

http://topology.auburn.edu/tp/

A GENERALIZATION OF THE NOTION OF A P-SPACE TO PROXIMITY SPACES

by Joseph Van Name

Electronically published on March 4, 2013

Topology Proceedings

http://topology.auburn.edu/tp/ Web:

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146 - 4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on March 4, 2013

A GENERALIZATION OF THE NOTION OF A P-SPACE TO PROXIMITY SPACES

JOSEPH VAN NAME

ABSTRACT. In this note, we shall generalize the notion of a P-space to proximity spaces and investigate the basic properties of these proximities. We, therefore, define a P_{\aleph_1} -proximity to be a proximity where, if $A_n \prec B$ for all $n \in \mathbb{N}$, then $\bigcup_n A_n \prec B$. It turns out that the category of P_{\aleph_1} -proximities is isomorphic to the category of σ -algebras. Furthermore, the P_{\aleph_1} -proximity coreflection of a proximity space is the σ -algebra of proximally Baire sets.

1. Introduction

We begin by reviewing basic facts on proximity spaces without proofs. All our preliminary information on proximity spaces can be found in [2]. In this paper, we shall assume all proximity spaces are separated and all topologies are Tychonoff. If δ is a relation, then we shall write $\bar{\delta}$ for the negation of the relation δ . In other words, we have $R\bar{\delta}S$ if and only if we do not have $R\delta S$. The complement of a subset A of a set X will be denoted by A^c .

A proximity space is a pair (X, δ) where X is a set and δ is a relation on the power set P(X) that satisfies the following axioms.

- 1. $A\delta B$ implies $B\delta A$.
- 2. $(A \cup B)\delta C$ if and only if $A\delta C$ or $B\delta C$.
- 3. If $A\delta B$, then $A \neq \emptyset$ and $B \neq \emptyset$.
- 4. If $A\delta B$, then there is a set E such that $A\delta E$ and $E^c\delta B$.
- 5. If $A \cap B \neq \emptyset$, then $A\delta B$.

A proximity space is *separated* if and only if $\{x\}\delta\{y\}$ implies x=y.

²⁰¹⁰ Mathematics Subject Classification. Primary 54E05; Secondary 28A05,54G10. Key words and phrases. Baire σ -algebra, proximity space, P-space. ©2013 Topology Proceedings.

Intuitively, $A\delta B$ whenever the set A touches the set B in some sense. Therefore, a proximity space is a set with a notion of whether two sets are infinitely close to each other.

- If (X, δ) is a proximity space, then let \prec_{δ} (or, simply, \prec) be the binary relation on P(X) where $A \prec B$ if and only if $A\overline{\delta}B^c$. The relation \prec satisfies the following.
 - 1. $X \prec X$.
 - 2. If $A \prec B$, then $A \subseteq B$.
 - 3. If $A \subseteq B, C \subseteq D, B \prec C$, then $A \prec D$.
 - 4. If $A \prec B_i$ for $i = 1, \ldots, n$, then $A \prec \bigcap_{i=1}^n B_i$.
 - 5. If $A \prec B$, then $B^c \prec A^c$.
 - 6. If $A \prec B$, then there is some C with $A \prec C \prec B$.

If \prec satisfies 1–6 and if we define δ by letting $A\overline{\delta}B$ if and only if $A \prec B^c$, then (X, δ) is a proximity space.

If (X, δ) is a proximity space, then we put a topology τ_{δ} on X by letting $\overline{A} = \{x | x \delta A\}$. A set $U \subseteq X$ is open if and only if $\{x\} \prec U$ whenever $x \in U$.

If (X, δ) and (Y, ρ) are proximity spaces, then a function $f: X \to Y$ is a proximity map if $f(A)\rho f(B)$ whenever $A\delta B$. It can easily be shown that f is a proximity map if and only if $f^{-1}(C)\overline{\delta}f^{-1}(D)$ whenever $C\overline{\rho}D$. Furthermore, f is a proximity map if and only if $f^{-1}(C) \prec_{\delta} f^{-1}(D)$ whenever $C \prec_{\rho} D$. Every proximity map is continuous.

Example 1.1. If X is a set, then δ is the discrete proximity if $A\overline{\delta}B$ whenever $A \cap B = \emptyset$.

Example 1.2. Let (X, τ) be a Tychonoff space. Let $A\overline{\delta}B$ if there is a continuous function $f:(X,\tau)\to [0,1]$ with $f(A)\subseteq \{0\}$ and $f(B)\subseteq \{1\}$. Then (X,δ) is a proximity space that induces the topology on X (i.e., δ is *compatible* with τ). It is well known that a topology X is induced by some proximity if and only if X is Tychonoff.

Example 1.3. Compact spaces have a unique compatible proximity where $A\delta B$ if and only if $\overline{A} \cap \overline{B} \neq \emptyset$. Furthermore, if (X, δ) is a compact proximity space and (Y, ρ) is a proximity space, then a map $f: X \to Y$ is continuous if and only if f is a proximity map.

If (X, δ) is a proximity space and $Y \subseteq X$, then define a relation δ_Y on P(Y) by letting $A\delta_Y B$ if and only if $A\delta B$. Then δ_Y is a proximity on Y that induces the subspace topology on Y called the induced proximity.

If (X, δ) is a proximity space, then $A\overline{\delta}B$ if and only if there is a proximity map $g: (X, \delta) \to [0, 1]$ with $g(A) \subseteq \{0\}, g(B) \subseteq \{1\}$.

If (X, δ) is a proximity space, then there is a unique compactification \mathcal{C} of X where $A\delta B$ if and only if $(\operatorname{cl}_{\mathcal{C}} A) \cap (\operatorname{cl}_{\mathcal{C}} B) \neq \emptyset$. This compactification

is called the *Smirnov compactification* of X and the proximity δ is the proximity induced by the unique proximity on the compact space \mathcal{C} . If X is a Tychonoff space, then the proximity spaces that induce the topology on X are in a one-to-one correspondence with the compactifications of X. If (X, δ) and (Y, ρ) are proximity spaces and \mathcal{C} is the Smirnov compactification of X and \mathcal{D} is the Smirnov compactification of Y, then a function $f: X \to Y$ is a proximity map if and only if f has a unique extension to a continuous map from \mathcal{C} to \mathcal{D} .

An algebra of sets (X, \mathcal{M}) is reduced if and only if whenever $x, y \in X$ are distinct, then there is an $R \in \mathcal{M}$ with $x \in R$ and $y \in R^c$. We assume that all algebras of sets are reduced. If X is a topological space, then a zero set is a set of the form $f^{-1}(0)$ where $f: X \to \mathbb{R}$ is continuous. The union of finitely many zero sets is a zero set, and the intersection of countably many zero sets is a zero set. A P-space is a Tychonoff space where every G_{δ} -set is open. It is well known and it can easily be shown that a Tychonoff space is a P-space if and only if every zero set is open. If X is a Tychonoff space, then the P-space coreflection $(X)_{\aleph_1}$ is the space with underlying set X and where the G_{δ} -sets in X form a basis for the topology on $(X)_{\aleph_1}$.

2. P_{\aleph_1} -Proximities

A separated proximity space (X, δ) is a P_{\aleph_1} -proximity space if whenever $A_n \subseteq X$ for $n \in \mathbb{N}$ and $B \subseteq X$ and $\bigcup_{n=0}^{\infty} A_n \delta B$, then $A_n \delta B$ for some n. In other words, X is a P_{\aleph_1} -proximity space if and only if whenever $A_n \prec B$ for each natural number n, then $\bigcup_n A_n \prec B$. Equivalently, X is a P_{\aleph_1} -proximity if and only if whenever $A \prec B_n$ for all n, then $A \prec \bigcap_n B_n$.

A proximity space (X, δ) is said to be zero-dimensional if and only if whenever $A\bar{\delta}B$, then there is a $C\subseteq X$ with $A\bar{\delta}C$, $B\bar{\delta}C^c$, and $C\bar{\delta}C^c$. In other words, (X, δ) is zero-dimensional if and only if, whenever $A \prec B$, there is a C with $A \prec C \prec C \prec B$. If (X, δ) is a proximity space, then let $\mathcal{M}_{\delta} = \{R \subseteq X | R\bar{\delta}R^c\} = \{R \subseteq X | R \prec R\}$. If (X, \mathcal{M}) is an algebra of sets, then let $\delta_{\mathcal{M}}$ be the relation on P(X) where $U\bar{\delta}_{\mathcal{M}}V$ if and only if there is some $R \in \mathcal{M}$ with $U \subseteq R, V \subseteq R^c$.

Theorem 2.1. (1) If (X, δ) is a proximity space, then $(X, \mathcal{M}_{\delta})$ is an algebra of sets.

- (2) If (X, \mathcal{M}) is an algebra of sets, then $(X, \delta_{\mathcal{M}})$ is a zero-dimensional proximity space.
 - (3) If δ is a zero-dimensional proximity, then $\delta_{\mathcal{M}_{\delta}} = \delta$.
 - (4) If (X, \mathcal{M}) is an algebra of sets, then $\mathcal{M} = \mathcal{M}_{\delta_{\mathcal{M}}}$.
- (5) If (X, δ) is a zero-dimensional proximity space, then \mathcal{M}_{δ} is a basis for the topology on X.

Proof. See [1].

Theorem 2.2. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be algebras of sets. Then a mapping $f: (X, \delta_{\mathcal{M}}) \to (Y, \delta_{\mathcal{N}})$ is a proximity map if and only if $f^{-1}(U) \in \mathcal{M}$ for each $U \in \mathcal{N}$.

Proof. (\rightarrow) Assume that f is a proximity map. For each $R \in \mathcal{N}$, we have $R \prec R$, so $f^{-1}(R) \prec f^{-1}(R)$, and thus $f^{-1}(R) \in \mathcal{M}$.

 (\leftarrow) Let $U, V \subseteq Y$ and let $U \prec V$. Then there is an $R \in \mathcal{N}$ with $U \subseteq R \subseteq V$. Therefore, $f^{-1}(R) \in \mathcal{M}$ and $f^{-1}(U) \subseteq f^{-1}(R) \subseteq f^{-1}(V)$. Therefore, $f^{-1}(U) \prec f^{-1}(V)$, so f is a proximity map.

Theorem 2.3. Every P_{\aleph_1} -proximity space is a zero-dimensional proximity space.

Proof. Let X be a P_{\aleph_1} -proximity space. Assume $A \prec B$. Then there is a sequence $(C_n)_{n \in \mathbb{N}}$ of subsets of X where $A = C_0 \prec C_1 \prec \ldots \prec C_n \prec \ldots \prec B$. Therefore, let $C = \bigcup_{n \in \mathbb{N}} C_n$. Since X is a P_{\aleph_1} -proximity space, we have $A \prec C \prec B$. Furthermore, since $C_n \prec C$ for all n and X is a P_{\aleph_1} -proximity space, we have $C = \bigcup_n C_n \prec C$. Therefore, X is a zero-dimensional proximity space.

Theorem 2.4. An algebra of sets (X, \mathcal{M}) is a σ -algebra if and only if $(X, \delta_{\mathcal{M}})$ is a P_{\aleph_1} -proximity space.

- *Proof.* (\to) Assume (X, \mathcal{M}) is a σ -algebra. Assume that $A_n \prec B$ for all n. Then, for each n, there is a $C_n \in \mathcal{M}$ with $A_n \subseteq C_n \subseteq B$. Therefore, $\bigcup_n A_n \subseteq \bigcup_n C_n \subseteq B$, so $\bigcup_n A_n \prec B$.
- (\leftarrow) Assume that $\delta_{\mathcal{M}}$ is a P_{\aleph_1} -proximity space and let $R_n \in \mathcal{M}$ for each natural number n. Then $R_n \prec R_n \subseteq \bigcup_n R_n$, so $\bigcup_n R_n \prec \bigcup_n R_n$, so $\bigcup_n R_n \in \mathcal{M}$. Therefore, (X, \mathcal{M}) is a σ -algebra. \square
- **Corollary 2.5.** (1) The category of zero-dimensional proximity spaces with proximity maps is isomorphic to the category of reduced algebras of sets with measurable maps (i.e., maps $f:(X,\mathcal{N})\to (Y,\mathcal{M})$ where if $R\in\mathcal{M}$, then $f^{-1}(R)\in\mathcal{N}$).
- (2) Their corresponding subcategories of P_{\aleph_1} -proximity spaces and reduced σ -algebras are isomorphic as well.

Now given a proximity space (X, δ) , we shall characterize the smallest σ -algebra (X, \mathcal{M}) such that the identity function from $(X, \delta_{\mathcal{M}})$ to (X, δ) is a proximity map, but we must first generalize the notion of a zero set to proximity spaces. Let (X, δ) be a proximity space. Then a proximally zero set is a set of the form $f^{-1}(0)$ for some proximity map $f:(X, \delta) \to [0, 1]$. If \mathcal{C} is the Smirnov compactification of X, then f has a unique extension to a continuous function $\hat{f}: \mathcal{C} \to [0, 1]$. Hence, $f^{-1}(0) = \hat{f}^{-1}(0) \cap X$.

Therefore, the proximally zero sets on a proximity space are precisely the sets of the form $X \cap Z$ where $Z \subseteq \mathcal{C}$ is a zero set. As a consequence, the intersection of countably many proximally zero sets is a proximally zero set and the union of finitely many proximally zero sets is a proximally zero set.

The σ -algebra $\mathcal{B}^*(X, \delta)$ of proximally Baire sets on a proximity space (X, δ) is the smallest σ -algebra containing the proximally zero sets. If (X, δ) is a proximity space with Smirnov compactification \mathcal{C} and \mathcal{M} is the Baire σ -algebra on \mathcal{C} , then $\{R \cap X | R \in \mathcal{M}\}$ is the σ -algebra of proximally Baire sets on X.

Remark 2.6. Every proximally zero set is a zero set, but in general there are zero sets that are not proximally zero sets. For example, let A be an uncountable discrete space, and let δ be the proximity induced by the one point compactification $A \cup \{\infty\}$. It is well known that for normal spaces the closed G_{δ} -sets are precisely the zero sets, so it suffices to characterize the closed G_{δ} -subsets of $A \cup \{\infty\}$. Let $R \subseteq A \cup \{\infty\}$ be a closed G_{δ} -set. If $\infty \notin R$, then R is finite. If $\infty \in R$, then $R = \bigcap_n U_n$ for some sequence of open sets $U_n \subseteq A \cup \{\infty\}$, but each U_n is co-finite, so R is co-countable. Therefore, each zero set in $A \cup \{\infty\}$ is either co-finite or co-countable. Hence, every proximally zero set in A is a proximally zero set in A.

Theorem 2.7. Let (X, δ) be a proximity space. Then a set $Z \subseteq X$ is a proximally zero set if and only if there is a sequence $(Z_n)_{n \in \mathbb{N}}$ with $Z = \bigcap_n Z_n$ and where ... $Z_n \prec Z_{n-1} \prec \ldots \prec Z_1$.

Proof. (\to) If $Z \subseteq X$ is a proximally zero set, then there is a proximity map $f:(X,\delta) \to [0,1]$ with $Z=f^{-1}(0)$. For all $n \geq 1$, we have $[0,\frac{1}{n+1}] \prec [0,\frac{1}{n}]$, so $f^{-1}([0,\frac{1}{n+1}]) \prec f^{-1}([0,\frac{1}{n}])$ and $Z=f^{-1}(\{0\}) = \bigcap_n f^{-1}([0,\frac{1}{n}])$.

(\leftarrow) Suppose that $(Z_n)_{n\in\mathbb{N}}$ is such a sequence. Then, for all n, we have $Z_{n+1}\overline{\delta}Z_n^c$, so there is a proximity map $f_n:(X,\delta)\to[0,1]$ with $Z_{n+1}\subseteq f_n^{-1}(0)$ and $Z_n^c\subseteq f_n^{-1}(1)\subseteq f_n^{-1}(0)^c$. Thus, $Z_{n+1}\subseteq f_n^{-1}(0)\subseteq Z_n$. Therefore, $\bigcap_n Z_n=\bigcap_n f_n^{-1}(0)$ is a proximally zero set being the intersection of countably many proximally zero sets.

Corollary 2.8. A proximity space (X, δ) is a P_{\aleph_1} -proximity space if and only if \mathcal{M}_{δ} contains each proximally zero set.

Proof. (\to) Let (X, δ) be a P_{\aleph_1} -proximity space. If Z is a proximally zero set, then there is a sequence $(Z_n)_{n\in\mathbb{N}}$ with $Z=\bigcap_{n\in\mathbb{N}}Z_n$ and where $Z_{n+1} \prec Z_n$ for all n. Therefore, $Z \prec Z_n$ for all n, so $Z \prec \bigcap_{n\in\mathbb{N}}Z_n = Z$, so $Z \in \mathcal{M}_{\delta}$.

- (\leftarrow) Assume \mathcal{M}_{δ} contains each proximally zero set. Assume $A \prec B_n$ for all $n \geq 0$. For $n \geq 0$, there is a proximally zero set Z_n with $A \subseteq Z_n \subseteq B_n$, so $\bigcap_n Z_n$ is a proximally zero set, so $A \subseteq \bigcap_n Z_n \prec \bigcap_n Z_n \subseteq \bigcap_n B_n$. \square
- If X is a topological space, then a cozero set is a set of the form $f^{-1}(0,1]$ for some continuous $f: X \to [0,1]$. If (X,δ) is a proximity space, then a proximally cozero set is a set of the form $f^{-1}(0,1]$ for some proximity map $f: (X,\delta) \to [0,1]$. In other words, a cozero set is a complement of a zero set and a proximally cozero set is a complement of a proximally zero set.
- **Theorem 2.9.** (1) Every Lindelöf open subset of a proximity space is a proximally cozero set.
- (2) In a Lindelöf proximity space, every cozero set is a proximally cozero set.
- Proof. (1) Let (X, δ) be a proximity space and let U be a Lindelöf open subset of X. Then, for each $x \in X$, there is a proximity map $f_x : (X, \delta) \to [0, 1]$ such that $f_x(x) = 1$ and $f_x(U^c) \subseteq \{0\}$. If $U_x = f_x^{-1}(0, 1]$, then U_x is a proximally cozero set with $x \in U_x \subseteq U$. Since $\{U_x | x \in X\}$ covers U, there is a countable subcover $\{U_{x_n} | n \in \mathbb{N}\}$ of the set U. Therefore, $U = \bigcup_n U_{x_n}$ is a proximally cozero set since U is the countable union of proximally cozero sets.
- (2) Assume (X, δ) is a Lindelöf proximity space. If $U \subseteq X$ is a cozero set, then U is an F_{σ} -set, so the set U is Lindelöf. Therefore, by (1), the set U is a proximally cozero set.

In particular, in every Lindelöf proximity space, the proximally Baire sets coincide with the Baire sets.

- Remark 2.10. We may have $O\delta E$ even when O and E are disjoint proximally zero sets. Furthermore, it is possible that $C\delta C^c$ even though C and C^c are proximally zero sets. Give \mathbb{Z} the proximity induced by the one-point compactification. Let C be the collection of even integers. Then C^c is the collection of all odd integers. Since C and C^c are both closed sets, we have C and C^c being disjoint proximally zero sets. On the other hand, $\operatorname{cl}_{\mathbb{Z}\cup\{\infty\}}(C)\cap\operatorname{cl}_{\mathbb{Z}\cup\{\infty\}}(C^c)=\{\infty\}$, so $C\delta C^c$.
- **Definition 2.11.** If (X, δ) is a proximity space, then let $(X, \delta)_{\aleph_1} = (X, \delta_{\mathcal{B}^*(X, \delta)})$ be the proximity space equivalent to the σ -algebra of proximally Baire sets on X.
- **Theorem 2.12.** Let (X, \mathcal{N}) be a σ -algebra and let (Y, δ) be a proximity space. Then a map $f: (X, \delta_{\mathcal{N}}) \to (Y, \delta)$ is a proximity map if and only if f is a proximity map from $(X, \delta_{\mathcal{N}})$ to $(Y, \delta)_{\aleph_1}$.

Proof. (→) Assume that $f:(X, \delta_{\mathcal{N}}) \to (Y, \delta)$ is a proximity map. If $C \subseteq Y$ is a proximally zero set, then there is a proximity map $g:(Y, \delta) \to [0, 1]$ with $C = g^{-1}(0)$. Therefore, $g \circ f$ is a proximity map as well; $f^{-1}(C) = f^{-1}(g^{-1}(0)) = (g \circ f)^{-1}(0)$ is a proximally zero set; and since $(X, \delta_{\mathcal{N}})$ is a P_{\aleph_1} -proximity space (by Theorem 2.4), we obtain, using Corollary 2.8 and Theorem 2.1, that $f^{-1}(C) \in \mathcal{N}$ for each proximally zero set C. Therefore, $f^{-1}(R) \in \mathcal{N}$ for each proximally Baire set R.

 (\leftarrow) Now assume that $f:(X,\delta_{\mathcal{N}})\to (Y,\delta)_{\aleph_1}$ is a proximity map. Then let $C,D\subseteq Y$ be sets with $C\overline{\delta}D$. Then there is a proximally zero set $Z\subseteq Y$ with $C\subseteq Z$ and $D\subseteq Z^c$. Therefore, by Theorem 2.2, $f^{-1}(Z)\in \mathcal{N}$ and $f^{-1}(C)\subseteq f^{-1}(Z), f^{-1}(D)\subseteq f^{-1}(Z^c)$; thus, $f^{-1}(C)\overline{\delta_{\mathcal{N}}}f^{-1}(D)$.

In particular, if (X, \mathcal{M}) is a σ -algebra and δ is any proximity on \mathbb{R} that induces the Euclidean topology, then $f:(X,\mathcal{M})\to\mathbb{R}$ is measurable if and only if $f:(X,\delta_{\mathcal{M}})\to\mathbb{R}$ is a proximity map.

Theorem 2.13. If (X, δ) is a proximity space, then the topology on $(X, \delta)_{\aleph_1}$ is the topology on the P-space coreflection of the topology on X

Proof. The proof is left to the reader.

Lemma 2.14. Let $f:(X,\delta) \to (Y,\rho)$ be a function. Then f is a proximity map if and only if whenever $g:(Y,\rho) \to [0,1]$ is a proximity map, then $g \circ f:(X,\delta) \to [0,1]$ is a proximity map.

Proof. (\rightarrow) If f is a proximity map, then clearly any composition $g \circ f$ must be a proximity map.

(\leftarrow) Now assume that each composition $g \circ f$ is a proximity map. Assume that $A, B \subseteq Y$ are sets with $A\overline{\rho}B$. Then there is a proximity map $g: (Y, \rho) \to [0, 1]$ with $A \subseteq g^{-1}(0)$ and $B \subseteq g^{-1}(1)$. Therefore, $f^{-1}(A) \subseteq f^{-1}(g^{-1}(0)) = (g \circ f)^{-1}(0)$ and $f^{-1}(B) \subseteq f^{-1}(g^{-1}(1)) = (g \circ f)^{-1}(1)$, so $f^{-1}(A)\overline{\delta}f^{-1}(B)$ since $g \circ f$ is a proximity map. \square

We shall write χ_A for the characteristic function on A. In other words, $\chi_A(A) = 1$ and $\chi_A(A^c) = 0$.

Theorem 2.15. Let (X, δ) be a proximity space. Then the following are equivalent.

- (1) (X, δ) is a P_{\aleph_1} -proximity space.
- (2) If $f_n: (X, \delta) \to [0, 1]$ is a proximity map for each $n \in \mathbb{N}$ and $f_n \to f$ pointwise (here we do not assume f is continuous), then $f: (X, \delta) \to [0, 1]$ is also a proximity map.

- (3) For each proximity space (Y, ρ) , if $f_n : (X, \delta) \to (Y, \rho)$ is a proximity map for each $n \in \mathbb{N}$ and $f_n \to f$ pointwise, then $f : (X, \delta) \to (Y, \rho)$ is also a proximity map.
- *Proof.* $(1 \to 2)$ The map f is a proximity map if and only if f is a measurable function on the σ -algebra $(X, \mathcal{M}_{\delta})$. The implication follows since measurable functions are closed under pointwise convergence.
- $(2 \to 3)$ Assume that (Y, ρ) is any proximity space and assume that $f_n \to f$ pointwise and each f_n is a proximity map from (X, δ) to (Y, ρ) . Then let $g: (Y, \rho) \to [0, 1]$ be a proximity map. Then $g \circ f_n \to g \circ f$ pointwise, and, since each $g \circ f_n: (X, \mathcal{M}) \to [0, 1]$ is a proximity map, $g \circ f$ is also a proximity map. Therefore, f is a proximity map by Lemma 2.14.
 - $(3 \rightarrow 2)$ This is trivial.
- $(2 \to 1)$ Assume $Z \subseteq X$ is a proximally zero set. Then there is a proximity map $f: (X, \delta) \to [0, 1]$ with $Z = f^{-1}(1)$. On the other hand, we have $f^n \to \chi_Z$ pointwise where χ_Z denotes the characteristic function, so χ_Z is a proximity map. Therefore, $Z\bar{\delta}Z^c$, so $Z \in \mathcal{M}_{\delta}$. Thus, using Corollary 2.8, we conclude that X is a P_{\aleph_1} -proximity space.
- **Theorem 2.16.** Let X be a Tychonoff space. Then X is a P-space if and only if whenever $f_n: X \to [0,1]$ is continuous for all n and $f_n \to f$ pointwise, then f is continuous.
- Proof. (\rightarrow) Assume X is a P-space. Then, for each continuous $f_n: X \rightarrow [0,1]$ and $x \in X$, there is an open neighborhood U_n of x where $f_n(U_n) = f_n(x)$. Therefore, if $U = \bigcap_n U_n$, then U is an open neighborhood of x. Furthermore, if $f_n \rightarrow f$ pointwise, then f(U) = f(x). Therefore, f is continuous at each point $x \in X$.
- (\leftarrow) Assume $Z \subseteq X$ is a zero set. Then let $f: X \to [0,1]$ be a continuous function where $f^{-1}(1) = Z$. Then $f^n \to \chi_Z$ pointwise. Therefore, since χ_Z is continuous, we have that Z is open. Therefore, X is a P-space.
- **Corollary 2.17.** If X is Tychonoff and δ is the proximity induced by the Stone-Čech compactification of X, then X is a P-space if and only if (X, δ) is a P_{\aleph_1} -proximity space.
- *Proof.* The proximity maps from (X, δ) to [0, 1] are precisely the continuous functions from X to [0, 1]. Therefore, by theorems 2.15 and 2.16, we have that X is a P-space if and only if (X, δ) is a P_{\aleph_1} -proximity space. \square

3. CONCLUSIONS AND APPLICATIONS

We conclude this paper by demonstrating that it is sometimes better to consider σ -algebras as P_{\aleph_1} -proximities since proximity spaces are often easier to work with than σ -algebras.

If (X, \mathcal{M}) is a σ -algebra, then let $L^{\infty}(X, \mathcal{M})$ denote the collection of all bounded measurable functions from (X, \mathcal{M}) to \mathbb{C} . Clearly, $L^{\infty}(X, \mathcal{M})$ is a Banach-algebra and even a C^* -algebra. If Y is a compact space, then let C(Y) be the Banach-algebra which consists of all continuous functions from Y to \mathbb{C} . Let \mathcal{C} be the Smirnov compactification of $(X, \delta_{\mathcal{M}})$. Then $L^{\infty}(X, \mathcal{M})$ is isomorphic as a Banach-algebra to $C(\mathcal{C})$. One can easily show that \mathcal{C} is the collection of all ultrafilters on the Boolean algebra \mathcal{M} . The maximal ideal space of $L^{\infty}(X, \mathcal{M})$ is therefore homeomorphic to the collection of all ultrafilters on \mathcal{M} . Furthermore, from these facts, one can easily show that if (X, \mathcal{M}, μ) is a measure space, then the maximal ideal space of $L^{\infty}(\mu)$ is homeomorphic to the collection of all ultrafilters on the quotient Boolean algebra $\mathcal{M}/\{R \in \mathcal{M} | \mu(R) = 0\}$.

References

- [1] G. Bezhanishvili, Zero-dimensional Proximities and Zero-dimensional Compactifications, Topology Appl. 156 (2009), 1496–1504.
- [2] S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge Univ. Press, Cambridge, 1970.

Department of Mathematics & Statistics; University of South Florida; Tampa, Florida 33620

 $E ext{-}mail\ address: jvanname@mail.usf.edu}$