

In answering this question, we obtain the following results.
• For each closed subset M of [0, 1] with 0, 1 ∈ M , there exists a

one-dimensional continuum YM such that the set of values of the
span of subcontinua of YM is the set M . There are uncountably
many incomparable continua for each closed set M .

• Except for the case where M has an infinite number of nondegen-
erate components, the examples constructed are planar.

2. Span of a Continuum Consisting of a Ray
Limiting to a Continuum

In this section we obtain bounds on the span, semispan, surjective
span, and surjective semispan of continuum Y consisting of a ray limiting
to continuum X.

Definition 2.0.1 (ray limiting to X). Let X be a continuum and R be
a ray. R is a ray limiting to X if

(1) X ∩R = ∅,
(2) X ∪R = R, and
(3) R is compact.



262 N. DE SILVA

2.1. Span.

First, we provide the following propositions which will be used later.

Proposition 2.1.1. Let X be a continuum and R be a ray limiting to X.
Let Y = X ∪ R. There exists a continuous surjection f : Y → [0, 1] such
that

(1) y ∈ X if and only if f(y) = 0 and
(2) f is one-to-one on R.

Proposition 2.1.2. Let X be a continuum and R be a ray limiting to X.
Let Y = X ∪R and let A be a subcontinuum of Y ×Y such that S(A) > 0
and π1(A) ⊆ π2(A). Then A ∩ (X ×X) ̸= ∅.

Proof. Note that πi(A) ̸⊂ R for i ∈ 1, 2. (Every subcontinuum of R has
span zero.) Let f be a continuous function as in Proposition 2.1.1. Define
the functions gi : A → [0, 1] by gi = f ◦ πi for i = 1, 2. The functions g1
and g2 satisfy the hypotheses of the coincidence point theorem. Therefore,
there exists a point (x, y) in A such that g1(x, y) = g2(x, y), which implies
f(x) = f(y). Since f(x) = f(y), (x, y) ∈ (X ×X) ∪ (R×R). If (x, y) ∈
R ×R, then, since f is one-to-one on R, x = y and S(A) = 0, which is a
contradiction. Therefore, (x, y) ∈ X ×X and A ∩ (X ×X) ̸= ∅. �

Proposition 2.1.3. Let X be a continuum and R be a ray limiting to X.
Let Y = X ∪ R and D be a subcontinuum of Y × Y . If πi(D) ∩ X ̸= ∅
and πi(D) ∩R ̸= ∅, where i ∈ {1, 2}, then X ⊂ πi(D).

Let us prove the main result for this section.

Theorem 2.1.4. Let X be a continuum and R be a ray limiting to it.
Let Y = X ∪R. Then σ(Y ) ≤ max(σ(X), σ∗

0(X)).

Proof. If σ(Y ) = 0, then, since X ⊂ Y , we have that σ(Y ) = σ(X) = 0.
Therefore, we can assume that σ(Y ) > 0.

From the definition of span, there exists a subcontinuum A of Y × Y
such that S(A) = σ(Y ) and π1(A) = π2(A). From Proposition 2.1.2,
A ∩ (X ×X) ̸= ∅.

Case 1: A ⊂ X ×X.
In this case, σ(Y ) = S(A) ≤ σ(X) ≤ σ(Y ), so σ(Y ) = σ(X).
Case 2: A ̸⊂ X ×X.
Let C be any component of A∩(X ×X). For each ϵ > 0, let N(C, ϵ) =

{t ∈ A : d(t, C) < ϵ}. Let Cϵ be the component of N(C, ϵ) that contains C.
From the boundary bumper theorem, Cϵ has a limit point on the boundary
of N(C, ϵ). Therefore, Cϵ is a connected subset of A that properly contains
C. So Cϵ contains a point in the complement of X×X, i.e., π1(Cϵ)∩R ̸= ∅
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or π2(Cϵ)∩R ̸= ∅. Consequently, using Proposition 2.1.3, it follows that,
for each ϵ > 0, X ⊂ π1(Cϵ) or X ⊂ π2(Cϵ). Without loss of generality,
there exists a sequence {ϵn}∞n=1 converging to 0 such that, for all ϵn,
X ⊂ π1(Cϵn). Hence, X ⊂ π1(C). Note that C is a connected subset of
X×X and that C satisfies the condition π2(C) ⊂ π1(C) = X. Therefore,
in this case, we conclude that σ(Y ) ≤S(C)≤ σ∗

0(X).

In general, we have that σ(Y ) ≤ σ∗
0(X) or σ(Y ) ≤ σ(X), and hence

σ(Y ) ≤ max{σ∗
0(X), σ(X)}. �

As mentioned in the introduction, due to examples by Lelek and by
Hoehn and Karasev, it remains an open question whether σ(Y ) = σ(X)
in general. However, equality can be obtained in the following special
cases. The proofs of the following corollaries are straightforward and
hence omitted.

Corollary 2.1.5. Let X be a continuum and R be a ray limiting to X.
Let Y = X ∪R. If σ∗

0(X) ≤ σ(X), then σ(Y ) = σ(X).

Corollary 2.1.6. Let X be a continuum and R be a ray limiting to X.
Let Y = X ∪R. If X is a simple closed curve, then σ(Y ) = σ(X).

In [1], James Francis Davis proved that σ(X) = 0 if and only if σ0(X) =
0. Using this result, we have the following corollary.

Corollary 2.1.7. Let X be a continuum and R be a ray limiting to X.
Let Y = X ∪R. If σ(X) = 0, then σ(Y ) = σ(X).

Sovič has recently obtained independently and by a different argument
the result in Corollary 2.1.7.

2.2. Other versions of span.

Here, similar results to the one in Theorem 2.1.4 are given for the
other versions of span. The proofs are similar to the proof of Theorem
2.1.4, and we use inequalities (1.1), (1.2), and (1.3) to improve the results.

Theorem 2.2.1. Let X be a continuum and R be a ray limiting to X.
Let Y = X ∪R. Then σ0(Y ) = σ0(X).

Theorem 2.2.2. Let X be a continuum and R be a ray limiting to X.
Let Y = X ∪R. Then σ∗

0(Y ) ≤ σ∗
0(X).

Corollary 2.2.3. Let X be a continuum and R be a ray limiting to X.
Let Y = X ∪R. Then σ∗(Y ) ≤ σ∗

0(X).

Corollary 2.2.4. Let X be a continuum and R be a ray limiting to X.
Let Y = X ∪ R. If σ(X) = 0, then all versions of the span values of Y
are 0.
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Theorem 2.2.5. Let Y be a continuum consisting of a ray limiting to
continuum X. Let R be a ray limiting to Y. Let Z = Y ∪ R. Then
σ(Z) ≤ max(σ(X), σ∗

0(X)).

Proof. By applying Theorem 2.1.4 to Z,

σ(Z) ≤ max(σ(Y ), σ∗
0(Y )).(2.1)

By applying Theorem 2.1.4 to Y,

σ(Y ) ≤ max(σ(X), σ∗
0(X)).(2.2)

By applying Theorem 2.2.2 to Y,

σ∗
0(Y ) ≤ σ∗

0(X).(2.3)

From inequalities (2.1), (2.2), and (2.3), σ(Z) ≤ max(σ(X), σ∗
0(X)).

�

3. Span of Subcontinua

In this section, we construct, for each closed subset G of [0, 1] with
0 ∈ G, a one-dimensional continuum YG such that the B(YG) = G. Except
for the case where G has an infinite number of nondegenerate components,
all of the examples are planar. First, we construct the planar examples.

3.1. Construction of a continuum Y such that B(Y ) is
equal to a given special closed set.

First, we construct planar, one-dimensional continua such that B(X)
is

(1) a finite set,
(2) a set which is the union of {0} and a closed interval that does not

contain 0, or
(3) a Cantor set.

Let F be any finite subset of [0, 1] that contains 0 and 1. We construct
a continuum YF such that B(YF ) = F . In constructing this continuum.
we use an extended version of Theorem 2.1.4. The following propositions
will be helpful.

Proposition 3.1.1. Let Cn, n = 1, 2, 3, . . . ,m, be disjoint continua. Let
Rn, n = 1, 2, 3, . . . ,m−1, be pairwise disjoint copies of (0, 1) such that the
end of Rn corresponding to 0 limits to Cn and the other end limits to Cn+1

and the Rn’s are disjoint from the Cn’s. Let Yn = Rn = Cn ∪Rn ∪Cn+1

and Y =
m−1∪
n=1

Yn. There exists a continuous surjection f : Y → [0, 1] such

that
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(1) y ∈ Cn if and only if f(y) = rn, for n = 1, 2, 3, . . .m and
(2) y ∈ Rn if and only if f(y) = hn(y), for n = 1, 2, 3, . . . ,m− 1,

where 0 = r1 < r2 < r3 < ... < rm = 1 and for each n = 1, 2, 3, 4, . . .m−1,
hn : Rn → (rn, rn + 1) is a homeomorphism.

Proposition 3.1.2. Let Y be a continuum as in Proposition 3.1.1. If A
is a subcontinuum of Y ×Y such that S(A) > 0 and π1(A) = π2(A), then

A ∩
(

m∪
n=1

(Cn × Cn)

)
̸= ∅.

Proof. Note that πi(A) ̸⊂
m−1∪
n=1

Rn. Let f be a continuous function as in

Proposition 3.1.1. Define the functions gi : A → [0, 1] by gi = f ◦ πi

for i = 1, 2. The functions g1 and g2 satisfy the hypotheses of the coin-
cidence point theorem. Therefore, there exists a point (x, y) in A such
that g1(x, y) = g2(x, y), which implies f(x) = f(y). Since f(x) = f(y),

(x, y) ∈
(

m∪
n=1

(Cn × Cn)

)
∪
(

m−1∪
n=1

(Rn ×Rn)

)
. Assume that (x, y) ∈

m−1∪
n=1

(Rn ×Rn). Then x = y, and hence S(A) = 0, which is a contradic-

tion. Therefore, (x, y) ∈
m∪

n=1
(Cn × Cn), and hence A∩

(
m∪

n=1
(Cn × Cn)

)
̸=

∅. �

Proposition 3.1.3. Let Y be a continuum as in Proposition 3.1.1. Let
D be a subcontinuum of Y ×Y . If there exists an n such that πi(D)∩Cn ̸=
∅ and πi(D) ̸⊂ Cn for i = 1 or 2, then Cn ⊂ πi(D).

Theorem 3.1.4. Let Y be a continuum as in Proposition 3.1.1. There
exists n0 ∈ {1, 2, 3, . . . ,m} such that σ(Y ) ≤ max(σ(Cn0), σ

∗
0(Cn0)).

Proof. If σ(Y ) = 0, then, since for each n, Cn ⊂ Y , we have that σ(Y ) =
σ(Cn) = 0. Therefore, we can assume that σ(Y ) > 0.

From the definition of span, there exists a subcontinuum A of Y × Y
such that S(A) = σ(Y ) and π1(A) = π2(A). Note that from Proposition
3.1.2 there exists n0 such that A ∩ (Cn0

× Cn0
) ̸= ∅. Consider the two

cases.

Case 1: A ⊂ Cn0 × Cn0 .
In this case, σ(Y ) = S(A) ≤ σ(Cn0

) ≤ σ(Y ), so σ(Y ) = σ(Cn0
).

Case 2: A ̸⊂ Cn0 × Cn0 .
Let C be any component of A ∩ (Cn0 × Cn0). For each ϵ > 0, let

N(C, ϵ) = {t ∈ A : d(t, C) < ϵ}. Let Cϵ be the component of N(C, ϵ)
that contains C. From the boundary bumper theorem, Cϵ has a limit
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point on the boundary of N(C, ϵ). Therefore, Cϵ is a connected subset
of A that properly contains C. So Cϵ contains a point in the comple-
ment of Cn0 × Cn0 , i.e., π1(Cϵ) ̸⊂ Cn0 or π2(Cϵ) ̸⊂ Cn0 . Consequently,
using Proposition 3.1.3, we obtain that, for each ϵ > 0, Cn0 ⊂ π1(Cϵ) or
Cn0 ⊂ π2(Cϵ). Without loss of generality, there exists a sequence {ϵn}∞n=1

converging to 0 such that, for all ϵn, Cn0 ⊂ π1(Cϵn). Hence, Cn0 ⊂ π1(C).
Note that C is a connected subset of Cn0 × Cn0 and that C satisfies the
condition π2(C) ⊂ π1(C) = Cn0 . Therefore, in this case, we have that
σ(Y ) ≤ S(C) ≤ σ∗

0(Cn0).

In general, we have that σ(Y ) ≤ σ∗
0(Cn0) or σ(Y ) ≤ σ(Cn0), and hence

σ(Y ) ≤ max{σ∗
0(Cn0), σ(Cn0)}. �

Corollary 3.1.5. For n = 1, 2, 3, . . . ,m, let Cn be disjoint continua such
that σ∗

0(Cn) ≤ σ(Cn). Let Y be a continuum as in Proposition 3.1.1. Then
there exists n0 ∈ {1, 2, 3, . . . ,m} such that σ(Y ) = σ(Cn0). Furthermore,
σ(Cn0) = max{σ(Cn) : n = 1, 2, 3, . . . ,m}.

Proof. From Theorem 3.1.4 and from the condition σ∗
0(Cn) ≤ σ(Cn) for

each n, it follows that σ(Y ) = σ(Cn0) for some n0 ∈ {1, 2, 3, . . . ,m}. But
σ(Cn) ≤ σ(Y ) = σ(Cn0) for all n. Hence, σ(Cn0) = max{σ(Cn) : n =
1, 2, 3, . . . ,m}. �

Theorem 3.1.6. For any finite subset F of [0, 1] that contains 0 and 1,
there exists a continuum YF such that B(YF ) = F .

Proof. First, we construct the continuum YF . Let F = {r1, r2, r3 . . . rm}
where 0 = r1 < r2 < r3 < . . . < rm = 1. For each n, let Cn be a circle in
R2 with center (0, 0) and diameter rn. For n = 1, 2, 3, . . . ,m − 1, let Rn

be disjoint copies of (0, 1) that lie in R2, such that the end corresponding
to 0 limits to Cn and the other end limits to Cn+1. Let Yn = Rn =

Cn ∪Rn ∪ Cn+1 and YF =
m−1∪
n=0

Yn. (See Figure 1.)

We claim that B(YF ) = {σ(S) : S is a subcontinuum of YF } = F . The
proof is given below.

Consider any subcontinuum S of YF . Let f : YF → [0, 1] be a function
defined as in Proposition 3.1.1. Then f(S) ⊆ I is compact and connected.

Case 1: f(S) is a singleton and f(S) ̸∈ F .
In this case, S is a singleton; thus, σ(S) = 0.
Case 2: f(S) is a singleton and f(S) ∈ F .
In this case, S ⊆ Cr for some r ∈ F . Hence, σ(S) = diam{Cr} or

σ(S) = 0.
Case 3: f(S) is a closed interval and f(S) ⊂ FC .
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Figure 1. Continuum YF .

In this case, S is an arc. Hence, σ(S) = 0.
Case 4: f(S) is a closed interval and f(S) ∩ F ̸= ∅.
In this case, S is a continuum consisting of circles and rays limiting

to them. Let L = f(S). f |S is a continuous function from S onto L.
Therefore, in a similar manner as in the proof of Proposition 3.1.2, we
obtain the following result:

If A is a subcontinuum of S × S such that S(A) > 0 and

π1(A) = π2(A), then A ∩
( ∪

r∈F∩L

Cr × Cr

)
̸= ∅.

Using this result, Proposition 3.1.3, and similar arguments as in the
proof of Theorem 3.1.4, we conclude that σ(S) = max{diam(Cr) : r ∈
F ∩ L}.

In any case, σ(S) ∈ F . Hence, B(Y ) ⊂ F . For any m ∈ F , there exists
a circle Cm ⊂ Y such that diam(Cm) = m. Therefore, F ⊂ B(Y ), and
hence F = B(Y ). �

In [7], Z. Waraszkiewicz shows that there is an uncountable family of
spirals that limit onto a circle which are pairwise incomparable in the
sense that no one admits a continuous surjection to another. So we get
the following result.

Corollary 3.1.7. For any finite subset F of [0, 1] that contains 0 and 1,
there exists an uncountable family YF of pairwise incomparable continua
such that, for each member Y ∈ YF , B(Y ) = F .

Before we go on to the general case, we present two more planar ex-
amples.
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Theorem 3.1.8. Let d(x, y) be the Euclidean distance in R2 and let YT =
L1 ∪ L2 ∪ L3 ∪ U , where

• L1 = {(x, 0) : x ∈ [2, 4]}
∪ {
(
(1 + e−θ) cos(θ), (1 + e−θ) sin(θ)

)
: θ ∈ [0,∞)},

• L2 = {(x, y) : y = −
√
3x : x ∈ [−2,−1]}

∪
{(

(1 + e−θ) cos(θ +
2π

3
), (1 + e−θ) sin(θ +

2π

3
)

)
: θ ∈ [0,∞)

}
,

• L3 = {(x, y) : y =
√
3x : x ∈ [−2,−1]}

∪
{(

(1 + e−θ) cos(θ +
4π

3
), (1 + e−θ) sin(θ +

4π

3
)

)
: θ ∈ [0,∞)

}
and

• U is the unit circle.
Then YT is a continuum and B(YT ) = {0} ∪ [2, σ(YT )]. Furthermore,

for any given 0 < t1 < t2 < 0, by adjusting the radius and arm lengths,
we can construct a continuum Y such that B(Y ) = {0} ∪ [t1, t2]. (See
Figure 2.)

Figure 2. Continuum YT .

Proof. Let l1, l2, and l3 be the endpoints of L1, L2, L3, respectively.

Consider the subcontinuum A of YT ×YT described by A =
6∪

n=1

An, where

(1) A1 = {l1} × (L2 ∪ U ∪ L3) ,
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(2) A2 = (L1 ∪ U ∪ L2)× {l3},
(3) A3 = {l2} × (L1 ∪ U ∪ L3) ,
(4) A4 = (L2 ∪ U ∪ L3)× {l1},
(5) A5 = {l3} × (L1 ∪ U ∪ L2), and
(6) A6 = (L1 ∪ U ∪ L3)× {l2}.

It is clear that A is a connected subset and that π1(A) = π2(A) and

inf{d(x, y) : (x, y) ∈ A1} = min{d(l1, L2 ∪ U ∪ L3)},
inf{d(x, y) : (x, y) ∈ A2} = min{d(l3, L1 ∪ U ∪ L2)},
inf{d(x, y) : (x, y) ∈ A3} = min{d(l2, L1 ∪ U ∪ L3)},
inf{d(x, y) : (x, y) ∈ A4} = min{d(l1, L2 ∪ U ∪ L3)},
inf{d(x, y) : (x, y) ∈ A5} = min{d(l3, L1 ∪ U ∪ L2)}, and
inf{d(x, y) : (x, y) ∈ A6} = min{d(l2, L3 ∪ U ∪ L1)}.

From the above equations, it follows that

inf{d(x, y) : (x, y) ∈ A} = min{d(li, Li+1 ∪ U ∪ Li+2 : i = 1, 2, 3}.
Therefore,

σ(YT ) ≥ inf{d(x, y) : (x, y) ∈ A} = min{d(li, Li+1∪U∪Li+2 : i = 1, 2, 3}.
The arms are extended far enough such that σ(YT ) > 2.

Consider any subcontinuum S of YT .
Case 1: There exists n in {1, 2, 3} such that Ln ∩ S = ∅.
If S is a point or an arc, then σ(S) = 0. Otherwise, from results in

previous sections, σ(S) = 2.
Case 2: Li ∩ S ̸= ∅ for each i ∈ {1, 2, 3}.
In this case, U ⊂ S; therefore, σ(S) ≥ 2. Hence, B(YT ) ⊂ {0} ∪

[2, σ(YT )].

There is a deformation retract of the entire continuum YT which is the
identity except on one arm, which it shortens. For any subcontinuum A
of YT ×YT , this deformation retract induces a homotopy of A. Under this
homotopy, S(A) changes continuously. Thus, σ(YT ) changes continuously
as the arm shrinks. Hence, for each value r in [2, σ(YT )], there exists
a subcontinuum S such that σ((S) = r. Therefore, B(YT ) = {0} ∪
[2, σ(YT )]. �

The example for the finite case can be modified to cover the case for
the Cantor set.

Proposition 3.1.9. Let K denote the Cantor set and K = {r/2 : r ∈ K}.
For each r ∈ K, let Cr be the circle in R2 with center (0, 0) and ra-
dius r. Consider the disjoint collection of open intervals G such that
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I∈G

I is the complement of K in [0, 1/2]. For each (a, b) ∈ G, let Rab

be a copy of (0, 1) such that the end that corresponds to 0 limits to Ca

and the other end limits to Cb, the Rab’s are pairwise disjoint, and the
Rab’s are disjoint from the Cr’s. Let Yab = Rab = Ca ∪ Rab ∪ Cb

and YK =

( ∪
(a,b)∈G

Yab

)
∪
( ∪

r∈K
Cr

)
. (See Figure 3). Then B(YK) =

{σ(S) : S is a subcontinuum of YK} = K.
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Figure 3. Continuum YK

Proof. There exists a continuous surjection f : YK → [0, 1] such that
(1) y ∈ Cr if and only if f(y) = r, and
(2) y ∈ Rab if and only if f(y) = hab(y), where, for each (a, b) ∈ G,

hab : Rab → (a, b) is a homeomorphism.
Hence, using similar arguments as in the case of a finite set, we obtain
that K = B(YK). �

As before, due to a result in [7], we get the following result.

Corollary 3.1.10. Let K denote the Cantor set. There exists an un-
countable family YK of pairwise incomparable continua such that, for each
member Y ∈ YK , B(Y ) = K.
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The examples we have discussed up to now are planar, but for the
general case we do not have a planar example. First, let us recall a well-
known theorem in general topology.

Theorem 3.1.11. Let M be a nonempty closed subset of [0, 1] and let K
denote the Cantor set. There exists a continuous surjection g : K → M .

Using the above theorem, we modify the example for a Cantor set to
cover the case of a closed set.

Theorem 3.1.12. Let K denote the Cantor set and let M be a nonempty
closed subset of [0, 1] which contains 0 and 1. Let g : K → M be a
continuous surjection such that g(0) = 0. For each r ∈ K, let Cr be the
circle parallel to the yz plane in R3 with center (r, 0, 0) and diameter g(r).
Consider the disjoint collection of open intervals G such that

∪
I∈G

I is the

complement of K in [0, 1]. For each (a, b) ∈ G, let Rab be a copy of (0, 1)
such that the end that corresponds to 0 limits to Ca and the other end
limits to Cb, the Rab’s are pairwise disjoint, and the Rab’s are disjoint

from the Cr’s. Let Yab = Rab = Ca ∪Rab ∪Cb and YM =

( ∪
(a,b)∈G

Yab

)
∪( ∪

r∈K

Cr

)
. Then B(YM ) = {σ(S) : S is a subcontinuum of YM} = M.

Proof. There exists a continuous surjection f : YM → [0, 1] such that
(1) y ∈ Cr if and only if f(y) = r, and
(2) y ∈ Rab if and only if f(y) = hab(y), where, for each (a, b) ∈ G,

hab : Rab → (a, b) is a homeomorphism.
Using similar arguments as in the case of a finite set, we obtain that
B(YM ) = M . �

As before, due to a result in [7], we get the following result.

Corollary 3.1.13. Let M be a closed subset of [0, 1] containing 1 and 0.
There exists an uncountable family YM of pairwise incomparable continua,
such that, for each member Y ∈ YM , B(Y ) = M .

Observe that continuum YM is not constructed in the plane.

4. Further Questions

The answers to the following questions could extend the results in this
paper in many different directions.

We observed that the inequality σ(Y ) ≤ max(σ(X), σ∗
0(X)) can be

improved to σ(Y ) = σ(X) when σ∗
0(X) ≤ σ(X).
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Question 4.1. Let X be a continuum and R be a ray limiting to it. Let
Y = X ∪ R. What conditions on X will guarantee that σ(Y ) = σ(X)?
One such condition is σ(X) ≤ σ∗

0(X). Is this condition necessary for
σ(Y ) = σ(X)?

All examples we constructed involve closed sets.

Question 4.2. What conditions on a set G ⊆ [0, 1] will guarantee that
there will be a continuum X such that B(XG) = G? Must G be a closed
set?

The examples which we constructed contain rays limiting to simple
closed curves and hence are not arcwise connected.

Question 4.3. If X is an arcwise connected continuum, what closed sets
can B(X) be?

Except for the case of a closed set G with infinitely many nondegenerate
components, we have constructed a planar example of a continuum XG

with B(XG) = G.

Question 4.4. Does there exist a planar example for every closed set G?

The following results are straightforward.
• If X is a simple closed curve, B(X) = {0, σ(X)}.
• If X is a simple triod, B(X) = [0, σ(X)].
• 0 ∈ B(X).

The above results are independent of the metric on X. When X is a
simple closed curve or when X is a triod, if Z ≈ X, then B(Z) ≈ B(X).
For some continua X, the set B(X) depends on the metric.

Question 4.5. For which continua X is the homeomorphism type of
B(X) a topological invariant of X?

Question 4.6. What properties of B(X) are topological invariants of X?
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