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A GENERALIZATION OF THE NOTION OF A P -SPACE
TO PROXIMITY SPACES

JOSEPH VAN NAME

Abstract. In this note, we shall generalize the notion of a P -
space to proximity spaces and investigate the basic properties of
these proximities. We, therefore, define a Pℵ1

-proximity to be a
proximity where, if An ≺ B for all n ∈ N, then

∪
n An ≺ B. It

turns out that the category of Pℵ1
-proximities is isomorphic to the

category of σ-algebras. Furthermore, the Pℵ1
-proximity coreflec-

tion of a proximity space is the σ-algebra of proximally Baire sets.

1. Introduction

We begin by reviewing basic facts on proximity spaces without proofs.
All our preliminary information on proximity spaces can be found in [2].
In this paper, we shall assume all proximity spaces are separated and all
topologies are Tychonoff. If δ is a relation, then we shall write δ for the
negation of the relation δ. In other words, we have RδS if and only if
we do not have RδS. The complement of a subset A of a set X will be
denoted by Ac.

A proximity space is a pair (X, δ) where X is a set and δ is a relation
on the power set P (X) that satisfies the following axioms.

1. AδB implies BδA.
2. (A ∪B)δC if and only if AδC or BδC.
3. If AδB, then A ̸= ∅ and B ̸= ∅.
4. If AδB, then there is a set E such that AδE and EcδB.
5. If A ∩B ̸= ∅, then AδB.
A proximity space is separated if and only if {x}δ{y} implies x = y.
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Intuitively, AδB whenever the set A touches the set B in some sense.
Therefore, a proximity space is a set with a notion of whether two sets
are infinitely close to each other.

If (X, δ) is a proximity space, then let ≺δ (or, simply, ≺) be the binary
relation on P (X) where A ≺ B if and only if AδBc. The relation ≺
satisfies the following.

1. X ≺ X.
2. If A ≺ B, then A ⊆ B.
3. If A ⊆ B,C ⊆ D,B ≺ C, then A ≺ D.
4. If A ≺ Bi for i = 1, . . . , n, then A ≺

∩n
i=1 Bi.

5. If A ≺ B, then Bc ≺ Ac.
6. If A ≺ B, then there is some C with A ≺ C ≺ B.
If ≺ satisfies 1–6 and if we define δ by letting AδB if and only if A ≺ Bc,

then (X, δ) is a proximity space.
If (X, δ) is a proximity space, then we put a topology τδ on X by letting

A = {x|xδA}. A set U ⊆ X is open if and only if {x} ≺ U whenever
x ∈ U .

If (X, δ) and (Y, ρ) are proximity spaces, then a function f : X → Y
is a proximity map if f(A)ρf(B) whenever AδB. It can easily be shown
that f is a proximity map if and only if f−1(C)δf−1(D) whenever CρD.
Furthermore, f is a proximity map if and only if f−1(C) ≺δ f−1(D)
whenever C ≺ρ D. Every proximity map is continuous.

Example 1.1. If X is a set, then δ is the discrete proximity if AδB
whenever A ∩B = ∅.

Example 1.2. Let (X, τ) be a Tychonoff space. Let AδB if there is a
continuous function f : (X, τ)→ [0, 1] with f(A) ⊆ {0} and f(B) ⊆ {1}.
Then (X, δ) is a proximity space that induces the topology on X (i.e., δ
is compatible with τ). It is well known that a topology X is induced by
some proximity if and only if X is Tychonoff.

Example 1.3. Compact spaces have a unique compatible proximity where
AδB if and only if A ∩ B ̸= ∅. Furthermore, if (X, δ) is a compact prox-
imity space and (Y, ρ) is a proximity space, then a map f : X → Y is
continuous if and only if f is a proximity map.

If (X, δ) is a proximity space and Y ⊆ X, then define a relation δY on
P (Y ) by letting AδY B if and only if AδB. Then δY is a proximity on Y
that induces the subspace topology on Y called the induced proximity.

If (X, δ) is a proximity space, then AδB if and only if there is a prox-
imity map g : (X, δ)→ [0, 1] with g(A) ⊆ {0}, g(B) ⊆ {1}.

If (X, δ) is a proximity space, then there is a unique compactification C
of X where AδB if and only if (clCA)∩ (clCB) ̸= ∅. This compactification
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is called the Smirnov compactification of X and the proximity δ is the
proximity induced by the unique proximity on the compact space C. If X
is a Tychonoff space, then the proximity spaces that induce the topology
on X are in a one-to-one correspondence with the compactifications of X.
If (X, δ) and (Y, ρ) are proximity spaces and C is the Smirnov compactifi-
cation of X and D is the Smirnov compactification of Y , then a function
f : X → Y is a proximity map if and only if f has a unique extension to
a continuous map from C to D.

An algebra of sets (X,M) is reduced if and only if whenever x, y ∈ X
are distinct, then there is an R ∈M with x ∈ R and y ∈ Rc. We assume
that all algebras of sets are reduced. If X is a topological space, then
a zero set is a set of the form f−1(0) where f : X → R is continuous.
The union of finitely many zero sets is a zero set, and the intersection of
countably many zero sets is a zero set. A P -space is a Tychonoff space
where every Gδ-set is open. It is well known and it can easily be shown
that a Tychonoff space is a P -space if and only if every zero set is open. If
X is a Tychonoff space, then the P -space coreflection (X)ℵ1 is the space
with underlying set X and where the Gδ-sets in X form a basis for the
topology on (X)ℵ1 .

2. Pℵ1-Proximities

A separated proximity space (X, δ) is a Pℵ1-proximity space if whenever
An ⊆ X for n ∈ N and B ⊆ X and

∪∞
n=0 AnδB, then AnδB for some

n. In other words, X is a Pℵ1-proximity space if and only if whenever
An ≺ B for each natural number n, then

∪
n An ≺ B. Equivalently, X is a

Pℵ1-proximity if and only if whenever A ≺ Bn for all n, then A ≺
∩

n Bn.
A proximity space (X, δ) is said to be zero-dimensional if and only if

whenever AδB, then there is a C ⊆ X with AδC, BδCc, and CδCc. In
other words, (X, δ) is zero-dimensional if and only if, whenever A ≺ B,
there is a C with A ≺ C ≺ C ≺ B. If (X, δ) is a proximity space, then
let Mδ = {R ⊆ X|RδRc} = {R ⊆ X|R ≺ R}. If (X,M) is an algebra
of sets, then let δM be the relation on P (X) where UδMV if and only if
there is some R ∈M with U ⊆ R, V ⊆ Rc.

Theorem 2.1. (1) If (X, δ) is a proximity space, then (X,Mδ) is an
algebra of sets.

(2) If (X,M) is an algebra of sets, then (X, δM) is a zero-dimensional
proximity space.

(3) If δ is a zero-dimensional proximity, then δMδ
= δ.

(4) If (X,M) is an algebra of sets, then M =MδM .
(5) If (X, δ) is a zero-dimensional proximity space, then Mδ is a basis

for the topology on X.
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Proof. See [1]. �
Theorem 2.2. Let (X,M) and (Y,N ) be algebras of sets. Then a map-
ping f : (X, δM)→ (Y, δN ) is a proximity map if and only if f−1(U) ∈M
for each U ∈ N .

Proof. (→) Assume that f is a proximity map. For each R ∈ N , we have
R ≺ R, so f−1(R) ≺ f−1(R), and thus f−1(R) ∈M.

(←) Let U, V ⊆ Y and let U ≺ V . Then there is an R ∈ N with
U ⊆ R ⊆ V . Therefore, f−1(R) ∈ M and f−1(U) ⊆ f−1(R) ⊆ f−1(V ).
Therefore, f−1(U) ≺ f−1(V ), so f is a proximity map. �
Theorem 2.3. Every Pℵ1-proximity space is a zero-dimensional proxim-
ity space.

Proof. Let X be a Pℵ1 -proximity space. Assume A ≺ B. Then there is
a sequence (Cn)n∈N of subsets of X where A = C0 ≺ C1 ≺ ... ≺ Cn ≺
... ≺ B. Therefore, let C =

∪
n∈N Cn. Since X is a Pℵ1-proximity space,

we have A ≺ C ≺ B. Furthermore, since Cn ≺ C for all n and X is
a Pℵ1 -proximity space, we have C =

∪
n Cn ≺ C. Therefore, X is a

zero-dimensional proximity space. �
Theorem 2.4. An algebra of sets (X,M) is a σ-algebra if and only if
(X, δM) is a Pℵ1-proximity space.

Proof. (→) Assume (X,M) is a σ-algebra. Assume that An ≺ B for all
n. Then, for each n, there is a Cn ∈ M with An ⊆ Cn ⊆ B. Therefore,∪

n An ⊆
∪

n Cn ⊆ B, so
∪

n An ≺ B.
(←) Assume that δM is a Pℵ1-proximity space and let Rn ∈ M for

each natural number n. Then Rn ≺ Rn ⊆
∪

n Rn, so
∪

n Rn ≺
∪

n Rn, so∪
n Rn ∈M. Therefore, (X,M) is a σ-algebra. �

Corollary 2.5. (1) The category of zero-dimensional proximity spaces
with proximity maps is isomorphic to the category of reduced algebras of
sets with measurable maps (i.e., maps f : (X,N ) → (Y,M) where if
R ∈M, then f−1(R) ∈ N ).

(2) Their corresponding subcategories of Pℵ1-proximity spaces and re-
duced σ-algebras are isomorphic as well.

Now given a proximity space (X, δ), we shall characterize the smallest
σ-algebra (X,M) such that the identity function from (X, δM) to (X, δ)
is a proximity map, but we must first generalize the notion of a zero set to
proximity spaces. Let (X, δ) be a proximity space. Then a proximally zero
set is a set of the form f−1(0) for some proximity map f : (X, δ)→ [0, 1].
If C is the Smirnov compactification of X, then f has a unique extension
to a continuous function f̂ : C → [0, 1]. Hence, f−1(0) = f̂−1(0) ∩ X.
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Therefore, the proximally zero sets on a proximity space are precisely the
sets of the form X ∩ Z where Z ⊆ C is a zero set. As a consequence, the
intersection of countably many proximally zero sets is a proximally zero
set and the union of finitely many proximally zero sets is a proximally
zero set.

The σ-algebra B∗(X, δ) of proximally Baire sets on a proximity space
(X, δ) is the smallest σ-algebra containing the proximally zero sets. If
(X, δ) is a proximity space with Smirnov compactification C andM is the
Baire σ-algebra on C, then {R∩X|R ∈M} is the σ-algebra of proximally
Baire sets on X.

Remark 2.6. Every proximally zero set is a zero set, but in general there
are zero sets that are not proximally zero sets. For example, let A be an
uncountable discrete space, and let δ be the proximity induced by the one
point compactification A ∪ {∞}. It is well known that for normal spaces
the closed Gδ-sets are precisely the zero sets, so it suffices to characterize
the closed Gδ-subsets of A ∪ {∞}. Let R ⊆ A ∪ {∞} be a closed Gδ-set.
If ∞ ̸∈ R, then R is finite. If ∞ ∈ R, then R =

∩
n Un for some sequence

of open sets Un ⊆ A∪{∞}, but each Un is co-finite, so R is co-countable.
Therefore, each zero set in A ∪ {∞} is either co-finite or co-countable.
Hence, every proximally zero set in A is either co-finite or co-countable.
We conclude that not every zero set in A is a proximally zero set in A.

Theorem 2.7. Let (X, δ) be a proximity space. Then a set Z ⊆ X
is a proximally zero set if and only if there is a sequence (Zn)n∈N with
Z =

∩
n Zn and where . . . Zn ≺ Zn−1 ≺ . . . ≺ Z1.

Proof. (→) If Z ⊆ X is a proximally zero set, then there is a proximity
map f : (X, δ)→ [0, 1] with Z = f−1(0). For all n ≥ 1, we have [0, 1

n+1 ] ≺
[0, 1

n ], so f−1([0, 1
n+1 ]) ≺ f−1([0, 1

n ]) and Z = f−1({0}) =
∩

n f
−1([0, 1

n ]).

(←) Suppose that (Zn)n∈N is such a sequence. Then, for all n, we
have Zn+1δZ

c
n, so there is a proximity map fn : (X, δ) → [0, 1] with

Zn+1 ⊆ f−1
n (0) and Zc

n ⊆ f−1
n (1) ⊆ f−1

n (0)c. Thus, Zn+1 ⊆ f−1
n (0) ⊆

Zn. Therefore,
∩

n Zn =
∩

n f
−1
n (0) is a proximally zero set being the

intersection of countably many proximally zero sets. �

Corollary 2.8. A proximity space (X, δ) is a Pℵ1
-proximity space if and

only if Mδ contains each proximally zero set.

Proof. (→) Let (X, δ) be a Pℵ1-proximity space. If Z is a proximally
zero set, then there is a sequence (Zn)n∈N with Z =

∩
n∈N Zn and where

Zn+1 ≺ Zn for all n. Therefore, Z ≺ Zn for all n, so Z ≺
∩

n∈N Zn = Z,
so Z ∈Mδ.
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(←) AssumeMδ contains each proximally zero set. Assume A ≺ Bn for
all n ≥ 0. For n ≥ 0, there is a proximally zero set Zn with A ⊆ Zn ⊆ Bn,
so

∩
n Zn is a proximally zero set, so A ⊆

∩
n Zn ≺

∩
n Zn ⊆

∩
n Bn. �

If X is a topological space, then a cozero set is a set of the form f−1(0, 1]
for some continuous f : X → [0, 1]. If (X, δ) is a proximity space, then
a proximally cozero set is a set of the form f−1(0, 1] for some proximity
map f : (X, δ)→ [0, 1]. In other words, a cozero set is a complement of a
zero set and a proximally cozero set is a complement of a proximally zero
set.

Theorem 2.9. (1) Every Lindelöf open subset of a proximity space is a
proximally cozero set.

(2) In a Lindelöf proximity space, every cozero set is a proximally coz-
ero set.

Proof. (1) Let (X, δ) be a proximity space and let U be a Lindelöf open
subset of X. Then, for each x ∈ X, there is a proximity map fx : (X, δ)→
[0, 1] such that fx(x) = 1 and fx(U

c) ⊆ {0}. If Ux = f−1
x (0, 1], then Ux

is a proximally cozero set with x ∈ Ux ⊆ U . Since {Ux|x ∈ X} covers
U , there is a countable subcover {Uxn |n ∈ N} of the set U . Therefore,
U =

∪
n Uxn is a proximally cozero set since U is the countable union of

proximally cozero sets.
(2) Assume (X, δ) is a Lindelöf proximity space. If U ⊆ X is a cozero

set, then U is an Fσ-set, so the set U is Lindelöf. Therefore, by (1), the
set U is a proximally cozero set. �

In particular, in every Lindelöf proximity space, the proximally Baire
sets coincide with the Baire sets.

Remark 2.10. We may have OδE even when O and E are disjoint prox-
imally zero sets. Furthermore, it is possible that CδCc even though C
and Cc are proximally zero sets. Give Z the proximity induced by the
one-point compactification. Let C be the collection of even integers. Then
Cc is the collection of all odd integers. Since C and Cc are both closed
sets, we have C and Cc being disjoint proximally zero sets. On the other
hand, clZ∪{∞}(C) ∩ clZ∪{∞}(C

c) = {∞}, so CδCc.

Definition 2.11. If (X, δ) is a proximity space, then let (X, δ)ℵ1 =
(X, δB∗(X,δ)) be the proximity space equivalent to the σ-algebra of proxi-
mally Baire sets on X.

Theorem 2.12. Let (X,N ) be a σ-algebra and let (Y, δ) be a proximity
space. Then a map f : (X, δN )→ (Y, δ) is a proximity map if and only if
f is a proximity map from (X, δN ) to (Y, δ)ℵ1 .
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Proof. (→) Assume that f : (X, δN ) → (Y, δ) is a proximity map. If
C ⊆ Y is a proximally zero set, then there is a proximity map g : (Y, δ)→
[0, 1] with C = g−1(0). Therefore, g ◦ f is a proximity map as well;
f−1(C) = f−1(g−1(0)) = (g ◦ f)−1(0) is a proximally zero set; and since
(X, δN ) is a Pℵ1-proximity space (by Theorem 2.4), we obtain, using
Corollary 2.8 and Theorem 2.1, that f−1(C) ∈ N for each proximally
zero set C. Therefore, f−1(R) ∈ N for each proximally Baire set R.

(←) Now assume that f : (X, δN )→ (Y, δ)ℵ1 is a proximity map. Then
let C,D ⊆ Y be sets with CδD. Then there is a proximally zero set Z ⊆ Y
with C ⊆ Z and D ⊆ Zc. Therefore, by Theorem 2.2, f−1(Z) ∈ N and
f−1(C) ⊆ f−1(Z), f−1(D) ⊆ f−1(Zc); thus, f−1(C)δN f−1(D). �

In particular, if (X,M) is a σ-algebra and δ is any proximity on R that
induces the Euclidean topology, then f : (X,M) → R is measurable if
and only if f : (X, δM)→ R is a proximity map.

Theorem 2.13. If (X, δ) is a proximity space, then the topology on
(X, δ)ℵ1 is the topology on the P -space coreflection of the topology on
X.

Proof. The proof is left to the reader. �

Lemma 2.14. Let f : (X, δ) → (Y, ρ) be a function. Then f is a prox-
imity map if and only if whenever g : (Y, ρ) → [0, 1] is a proximity map,
then g ◦ f : (X, δ)→ [0, 1] is a proximity map.

Proof. (→) If f is a proximity map, then clearly any composition g ◦ f
must be a proximity map.

(←) Now assume that each composition g ◦ f is a proximity map.
Assume that A,B ⊆ Y are sets with AρB. Then there is a proximity
map g : (Y, ρ) → [0, 1] with A ⊆ g−1(0) and B ⊆ g−1(1). Therefore,
f−1(A) ⊆ f−1(g−1(0)) = (g ◦ f)−1(0) and f−1(B) ⊆ f−1(g−1(1)) =
(g ◦ f)−1(1), so f−1(A)δf−1(B) since g ◦ f is a proximity map. �

We shall write χA for the characteristic function on A. In other words,
χA(A) = 1 and χA(A

c) = 0.

Theorem 2.15. Let (X, δ) be a proximity space. Then the following are
equivalent.

(1) (X, δ) is a Pℵ1-proximity space.
(2) If fn : (X, δ) → [0, 1] is a proximity map for each n ∈ N and

fn → f pointwise (here we do not assume f is continuous), then
f : (X, δ)→ [0, 1] is also a proximity map.
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(3) For each proximity space (Y, ρ), if fn : (X, δ) → (Y, ρ) is a
proximity map for each n ∈ N and fn → f pointwise, then
f : (X, δ)→ (Y, ρ) is also a proximity map.

Proof. (1 → 2) The map f is a proximity map if and only if f is a
measurable function on the σ-algebra (X,Mδ). The implication follows
since measurable functions are closed under pointwise convergence.

(2 → 3) Assume that (Y, ρ) is any proximity space and assume that
fn → f pointwise and each fn is a proximity map from (X, δ) to (Y, ρ).
Then let g : (Y, ρ) → [0, 1] be a proximity map. Then g ◦ fn → g ◦ f
pointwise, and, since each g ◦ fn : (X,M) → [0, 1] is a proximity map,
g ◦ f is also a proximity map. Therefore, f is a proximity map by Lemma
2.14.

(3 → 2) This is trivial.

(2 → 1) Assume Z ⊆ X is a proximally zero set. Then there is a
proximity map f : (X, δ) → [0, 1] with Z = f−1(1). On the other hand,
we have fn → χZ pointwise where χZ denotes the characteristic function,
so χZ is a proximity map. Therefore, ZδZc, so Z ∈ Mδ. Thus, using
Corollary 2.8, we conclude that X is a Pℵ1 -proximity space. �

Theorem 2.16. Let X be a Tychonoff space. Then X is a P -space if
and only if whenever fn : X → [0, 1] is continuous for all n and fn → f
pointwise, then f is continuous.

Proof. (→) Assume X is a P -space. Then, for each continuous fn : X →
[0, 1] and x ∈ X, there is an open neighborhood Un of x where fn(Un) =
fn(x). Therefore, if U =

∩
n Un, then U is an open neighborhood of x.

Furthermore, if fn → f pointwise, then f(U) = f(x). Therefore, f is
continuous at each point x ∈ X.

(←) Assume Z ⊆ X is a zero set. Then let f : X → [0, 1] be a contin-
uous function where f−1(1) = Z. Then fn → χZ pointwise. Therefore,
since χZ is continuous, we have that Z is open. Therefore, X is a P -
space. �

Corollary 2.17. If X is Tychonoff and δ is the proximity induced by
the Stone-Čech compactification of X, then X is a P -space if and only if
(X, δ) is a Pℵ1-proximity space.

Proof. The proximity maps from (X, δ) to [0, 1] are precisely the continu-
ous functions from X to [0, 1]. Therefore, by theorems 2.15 and 2.16, we
have that X is a P -space if and only if (X, δ) is a Pℵ1 -proximity space. �
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3. Conclusions and applications

We conclude this paper by demonstrating that it is sometimes better
to consider σ-algebras as Pℵ1 -proximities since proximity spaces are often
easier to work with than σ-algebras.

If (X,M) is a σ-algebra, then let L∞(X,M) denote the collection of
all bounded measurable functions from (X,M) to C. Clearly, L∞(X,M)
is a Banach-algebra and even a C∗-algebra. If Y is a compact space, then
let C(Y ) be the Banach-algebra which consists of all continuous functions
from Y to C. Let C be the Smirnov compactification of (X, δM). Then
L∞(X,M) is isomorphic as a Banach-algebra to C(C). One can easily
show that C is the collection of all ultrafilters on the Boolean algebraM.
The maximal ideal space of L∞(X,M) is therefore homeomorphic to the
collection of all ultrafilters onM. Furthermore, from these facts, one can
easily show that if (X,M, µ) is a measure space, then the maximal ideal
space of L∞(µ) is homeomorphic to the collection of all ultrafilters on the
quotient Boolean algebraM/{R ∈M|µ(R) = 0}.
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