TOPOLOGY
PROCEEDINGS

Volume 42, 2013
Pages 357-365

http://topology.auburn.edu/tp/

A GENERALIZATION OF THE NOTION
OF A P-SPACE TO PROXIMITY SPACES

by

JOSEPH VAN NAME

Electronically published on March 4, 2013

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@Qauburn.edu
ISSNN: 0146-4124

COPYRIGHT (© by Topology Proceedings. All rights reserved.



http://topology.auburn.edu/tp/

TOPOLOGY |
PROCEEDINGS{{

Volume 42 (2013)
Pages 357-365

E-Published on March 4, 2013

A GENERALIZATION OF THE NOTION OF A P-SPACE
TO PROXIMITY SPACES

JOSEPH VAN NAME

ABsTRACT. In this note, we shall generalize the notion of a P-
space to proximity spaces and investigate the basic properties of
these proximities. We, therefore, define a Py, -proximity to be a
proximity where, if A, < B for all n € N, then |J,, An < B. It
turns out that the category of Py, -proximities is isomorphic to the
category of o-algebras. Furthermore, the Py, -proximity coreflec-
tion of a proximity space is the o-algebra of proximally Baire sets.

1. INTRODUCTION

We begin by reviewing basic facts on proximity spaces without proofs.
All our preliminary information on proximity spaces can be found in [2].
In this paper, we shall assume all proximity spaces are separated and all
topologies are Tychonoff. If § is a relation, then we shall write § for the
negation of the relation 6. In other words, we have R4S if and only if
we do not have RJS. The complement of a subset A of a set X will be
denoted by A°.

A proxzimity space is a pair (X, d) where X is a set and § is a relation
on the power set P(X) that satisfies the following axioms.

1. ASB implies B0 A.

. (AU B)4C if and only if ASC or B6C.

. If ASB, then A # () and B # (.

. If AGB, then there is a set E such that ASE and E°0B.

It AN B # (0, then AdB.

A proximity space is separated if and only if {z}d{y} implies x = y.

U W N

2010 Mathematics Subject Classification. Primary 54E05; Secondary 28A05,54G10.
Key words and phrases. Baire o-algebra, proximity space, P-space.
(©2013 Topology Proceedings.

357



358 J. VAN NAME

Intuitively, A6B whenever the set A touches the set B in some sense.
Therefore, a proximity space is a set with a notion of whether two sets
are infinitely close to each other.

If (X, 6) is a proximity space, then let <5 (or, simply, <) be the binary
relation on P(X) where A < B if and only if A6B°. The relation <
satisfies the following.

1. X < X.

. If A< B, then A C B.
.IMACB,CCD,B<C,then A< D.
.M A<B;fori=1,...,n, then A<, B;.
. If A < B, then B¢ < A°.
. If A < B, then there is some C' with A < C' < B.

If < satisfies 1-6 and if we define ¢ by letting A6 B if and only if A < B¢,
then (X, 4) is a proximity space.

If (X, §) is a proximity space, then we put a topology 75 on X by letting
A = {z]|z6A}. A set U C X is open if and only if {z} < U whenever
zeU.

If (X,0) and (Y, p) are proximity spaces, then a function f: X — Y
is a prozimity map if f(A)pf(B) whenever A§B. It can easily be shown
that f is a proximity map if and only if f~*(C)éf~1(D) whenever CpD.
Furthermore, f is a proximity map if and only if f~1(C) <5 f~%(D)
whenever C' <, D. Every proximity map is continuous.

O Tk W

Example 1.1. If X is a set, then § is the discrete proximity if AJB
whenever AN B = ().

Example 1.2. Let (X,7) be a Tychonoff space. Let ASB if there is a
continuous function f : (X, 7) — [0,1] with f(A) C {0} and f(B) C {1}.
Then (X, 0) is a proximity space that induces the topology on X (i.e., §
is compatible with 7). It is well known that a topology X is induced by
some proximity if and only if X is Tychonoff.

Example 1.3. Compact spaces have a unique compatible proximity where
AJB if and only if AN B # (). Furthermore, if (X, ) is a compact prox-
imity space and (Y, p) is a proximity space, then a map f: X — Y is
continuous if and only if f is a proximity map.

If (X,4) is a proximity space and Y C X, then define a relation dy on
P(Y) by letting Ady B if and only if AdB. Then dy is a proximity on YV’
that induces the subspace topology on Y called the induced proximity.

If (X,0) is a proximity space, then AdB if and only if there is a prox-
imity map ¢ : (X, ) — [0, 1] with g(A4) C {0}, g(B) C {1}.

If (X, ) is a proximity space, then there is a unique compactification C
of X where AéB if and only if (clcA) N (cleB) # (0. This compactification
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is called the Smirnov compactification of X and the proximity § is the
proximity induced by the unique proximity on the compact space C. If X
is a Tychonoff space, then the proximity spaces that induce the topology
on X are in a one-to-one correspondence with the compactifications of X.
If (X,0) and (Y, p) are proximity spaces and C is the Smirnov compactifi-
cation of X and D is the Smirnov compactification of Y, then a function
f:X — Y is a proximity map if and only if f has a unique extension to
a continuous map from C to D.

An algebra of sets (X, M) is reduced if and only if whenever z,y € X
are distinct, then there is an R € M with x € R and y € R°. We assume
that all algebras of sets are reduced. If X is a topological space, then
a zero set is a set of the form f~1(0) where f : X — R is continuous.
The union of finitely many zero sets is a zero set, and the intersection of
countably many zero sets is a zero set. A P-space is a Tychonoff space
where every Gs-set is open. It is well known and it can easily be shown
that a Tychonoff space is a P-space if and only if every zero set is open. If
X is a Tychonoff space, then the P-space coreflection (X)yx, is the space
with underlying set X and where the Gs-sets in X form a basis for the
topology on (X)), .

2. Py,-PROXIMITIES

A separated proximity space (X, §) is a Py, -prozimity space if whenever
A, C X forneNand BC X and |J,.,A,0B, then A,6B for some
n. In other words, X is a Py,-proximity space if and only if whenever
A, < B for each natural number n, then | J,, A, < B. Equivalently, X is a
Py, -proximity if and only if whenever A < B,, for all n, then A <, B,.

A proximity space (X, 4) is said to be zero-dimensional if and only if
whenever A§B, then there is a C C X with A5C, BSC*¢, and C5C°. In
other words, (X,0) is zero-dimensional if and only if, whenever A < B,
there is a C' with A < C < C < B. If (X, 0) is a proximity space, then
let Ms = {R C X|R6R°} = {R C X|R < R}. If (X, M) is an algebra
of sets, then let 0, be the relation on P(X) where Udr(V if and only if
there is some R € M with U C R,V C R°.

Theorem 2.1. (1) If (X,d) is a prozimity space, then (X, Ms) is an
algebra of sets.

(2) If (X, M) is an algebra of sets, then (X,0m) is a zero-dimensional
proximity space.

(3) If 0 is a zero-dimensional proximity, then g, = 0.

(4) If (X, M) is an algebra of sets, then M = Ms,,.

(5) If (X,9) is a zero-dimensional prozimity space, then Ms is a basis
for the topology on X.
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Proof. See [1]. O

Theorem 2.2. Let (X, M) and (Y,N) be algebras of sets. Then a map-
ping f: (X, 0m) — (Y,0x) is a proximity map if and only if f~1(U) € M
for each U € N

Proof. (—) Assume that f is a proximity map. For each R € N, we have
R < R,so f~Y(R) < f~!(R), and thus f~1(R) € M.

(¢+) Let U,V C Y and let U < V. Then there is an R € N with
U C R C V. Therefore, f71(R) € M and f~1(U) C f~1(R) C f~Y(V).
Therefore, f~*(U) < f~1(V), so f is a proximity map. O

Theorem 2.3. Every Py, -proximity space is a zero-dimensional prozim-
ity space.

Proof. Let X be a Py,-proximity space. Assume A < B. Then there is
a sequence (Cp)nen of subsets of X where A = Cy < Cy < ... < C), <
... < B. Therefore, let C' = J,,cy Cn. Since X is a Py,-proximity space,
we have A < C < B. Furthermore, since C,, < C for all n and X is
a Py, -proximity space, we have C' = |J,, C,, < C. Therefore, X is a
zero-dimensional proximity space. ]

Theorem 2.4. An algebra of sets (X, M) is a o-algebra if and only if
(X,0Mm) is a Py, -prozimity space.

Proof. (—) Assume (X, M) is a o-algebra. Assume that A, < B for all
n. Then, for each n, there is a C,, € M with A,, C C,, C B. Therefore,
U,4. <, Cn CB,soJ, An < B.

(«) Assume that dpq is a Py,-proximity space and let R, € M for
each natural number n. Then R,, < R, C {J,, Rn, so U,, Rn < U,, Rn, s0
U,, Rn € M. Therefore, (X, M) is a o-algebra. O

Corollary 2.5. (1) The category of zero-dimensional proximity spaces
with proximity maps is isomorphic to the category of reduced algebras of
sets with measurable maps (i.e., maps f : (X,N) — (Y, M) where if
R e M, then f~Y(R) e V).

(2) Their corresponding subcategories of Py, -proximity spaces and re-
duced o-algebras are isomorphic as well.

Now given a proximity space (X, ), we shall characterize the smallest
o-algebra (X, M) such that the identity function from (X,drq) to (X, 0)
is a proximity map, but we must first generalize the notion of a zero set to
proximity spaces. Let (X, 0) be a proximity space. Then a prozimally zero
set is a set of the form f~1(0) for some proximity map f : (X,d) — [0, 1].
If C is the Smirnov compactification of X, then f has a unique extension
to a continuous function f : ¢ — [0,1]. Hence, f~1(0) = f~1(0) N X.
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Therefore, the proximally zero sets on a proximity space are precisely the
sets of the form X N Z where Z C C is a zero set. As a consequence, the
intersection of countably many proximally zero sets is a proximally zero
set and the union of finitely many proximally zero sets is a proximally
zero set.

The o-algebra B*(X,d) of prozimally Baire sets on a proximity space
(X,9) is the smallest o-algebra containing the proximally zero sets. If
(X, ) is a proximity space with Smirnov compactification C and M is the
Baire o-algebra on C, then {RNX|R € M} is the o-algebra of proximally
Baire sets on X.

Remark 2.6. Every proximally zero set is a zero set, but in general there
are zero sets that are not proximally zero sets. For example, let A be an
uncountable discrete space, and let  be the proximity induced by the one
point compactification A U {oo}. It is well known that for normal spaces
the closed Gs-sets are precisely the zero sets, so it suffices to characterize
the closed Gs-subsets of AU {oo}. Let R C AU {oo} be a closed Gs-set.
If oo & R, then R is finite. If co € R, then R =1, Uy, for some sequence
of open sets U,, C AU{oo}, but each U, is co-finite, so R is co-countable.
Therefore, each zero set in A U {oo} is either co-finite or co-countable.
Hence, every proximally zero set in A is either co-finite or co-countable.
We conclude that not every zero set in A is a proximally zero set in A.

Theorem 2.7. Let (X,d) be a proximity space. Then a set Z C X
is a proximally zero set if and only if there is a sequence (Zy)nen with
Z =, Zn and where ... Z,, < Zp_1 < ... < 7.

Proof. (—) If Z C X is a proximally zero set, then there is a proximity
map [ : (X,8) — [0,1] with Z = f~1(0). For all n > 1, we have [0, %ﬂ} =<
[0, 2], 50 f7H([0, 535]) < f71([0, 3]) and Z = f71({0}) =, f~H([0. 5]

(«+) Suppose that (Z,)nen is such a sequence. Then, for all n, we
have Z,,,10Z¢, so there is a proximity map f, : (X,8) — [0,1] with
Zosr C f;10) and Z5 C fM(1) C f1(0)°. Thus, Zogy C f1(0) C
Zn. Therefore, ", Z, = (0, fn '(0) is a proximally zero set being the
intersection of countably many proximally zero sets. (|

Corollary 2.8. A prozimity space (X,0) is a Py, -proxzimity space if and
only if Ms contains each proximally zero set.

Proof. (—) Let (X,d) be a Py,-proximity space. If Z is a proximally
zero set, then there is a sequence (Z,)nen With Z = (1, cyy Z,, and where
Zn+1 <= Zy, for all n. Therefore, Z < Z,, for all n, so Z < ﬂneN Ly =7,
so Z € Ms.
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(+) Assume M contains each proximally zero set. Assume A < B, for
alln > 0. For n > 0, there is a proximally zero set Z,, with A C Z,, C B,,
so (,, Zn is a proximally zero set, so A C (), Zn <\, Zn €, Bn. O

If X is a topological space, then a cozero set is a set of the form f~1(0, 1]
for some continuous f : X — [0,1]. If (X,4) is a proximity space, then
a proximally cozero set is a set of the form f~1(0, 1] for some proximity
map f: (X,0) — [0,1]. In other words, a cozero set is a complement of a
zero set and a proximally cozero set is a complement of a proximally zero
set.

Theorem 2.9. (1) Every Lindeldf open subset of a proximity space is a
prozimally cozero set.

(2) In a Lindeldf proximity space, every cozero set is a proximally coz-
ero set.

Proof. (1) Let (X,d) be a proximity space and let U be a Lindeldf open
subset of X. Then, for each z € X, there is a proximity map f, : (X,) —
[0,1] such that f,(z) =1 and f,(U¢) C {0}. If U, = f;1(0,1], then U,
is a proximally cozero set with € U, C U. Since {U.|z € X} covers
U, there is a countable subcover {U,, |n € N} of the set U. Therefore,
U =, Uz, is a proximally cozero set since U is the countable union of
proximally cozero sets.

(2) Assume (X, ) is a Lindel6f proximity space. If U C X is a cozero
set, then U is an Fj-set, so the set U is Lindelof. Therefore, by (1), the
set U is a proximally cozero set. O

In particular, in every Lindelof proximity space, the proximally Baire
sets coincide with the Baire sets.

Remark 2.10. We may have O F even when O and E are disjoint prox-
imally zero sets. Furthermore, it is possible that CdC*¢ even though C
and C° are proximally zero sets. Give Z the proximity induced by the
one-point compactification. Let C be the collection of even integers. Then
C° is the collection of all odd integers. Since C' and C°¢ are both closed
sets, we have C and C° being disjoint proximally zero sets. On the other
hand, clzy{o0} (C) N clzugoo} (C€) = {00}, s0 COCe.

Definition 2.11. If (X,¢) is a proximity space, then let (X,0)x, =
(X, 0B+ (x,5)) be the proximity space equivalent to the o-algebra of proxi-
mally Baire sets on X.

Theorem 2.12. Let (X,N) be a o-algebra and let (Y,0) be a prozimity
space. Then a map [ : (X,0n) — (Y, 0) is a prozimity map if and only if
f is a prozimity map from (X,0x) to (Y, 0)n,.
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Proof. (—) Assume that f : (X,0n) — (Y,9) is a proximity map. If
C CY is a proximally zero set, then there is a proximity map g : (Y,) —
[0,1] with C = g~1(0). Therefore, g o f is a proximity map as well;
F7HCO) = f~Yg71(0)) = (g o f)~1(0) is a proximally zero set; and since
(X,dn) is a Py, -proximity space (by Theorem 2.4), we obtain, using
Corollary 2.8 and Theorem 2.1, that f~(C) € N for each proximally
zero set C. Therefore, f~1(R) € N for each proximally Baire set R.

(«-) Now assume that f : (X,dn) — (Y, 9)x, is a proximity map. Then
let C, D C Y besets with CdD. Then there is a proximally zeroset Z C Y
with C C Z and D C Z¢. Therefore, by Theorem 2.2, f_l(Z) € N and

f7HC) € f7HZ), f7HD) € f7H(Z¢); thus, f~H(C)on f7H(D). -

In particular, if (X, M) is a o-algebra and ¢ is any proximity on R that
induces the Euclidean topology, then f : (X, M) — R is measurable if
and only if f: (X,0.) — R is a proximity map.

Theorem 2.13. If (X,0) is a proximity space, then the topology on
(X, d)n, is the topology on the P-space coreflection of the topology on
X.

Proof. The proof is left to the reader. O

Lemma 2.14. Let f : (X,6) — (Y, p) be a function. Then f is a proz-
imity map if and only if whenever g : (Y, p) — [0,1] is a proximity map,
then go f : (X,6) = [0,1] is a proximity map.

Proof. (—) If f is a proximity map, then clearly any composition g o f
must be a proximity map.

(+) Now assume that each composition g o f is a proximity map.
Assume that A, B C Y are sets with ApB. Then there is a proximity

map g : (Y p) [0,1] with A C ¢g~1(0) and B C g~!(1). Therefore,
f7HA) € f7He7H0)) = ( o f)71(0) and f~H(B) € f~H(g7'(1)) =
L(A)0f~1(B) since g o f is a proximity map. |

(9o f)~ 1() so f~

We shall write x 4 for the characteristic function on A. In other words,
xa(A) =1 and x4(A) = 0.

Theorem 2.15. Let (X,0) be a proximity space. Then the following are
equivalent.
(1) (X,9) is a Py, -prozimity space.
(2) If fn: (X,0) — [0,1] is a prozimity map for each n € N and
fn = [ pointwise (here we do not assume f is continuous), then
f:(X,8) = [0,1] is also a proximity map.



364 J. VAN NAME

(3) For each proximity space (Y,p), if fn : (X,0) = (Y,p) is a
proximity map for each n € N and f, — f pointwise, then
f:(X,8) = (Y, p) is also a proximity map.

Proof. (1 — 2) The map f is a proximity map if and only if f is a
measurable function on the o-algebra (X, Ms). The implication follows
since measurable functions are closed under pointwise convergence.

(2 — 3) Assume that (Y, p) is any proximity space and assume that
fn — f pointwise and each f,, is a proximity map from (X,J) to (Y, p).
Then let g : (Y,p) — [0,1] be a proximity map. Then go f,, — go f
pointwise, and, since each go f, : (X, M) — [0,1] is a proximity map,
go f is also a proximity map. Therefore, f is a proximity map by Lemma
2.14.

(3 — 2) This is trivial.

(2 — 1) Assume Z C X is a proximally zero set. Then there is a
proximity map f : (X,8) — [0,1] with Z = f~!(1). On the other hand,
we have f? — xz pointwise where yz denotes the characteristic function,
S0 Xz is a proximity map. Therefore, Z62°¢, so Z € Ms. Thus, using
Corollary 2.8, we conclude that X is a Py,-proximity space. O

Theorem 2.16. Let X be a Tychonoff space. Then X is a P-space if
and only if whenever f, : X — [0,1] is continuous for all n and f, — f
pointwise, then f is continuous.

Proof. (—) Assume X is a P-space. Then, for each continuous f,, : X —
[0,1] and = € X, there is an open neighborhood U, of z where f,, (U,) =
fn(x). Therefore, if U = (", Uy, then U is an open neighborhood of x.
Furthermore, if f, — f pointwise, then f(U) = f(x). Therefore, f is
continuous at each point x € X.

(«) Assume Z C X is a zero set. Then let f: X — [0, 1] be a contin-
uous function where f~!(1) = Z. Then f" — xz pointwise. Therefore,
since xz is continuous, we have that Z is open. Therefore, X is a P-
space. O

Corollary 2.17. If X is Tychonoff and § is the prozimity induced by
the Stone-Cech compactification of X, then X is a P-space if and only if
(X,9) is a Py, -prozimity space.

Proof. The proximity maps from (X, §) to [0, 1] are precisely the continu-
ous functions from X to [0, 1]. Therefore, by theorems 2.15 and 2.16, we
have that X is a P-space if and only if (X, d) is a Py, -proximity space. [
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3. CONCLUSIONS AND APPLICATIONS

We conclude this paper by demonstrating that it is sometimes better
to consider o-algebras as Py, -proximities since proximity spaces are often
easier to work with than o-algebras.

If (X, M) is a g-algebra, then let L>°(X, M) denote the collection of
all bounded measurable functions from (X, M) to C. Clearly, L>°(X, M)
is a Banach-algebra and even a C*-algebra. If Y is a compact space, then
let C(Y") be the Banach-algebra which consists of all continuous functions
from Y to C. Let C be the Smirnov compactification of (X, ). Then
L>(X, M) is isomorphic as a Banach-algebra to C(C). One can easily
show that C is the collection of all ultrafilters on the Boolean algebra M.
The maximal ideal space of L (X, M) is therefore homeomorphic to the
collection of all ultrafilters on M. Furthermore, from these facts, one can
easily show that if (X, M, u) is a measure space, then the maximal ideal
space of L (u) is homeomorphic to the collection of all ultrafilters on the
quotient Boolean algebra M/{R € M|u(R) = 0}.
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