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p-ADIC ACTIONS ON PEANO CONTINUA

JAMES MAISSEN

Abstract. The Hilbert-Smith conjecture asks if a p-adic group
can act effectively upon an n-manifold. Recently, John Pardon
proved this conjecture for n = 3. For non-manifold spaces there are
a variety of p-adic actions to be found in the literature (for example
A. N. Dranishnikov showed that there are free p-adic actions on
Menger manifolds). The goal of this paper is to further explore the
more general setting of Peano continua for p-adic actions. The first
result is that every effective p-adic action on a Peano continuum
admits an equivariant partitioning. The second main result is:
any map from a simply connected continuum, such as an arc, can
be lifted from the orbit space of such an action to the top space.
Examples are constructed of invariant sub-continua.

1. Introduction

The long standing Hilbert-Smith conjecture asks whether or not a p-
adic group can act effectively on a manifold. While John Pardon recently
proved this result in the case of 3 dimensional manifolds [6], the conjecture
remains open for higher dimensions. With this conjecture in mind, we
address the consequences of a p-adic group acting on a Peano continuum.

A great deal of study has gone into properties of the orbit space of
p-adic actions. If the group of p-adic numbers, Ap, acts effectively on a
locally connected Hausdorff space X, then the orbit space (or quotient
space) satisfy dimZ X/Ap ≤ 3 + dimZX [10], where dimZX denotes the
integral cohomology dimension. If the space X is compact that bound
can be tightened to dimZ X/Ap ≤ 2 + dimZX [8]. If the space X is a
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2 J. MAISSEN

manifold, then the quotient space must have integral cohomological di-
mension dimZ X/Ap = 2 + dimZX [10]. This equality also holds in the
case where X is an ANR when the Ap-action is free [4]. When the quo-
tient map raises integral cohomological dimension, it is known that the
quotient space cannot be dimensionally full-valued [8, 4]. It is the goal of
this paper to add to these well known results.

Every Peano continuum, or continuous curve, is known to be parti-
tionable [2]. We show that whenever a p-adic group acts effectively on a
Peano continuum, the continuous curve can be partitioned into members
that finitely permute under the group action.

If X is a Peano continuum upon which the p-adic numbers act effec-
tively, this paper will demonstrate the existence of lifts of arcs from the
quotient space of the action. Likewise, lifts exist for any simply con-
nected sub-continua of the orbit space. There is an isomorphism between
the higher homotopy groups πn(X) ∼= πn(X/Ap) for all n ≥ 2.

In considering the possibility of a p-adic action on a manifold of higher
dimension than 3, the last section of the paper restricts down to the
case where the Ap action is a free action. If X is a Peano continuum
that cannot be locally separated by any one-dimensional set, then for
every point x ∈ X, there are specific invariant subsets of X containing
the point x. These subsets include p-adic solenoids, pk distinct p-adic
solenoids for any natural number k, the space Ap × S1, and the Menger
curve µ1. The sub-action of the Menger curve is similar, but not identical
to the non-dimension raising action given in the paper by A. Dranishnikov
[4].

2. Notation

Let Z denote the integers and N denote the strictly positive integers.
Let Zk := Z/kZ denote the integers modulo k. For a given prime number
p, let Ap := lim←−{Zpn , φ

n+1
n } denote the group of p-adic numbers, where

the maps φn+1
n : Zpn+1 → Zpn are the group homomorphisms obtained by

taking modulo pn, thus |kerφn+1
n | = p. The p-adic numbers are endowed

with the topology of a Cantor set, and can be topologically generated
by a single element. When there is need to pick one of these elements
that topologically generates Ap, it will be denoted by τ ∈ Ap. Proper,
nontrivial subgroups of Ap can then be written in the form τp

k

Ap for
each choice of k ∈ N (these sub-groups are independent of the choice of
τ). Denote by ∆k := τp

k

Ap the subgroup of Ap with index pk.
When Ap acts on a space X then there naturally arises a system of

maps {pn : X/∆n → X/∆n−1}:

(2.1) X · · · p5−→ X/∆4
p4−→ X/∆3

p3−→ X/∆2
p2−→ X/∆1

p1−→ X/Ap.
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The maps pn : X/∆n → X/∆n−1 are induced by the homomorphisms φnn−1.
If the Ap action is free, then each of the maps pn is a p-to-1 covering map.
While if the Ap action is merely effective on X, then some of the maps are
only branched covering maps. For each n ∈ N, define the pn-to-1 branched
covering map Pn := p1 ◦ p2 ◦ · · · ◦ pn−1 ◦ pn. Define π0 : X → X/Ap to
be the quotient map of the Ap action and, for each n ∈ N, let the map
πn : X → X/∆n be the quotient map induced by the ∆n-subgroup action,
meaning the composition Pn ◦ πn = π0.

3. Equivariant Partitions of Peano continuua

A Peano continuum, X, is defined as a compact, connected, locally
connected metric space. Since this criteria is equivalent to saying that
the space X is the continuous image of an arc, Peano continua are also
referred to as continuous curves. We remind the reader of some concepts
of partitions as defined by Bing:
Definition 3.1 (Bing [1]).

(1) A partitioning of X is a finite collection of mutually exclusive
connected domains whose union is dense in X.

(2) A partitioning µ of X is called a brick partitioning if each of
the elements of µ is uniformly locally connected and equal to the
interior of its closure while the interior of the closure of the union
of two adjacent elements of µ is connected and uniformly locally
connected.

(3) If each element of µ is of diameter less than ε, µ is an ε-partitioning.
(4) The brick partitioning ν is a core refinement of the brick parti-

tioning µ if
(a) ν is a refinement of µ,
(b) for each pair of adjacent elements u′, u′′ of µ there is a pair

of adjacent elements v′, v′′ of ν in u′ and u′′ respectively such
that v̄′ ∪ v̄′′ is a subset of the interior of ū′ ∪ ū′′, and

(c) for each element u of µ, the elements of ν in u may be or-
dered v0, v1, . . . , vn such that v̄0 intersects each v̄i, while v̄i
intersects the boundary of u if and only if i > 0.
We call v0 a core element and vi, i > 0 border elements.

In 1949, R.H. Bing proved that every continuous curve is partition-
able [2]. Moreover every partitionable set admits a sequence of brick
1
n -partitions {µn}

∞
n=1 such that µk+1 core refines µk[1].

If there is an effective p-adic group action on a Peano continuum X,
then a natural question is to ask whether or not there are partitions of X
that respect the group action. This section demonstrates that, for every
ε > 0, the space X can be partitioned by partitionable sets of diameter
less than ε such that the group action merely finitely permutes these sets.
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Theorem 3.2 (e.g. Theorem 3.7.2 in Engelking[5]). If f : X → Y is
a perfect mapping, then for every compact subspace Z ⊂ Y the inverse
image f−1(Z) is compact.
Lemma 3.3. Let X and Y be connected, locally connected metric spaces.
If f : X → Y is a perfect, light open map and U ⊂ Y is open with the
property that Ū is compact and locally connected, then V := f−1(U) has
finitely many components.
Proof. Pick a point y ∈ U . Since the mapping f is continuous, the set
V ⊂ X is open. Since X is locally connected, for each point x ∈ W :=
f−1(y) ⊂ V , there is a connected open set Ox ⊂ V . Since the mapping
f is perfect, the set W is compact. The collection {Ox} is an open cover
of W , so there are a finite sub-collection of open sets Oxi

which cover
W . Since each Oxi

is connected, there are finitely many components of
V containing points of W , which implies that each of those components
is both open and closed in V . Since f is an open map, the image of each
component is open. Likewise, since f is a perfect mapping, it is a closed
map, which implies the image of each component is also closed. Since U
is connected, the image of each component is all of U .

Thus, the pre-image V has only finitely many components. �

Theorem 3.4. Let X and Y be connected, locally connected metric spaces.
If f : X → Y is a perfect, light open map and U ⊂ Y is open, with the
property that Ū is compact and locally connected, then f−1(Ū) is also
compact and locally connected.
Proof. From Theorem 3.2, the pre-image V := f−1(Ū) is compact. Thus,
it suffices to show that V has property S. By Bing’s partitioning theorems
[2], this condition is equivalent to V being partitionable.

Since Ū is compact and locally connected, Ū has property S, and is
thus partitionable. Let G := {gi} be a partitioning of Ū . From Lemma
3.3, the finite collection {h ⊂ V | h is a component of f−1(gi), for some
gi ∈ G} forms a partitioning, H, of V . It suffices to show that the size of
the elements of partitions of V can be controlled.

Choose a point y ∈ Ū . Since f is a light mapping, the set f−1(y) is
0-dimensional, thus totally disconnected. Given ε > 0; cover f−1(y) by a
finite number of disjoint open sets of diameter less than ε

3 . Denote this
cover by {Ji}.

Since f is an open map, consider the open neighborhood Ky :=
⋂
f(Ji)

of the point y. The set f−1(Ky) ⊂
⋃
Ji is open, contains the points

f−1(y), and the components of f−1(Ky) have diameter less than ε
3 .

Since the point y was an arbitrarily chosen point in Ū , form an open
cover {Ky}y∈Ū of Ū . Since Ū is compact, take a finite sub-cover of {Ky},
and denote it by {Ki}. Let δ > 0 be the minimum distance between
non-intersecting members of the finite closed cover {K̄i}.
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Let G be a δ-partition of Ū , and let H be the associated partition of
V under the mapping f . Since any member, g ∈ G, will lie in the star of
the finite sub-cover, {K̄i}, the collection H is at most an ε partition of V .

Since ε was arbitrary, the set V is partitionable thus V has property
S, which implies that it is locally connected as desired. �

In the specific case of a p-adic group acting on a Peano continuum,
Theorem 3.4 and Lemma 3.3 provide a means to construct equivariant
partitions. Just as the group of p-adic numbers can be seen as an inverse
limit of finite p-power groups, we demonstrate that a p-adic action on a
Peano continuum can be approximated by finite permutations. We see
from Corollary 3.5 below that every effective p-adic action on a Peano
continuum (including any possible counter-example to the Hilbert-Smith
conjecture) admits a refining sequence of partitions each with a corre-
sponding finite action on its members.

Corollary 3.5 (Equivariant Partitions). If the group of p-adic numbers,
Ap acts on a Peano continuum X, then for each ε > 0, there is an ε-
partition of X, where the group Ap acts on the members of the partition
by finite permutation.

Proof. Since the quotient map π0 : X → X/Ap is continuous and X is a
Peano continuum, the quotient space Y := X/Ap is also a Peano contin-
uum. Moreover, the map π0 is a perfect, light open map, and both X
and Y are connected, locally connected, compact metric spaces, so the
criteria for Theorem 3.4 and Lemma 3.3 are satisfied.

Since Y is a Peano continuum, by Bing’s partitioning theorems [2], the
space Y can be partitioned. Let G = {gi} be a partition of Y . From
Lemma 3.3, the finite collection H := {h ⊂ X| h is a component of
π−1

0 (gi), for some gi ∈ G} forms a partitioning of X. For a given gi ∈ G,
the full pre-image hi := π−1

0 (gi) ⊂ X is fixed by the group Ap. Since,
by Lemma 3.3, each hi has only finitely many components, the group
Ap finitely permutes the components of hi, and thus the members of the
partition H.

Just as in the proof of Theorem 3.4, the size of elements of these induced
partitions of X can be controlled, and the result follows. �

It is easy to generalize this result (and those from the rest of the paper)
to more arbitrary zero-dimensional compact groups. Pontryagin showed
that every zero-dimensional compact group is the inverse limit of finite
groups [7]. It is easy to see that for a given zero-dimensional compact
group, C, either C is finite or C has the topology of a Cantor set. When
C is not finite, the group C is called a Cantor Group. In either case, write
C = lim←−{Ci, ψ

i+1
i } where
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(1) each Ci is a finite group,
(2) C0 = {e} is the trivial group,
(3) Ci ≤ Ci+1 with equality if and only if Ci = C, and
(4) for each i ≥ 0, the map ψi+1

i : Ci+1 → Ci is an onto homomor-
phism.

The group of p-adic numbers is a Cantor group: Ap = lim←−{Zpn , φ
n+1
n }.

Corollary 3.6. If C = lim←−{Ci, ψ
i+1
i } is a zero-dimensional compact

group acting on a Peano continuum X, then for each ε > 0, there is an
ε-partition of X, where the group C acts on the members of the partition
by finite permutation.

4. Lifting Arcs and Homotopies

While some preliminary work in this section is done in more abstrac-
tion, the motivation is still the setting where a p-adic group, Ap, acts
on a space X. While the results will also hold for any zero-dimensional
compact group, the focus will be when the group is a p-adic group.

Although all of the maps pn : X/∆n → X/∆n−1 are covering or branched
covering maps, the projection π0 : X → X/Ap is not, in general, a covering
map. Nevertheless, some standard results on covering spaces can still be
obtained. It is always possible to lift an arc from the quotient space X/Ap

to an arc in X. There is an isomorphism between the higher homotopy
groups- that is πn(X) ∼= π(X/Ap) for all n ≥ 2.

Theorem 4.1 (Whyburn [9]). Let T (A) = B be a light interior trans-
formation, where A is compact. Then if pq is any simple arc in B and
p0 is any point in T−1(p), there exists a simple arc p0q0 in A such that
T (p0q0) = pq and T is topological on p0q0.

In other words, if p : X → Y is a light open perfect map, A ⊂ Y is an
arc, and a ∈ A, then given a point α ∈ p−1(a) there is an arc A ⊂ X such
that α ∈ A, p(A) = A, and p|A is an embedding. This shows us that arcs
can be lifted from the quotient space.

Corollary 4.2. If a p-adic group, Ap, acts on a space X, the set A ⊂
X/Ap is an arc, the point a ∈ A, and the map π0 : X → X/Ap is the
quotient map induced by the group action, then given any α ∈ π−1

0 (a)
there is an arc A ⊂ X such that π0(A) = A, π0(α) = a, and π0|A is an
embedding.

In the case of a free action, a stronger statement is possible.

Theorem 4.3. If Ap acts freely on X and if π0 : X → X/Ap is the quotient
map, then for any arc A ⊂ X/Ap, the pre-image π−1

0 (A) ∼= Ap × [0, 1].
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Proof. Let h : [0, 1] ↪→ X/Ap be a parameterization of the arc A :=
h([0, 1]) ⊂ X/Ap.

For each point a ∈ h−1(0), there is an arc Aa ⊂ X, by Corollary 4.2.
Define the map ha : [0, 1] ↪→ X so that ha(t) ∈ π−1

0 (h(t)) ∩ Aa. Since
π0|Aa

is an embedding, the map ha is a well-defined embedding.
Fix the point a ∈ h−1(0), and let Ã := ∪g∈Ap

g(Aa). Since Aa ⊂ Ã,
the set π0(Ã) = A. If a point x ∈ π−1

0 (A), then π0(x) ∈ A thus there is
a parameter tx ∈ [0, 1] such that π0(x) = h(tx). Let y = ha(tx) ∈ Aa.
Since π0(y) = π0(ha(tx)) = h(tx) = π0(x), there is a gx ∈ Ap such that
gx(y) = x. Since gx(Aa) ⊂ Ã, the point x ∈ Ã and thus Ã = π−1

0 (A).
Suppose, for sake of contradiction, there is a nontrivial element g ∈ Ap

such that there is a point x ∈ Aa∩g(Aa). Let ta ∈ [0, 1] such that ha(ta) =
x, and hence such that h(ta) = π0(x). Since g is a homeomorphism, there
is a parameterization hg : [0, 1]→ g(Aa) such that g(ha(t)) = hg(t). Since
π0(g(z)) = p(z) for all z ∈ X, it follows that π0(ha(t)) = π0(g(ha(t)) =
π0(hg(t)) for all t ∈ [0, 1]. Let tb ∈ [0, 1] such that x = hg(tb). Since
h is an embedding and h(ta) = π0(x) = π0(hg(tb)) = π0(g(ha(tb))) =
π0(ha(tb)) = h(tb), then the parameter ta = tb. Since x = hg(tb) =
hg(ta) = g(ha(ta)) = g(x) and g is non-trivial, this is a contradiction
with Ap acting freely. Since the intersection Aa ∩ g(Aa) = ∅ for every
g ∈ Ap \ {e}, the pre-image π−1

0 (A) ∼= Ap × [0, 1]. �

While the quotient map π0 : X → X/Ap is not a covering map (in
general), the maps pn : X/∆n → X/∆n−1 are p-fold branched covers. Given
a mapping h into the quotient space X/Ap, a sequence of lifts of h to the
quotient spaces X/∆n can be constructed in many cases in order to obtain
a lifting of h to X.
Theorem 4.4. If a p-adic group, Ap, acts on a space X, the map π0 :
X → X/Ap is the quotient map induced by the group action, and the map
h : K → X/Ap is a continuous map from a simply connected compact space
K, then there is a lift of this map ĥ : K → X such that π0 ◦ ĥ = h.
Proof. Since the map h is continuous, the space K is compact, and the
map π0 is perfect, the set Y := π−1

0 (h(K)) is compact. Let τ be a
generator of the group Ap. The restriction τ|Y is uniformly continuous,
and τp

n

|Y
n→∞−−−−→ 1Y uniformly.

Pick a basepoint k0 ∈ K and then fix a basepoint xω ∈ π−1
0 (h(k0)) ⊂

Y ⊂ X. From the inverse sequence of p-fold covering maps on the quotient
spaces X/∆n (labeled (2.1) on page 2) there is, for our basepoint xω ∈ X,
a corresponding sequence {xn}∞n=0 such that x0 := h(k0), πn(xω) = xn,
and pn(xn) = xn−1 for all n ∈ N. Likewise with this choice fixed, since
K is simply connected there is a sequence of maps {Hn : K → X/∆n}∞n=0

such that Hn(k0) = xn ∈ X/∆n and Pn ◦ Hn = h.
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Define ĥ : K → Y ⊂ X by ĥ(k) ∈
⋂
π−1
n Hn(k), for any k ∈ K. The

map ĥ is well-defined, since
• limn→∞ diam(π−1

n Hn(k)) = 0,
• the set π−1

n+1Hn+1(k) ⊂ π−1
n Hn(k), for each n ∈ N, and

• the set π−1
n Hn(k) is compact, for each n ∈ N.

The map ĥ is continuous because the map HN is continuous and that for
any ε > 0, there is an N > 0 such that ‖τp

N

|Y ‖∞ < ε
3 . �

Corollary 4.5. If a p-adic group, Ap, acts on a space X, the map π0 :
X → X/Ap is the quotient map induced by the group action, the map
h : [0, 1]→ X/Ap is a path in the quotient space, and the map H : [0, 1]×
[0, 1] → X/Ap is a homotopy in the quotient space where h(t) = H(t, 0)

for each t ∈ [0, 1], then there is a path ĥ : [0, 1]→ X such that π0 ◦ ĥ = h

and a homotopy Ĥ : [0, 1] × [0, 1] → X such that ĥ(t) = Ĥ(t, 0) for each
t ∈ [0, 1] and π0 ◦ Ĥ = H.

Proof. Both the spaces [0, 1] and [0, 1] × [0, 1] are compact simply con-
nected spaces. �

Corollary 4.6. If a p-adic group, Ap, acts on a space X, then for any
n ≥ 2 there is an isomorphism of the higher homotopy groups πn(X) ∼=
πn(X/Ap).

Proof. For any n ≥ 2, the space Sn is compact and simply connected. �

5. Invariant Sets

The motivation for this section, like the entirety of the paper, is the
Hilbert-Smith conjecture. While the results of this section extend to
more arbitrary Cantor groups, the attention is restricted to p-adic groups.
Should a counter-example exist to the conjecture, then it would perforce
have certain properties. The aim here is to add to those known properties.

In this section, the action is assumed to be a free action. This as-
sumption could be lessened to an action that is free except on a set that
nowhere locally separates the space without significantly lessening the re-
sults. While the requirement in the theorems below that a finite number
of arcs nowhere locally separate the quotient space might seem like an
imposing restriction, in the context of trying to find a counter-example
for the Hilbert-Smith conjecture, it is a trivial requirement. It is already
known that such a counter-example would have to be a manifold of di-
mension four or higher, and as such cannot be locally separated by any
one dimensional subset.
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The pair of lemmas below serve as the workhorse for this section. They
show that, between any two points, x and y, one can construct an arc J
that can be made to not only avoid the remainder of the orbits of its end
points, but also to avoid its own orbit (excluding the possibility that x
is in the orbit of y). The remainder of the section demonstrates what
can be made from such constructions by looking at the full orbit of these
constructed arcs. The section concludes with a construction of a p-adic
invariant Menger curve from these arcs.

Lemma 5.1. If a p-adic group, Ap acts freely on a space X, then for
any x, y ∈ X such that there is a connected property S sub-space Y ⊂ X
with x, y ∈ Y whose quotient Y/Ap cannot be locally separated by a finite
number of arcs there is, for every subgroup ∆h ≤ Ap, an arc J ↪→ X from
x to some z ∈ ∆hy with J ∩ (Apx ∪Apy) = {x, z} and g(J) ∩ J ⊂ {x, z}
for every g ∈ Ap. Moreover, if L ⊂ X/Ap is a finite union of arcs, then
the arc J can be chosen such that π0(J) ∩ L ⊂ {π0(x), π0(y)}.

Proof. Given x, y ∈ Y ⊂ X and ∆h ≤ Ap.
Let πh : ApY → Y/∆h and π0 : ApY → Y/Ap be the quotient maps

induced by the action of Ap. Since Y/G = GY/G for any group G acting on
X, they may be used interchangeably in this proof. Since Y is connected
with property S, the quotient spaces Y/Ap and Y/∆h are as well. There is
a ph-to-1 covering map Ph : Y/∆h → Y/Ap, since Ap is acting freely on X
(and hence on ApY ⊂ X).

If the point x ∈ ∆hy, then the trivial, degenerate arc would suffice, so
without loss of generality assume that x /∈ ∆hy. Denote by x1 := πh(x)
and x2 := πh(y). Since x /∈ ∆hy, immediately x1 6= x2. Since Ph is a
covering map and Y/∆h has property S, there is a δ > 0 such that, for
every w ∈ Y/∆h, the distance d(w, τm(w)) ≥ δ for all 1 ≤ m < ph.

Since Y/Ap has property S, there is a brick partition, ν of Y/Ap such
that, for each N ∈ ν, the pullback P−1

h (N) has exactly ph components
each of which having diameter less than δ in Y/∆h. Moreover the collection
of these components forms the induced brick partition µ of Y/∆h where
each partition member M ∈ µ has exactly order ph under the free Zph
group action induced by Ap. This can be done so that x1 ∈ Int(M) for
some unique M ∈ µ.

Since the space Y/∆h is connected and has property S, the space is
arcwise connected. Let {Mi}ni=1 ⊂ µ be a minimal (with respect to n)
chain, in order, connecting the points x1 to x2. Thus x1 ∈ M1, x1 /∈ Mi

for i > 1, x2 ∈ Mn, x2 /∈ Mj for j < n, and if ∂Mk ∩ ∂Mj 6= ∅, then
|k − j| ≤ 1.
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Since Ap acts on µ as a free Zph action, for any 0 < k < ph and
any 1 ≤ i, j ≤ n, if τk(Mj) ∩Mi contains a non-empty open set, then
τk(Mj) = Mi.

Let B0 := {x1}. For 1 ≤ i ≤ n, let Bi ⊂ ∂Mi∩∂Mi+1 be the largest set
such that if b ∈ Bi and b ∈ ∂M , then eitherM = Mi orM = Mi+1. Since
µ is a brick partition, each set Bi is non-empty and a local separator.

Let B′i =
⋃i
j=1Bj .

Let K0 := {x2} and L0 := {τ l(K0)}p
h−1
l=1 . Since L0 is a finite collection

of points, it is not a local separator thus B1 \ L0 is non-empty. Pick
K1 to be an arc in M1 from the point k0 := x1 to some other point
k1 ∈ B1 \L0 such that K1 ∩B′1 = {k1}. Define L1 := L0 ∪

⋃ph−1
l=1 τ l(K1).

Since L1 \ L0 ⊂ Y/∆h \M1, K1 ∩ L0 = ∅, and K1 ∩ ∂M1 = {k1}, the
intersection L1 ∩K1 = ∅.

Suppose, for some k with 1 ≤ k < n, there are, for all 1 ≤ i ≤ k, arcs
Ki ⊂Mi going from ki−1 ∈ Bi−1 to ki ∈ Bi such that the set of obstacles
Lk :=

⋃k
j=0

⋃ph−1
l=1 τ l(Kj) consists of a finite number of disjoint arcs and

isolated points, the union K ′k :=
⋃k
j=1Kj is an arc from x0 to kk, the

intersection of the two K ′k ∩ Lk = ∅, and K ′k ∩B′k = {kj}kj=1.
Since

(
Lk\L0

)
∩B′n−1 ⊆

ph−1⋃
l=1

τ l(K ′k∩B′n−1) =

ph−1⋃
l=1

τ l(K ′k∩B′k) =

ph−1⋃
l=1

k⋃
j=1

τ l(kj)

is a finite set of points, it is not a local separator. The remainder of the
set Bk+1 \ Lk is non-empty.

Pick kk+1 ∈ Bk+1 \ Lk.
Since Lk is a finite number of arcs and isolated points, it does not locally

separate Mk+1. Define Kk+1 to be an arc from kk ∈ Bk to kk+1 ∈ Bk+1

such that Kk+1 ∩ Lk = ∅ and Kk+1 ∩ B′k+1 = {kk, kk+1}. Denote by

Lk+1 := Lk ∪
⋃ph−1
l=1 τ l(Kk+1). Observe that Lk+1 ∩ K ′k+1 = ∅ follows

from the union Lk ∪K ′k being the full Ap-orbit of K ′k.
By finite induction, define K ′ := K ′n, where the endpoint kn is taken

to be x2.
Let J be the arc (obtained from Corollary 4.2) that is the lift of K ′

starting at the point x ∈ Y and the lemma is done. Moreover, given some
finite set of obstacle arcs L, simply realize that the set Y \L∪{π0(x), π0(y)}
has property S and has the same local separator conditions so Y \ L ∪
{π0(x), π0(y)} could have been used in the proof instead of Y . �



PEANO 11

While the prior lemma could only draw an arc within a subgroup of
the desired target, the following one sequentially uses the first to obtain
an arc going to the exact desired endpoint.

Lemma 5.2. If a p-adic group, Ap acts freely on a space X, then for any
x, y ∈ X such that there is a connected property S sub-space Y ⊂ X with
x, y ∈ Y whose quotient Y/Ap cannot be locally separated by a finite number
of arcs, there is an arc J ↪→ X from x to y with J ∩ (Apx∪Apy) = {x, y}
and g(J) ∩ J ⊂ {x, y} for every g ∈ Ap. Moreover, if L ⊂ X/Ap is a
finite union of arcs, then the arc J can be chosen such that π0(J) ∩ L ⊂
{π0(x), π0(y)}.

Proof. Let x, y ∈ Y ⊂ X as above. The statement is trivial if x = y, so
without loss of generality assume that x 6= y and let d0 := d(x, y). Since
Y has property S, Y is partitionable. Let ν0 be a d0/2-partition of Y such
that y ∈ Y̊1 for some Y1 ∈ ν0.

Pick a subgroup ∆h0 ≤ Ap such that ∆h0y ⊂ Y̊1. By Lemma 5.1, there
is an arc J0 from x to some point y0 ∈ ∆h0y ⊂ Y̊1.

Define J ′0 to be a sub-arc of J0 from x to ∂Y1 such that J ′0∩∂Y1 =: {x1}
is a singleton.

Let d1 := min{d02 , d(x1, y)}. Since Y1 has property S, there is a d1
2 -

partition, ν1 of Y1, such that y ∈ Y̊2 for some Y2 ∈ ν1. Pick a subgroup
∆h1 ≤ ∆h0 such that ∆h1y ⊂ Y̊2 and again apply Lemma 5.1 to obtain an
arc J1 from x1 to some point y1 ∈ ∆h1y ⊂ Y̊2 such that J ′0∩ApJ1 = {x1}.

Now define J ′1 to be the arc J ′0 together with the sub-arc of J1 from
x1 to ∂Y2 such that J ′1 ∩ ∂Y2 is a singleton, {x2} and repeat this process
ad infinitum to obtain a sequence of arcs (J ′k)∞k=0, diameters (dk)∞k=0, and
endpoints (yk)∞k=0 thereof.

Since the sequence (dk) is summable, the limit J := lim J ′n is an arc.
Since yk → y, the arc J runs from x to y. By construction, the arc J has
the desired properties. �

Applying this lemma when the endpoint y is in the orbit of x and then
seeing the full orbit of the resulting arc, some interesting sub-continua
can be formed upon which Ap, perforce, acts freely.

Theorem 5.3. If a p-adic group, Ap acts freely on a space X with the
property that for every pair of points x, y ∈ X there exists a Peano con-
tinuum Y ⊂ X containing both points and the quotient Y/Ap cannot be
locally separated by a finite number of arcs, then for every x ∈ X, there
is a space Zx ⊂ ApY ⊂ X with x ∈ Zx, the restriction (Ap)|Zx

is a free
action, and can be constructed so that Zx and Zx/Ap are homeomorphic
to:
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(1) the product Ap × S1 and the circle S1 respectively,
where the group Ap simply acts on the first factor,

(2) a solenoid and a circle respectively, or
(3) pk disjoint solenoids and a circle respectively.

Proof. Let τ ∈ Ap be a generator for the group.
(1) Pick z /∈ Ap(x). Applying Lemma 5.2, there is an arc J1 from x

to z such that π0(J1) is an arc. Applying the lemma again, there
is an arc J2 from z to x such that π0(J2) is an arc, the intersection
J1 ∩ J2 = {x, z}, and π0(J1 ∪ J2) is a simple closed curve. Take
Zx := Ap(J1 ∪ J2). The space Zx ∼= Ap × S1 and the orbit space
Zx/Ap

∼= S1.

rxrz S1 ×Ap ∼= Zx ⊂ X

?
π0 rπ0(x)rπ0(z) S1 ∼= π0(Zx) ⊂ X/Ap

(2) Using Lemma 5.2, there is an arc J from x to τ(x) where Zx :=
Ap(J) ∼= Σp is a p-adic solenoid. Moreover, the orbit space J/Ap =
Zx/Ap is a simple closed curve.

r
π0(x)

S1 ∼= π0(Zx) ⊂ X/Ap

Σp ∼= Zx ⊂ X

?

π0

p
x

p
τ(x)

(3) Using Lemma 5.2, there is an arc J from x to τp
k

(x). The full
image Zx := Ap(J) ∼= Zpk ×Σp forms pk distinct p-adic solenoids.
Again the orbit space J/Ap ∼= S1 is a simple closed curve.
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r
π(x)

S1 ∼= π(Zx) ⊂ X/Ap

Zpk × Σp ∼= Zx ⊂ X

ppp

?π0

p
x

p
τp

k
(x)

p
τ(x)

�

A more complicated example is constructed below using, as building
blocks, the invariant spaces formed in parts 2 and 3 of Theorem 5.3
(namely p-adic solenoids). Given a free p-adic action on a Peano con-
tinuum, X, where X cannot be locally separated by a one dimensional
subset, we show that at each and every point, x of the continua, there is a
group invariant Menger curve µx. Lessening the condition that the action
be free to a merely effective action on X but one such that the space
X cannot be locally separated by any one dimensional subset together
with the set of periodic points would only reduce the result to invariant
Menger curves existing at every point x ∈ X where the action was free. It
is interesting that the quotient µx/Ap is one dimensional even in the case
should the map π0 : X → X/Ap raise dimension.
Theorem 5.4. If a p-adic group, Ap, acts freely on a Peano continuum
X such that X/Ap cannot be locally separated by a finite number of arcs,
then, for each point x ∈ X, there is a Menger curve µ containing x, where
the restriction (Ap)|µ is a free p-adic action.

Proof. We label some types of continua: a subspace, V , of X/Ap will be
of type I, if it is homeomorphic to an arc with two distinct endpoints in
the ambient space, of type Q if it is homeomorphic to a space of type I
together with a circle that is tangent at a point in the interior of that
arc, and of type X if it is homeomorphic to the union of two spaces of
type I that have a single point of intersection and that single point occurs
in the interior of both arcs. The naming scheme for the types should be
indicative of the appearance of the respective V .
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Let x ∈ X. From Theorem 5.3, there is a simple closed curve, W0 ⊂
X/Ap such that Σx := π−1

0 (W0) is a solenoid upon which Ap acts freely.
For sake of a later induction, let Ω′−1 := {X/Ap} be the trivial brick
partition of X/Ap, let B−1 = C0 = ∅, and let L0 = 0.

Since W0 is a simple closed curve in a Peano continuum X/Ap, choose
Ω′0 to be a brick 1-partition of X/Ap such that there is a sub-collection Ω0

with the following properties:
(1) W0 ∩ ω̄ = ∅ for any ω ∈ (Ω′0 \ Ω0).
(2) For each ω ∈ Ω0, the intersection W0 ∩ ω is of type I, having

boundary points αω and βω.
Let B0 := {αω|ω ∈ Ω0} ∪ {βω|ω ∈ Ω0}.
For each ω ∈ Ω0, let Kω ⊂ ω be the core element in a core refinement

of ω constructed such that Kω ∩W0 6= ∅. Pick cω ∈ Kω ∩W0. There is an
lω ≥ 0 such that each component of the pre-image π−1

0 (Kω) is invariant
under ∆lω . Pick L1 ≥ 1 such that L1 ≥ max{lω|ω ∈ Ω0}. From Theorem
5.3, there is a simple closed curve Jω ⊂ K̄ω ⊂ ω ⊂ X/Ap with base point
cω such that Jω ∩W0 = {cω} and π−1

0 (Jω) is exactly pL1 solenoids that
permute under Ap.

Let C1 := {cω|ω ∈ Ω0}, and let W1 := W0 ∪
⋃
ω∈Ω0

Jω.
For some k ≥ 1, assume that for all 1 ≤ n ≤ k:
(1) There is a set Cn ⊂ X/Ap that is finite, with Cn−1 ⊂ Cn and

Cn−1 6= Cn.
(2) There is a natural number Ln > Ln−1.
(3) The space Wn 6= Wn−1, with Wn−1 ⊂ Wn ⊂ X/Ap, is a con-

tinuum decomposed into a finite number of simple closed curves
Ji, such that if Ji ⊂ Wn−1 and Ji 6= Wn−1, then Ji ∩Wn−1 ⊂
Cn \ Cn−1 is a singleton and π−1

0 (Ji) ⊂ X is pLn solenoids.
(4) The collection Ω′n−1 is a brick 21−n-partition of X/Ap that re-

fines Ω′n−2 such that the sub-collection Ωn−1 := {ω ∈ Ω′n−1|ω ∩
Wn−1 6= ∅} satisfies Wn−1 ∩ ω̄ = ∅ for any ω ∈ (Ω′n−1 \ Ωn−1)

(5) Moreover, the partition Ω′n−1 is constructed such that, for any
ω ∈ Ωn−1, the sub-spaceWn∩ω is a space that is either of type Q,
or of type X having boundary Wn ∩ ∂ω being respectively either
two or four isolated points.

(6) The set of all these boundary points Bn−1, where Bn−2 ⊂
Bn−1 := ∪ω∈Ωn−1{x ∈Wn|x ∈ ∂ω}, locally separate Wn.

Let Ω′k be a brick 2−k-partition refining Ω′0 such that the sub-collection
Ωk := {ω ∈ Ω′k| ω ∩Wk 6= ∅} satisfies:

(1) Wk ∩ ω̄ = ∅, for any ω ∈ (Ω′k \ Ωk).
(2) If ω ∈ Ωk, then ω ∩Wk is either of type I or of type X.
(3) If ω1, ω2 ∈ Ωk such that ω̄1∩ ω̄2∩Wk 6= ∅, then the intersection

is a singleton and at most one of these two sets is of type X.
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Let Bk := Bk−1 ∪
⋃
ω∈Ωk

Wk ∩ ∂ω be a finite number of points that
obviously locally separates Wk.

Let Ok := {ω ∈ Ωk|ω ∩Wk is of type I}. For each ω ∈ Ok, let Kω ⊂ ω
be the core element in a core refinement of ω such that Kω ∩Wk 6= ∅.
Pick cω ∈ Kω ∩Wk. Choose a number Lk+1 > Lk such that, for every
Kω, each component of the pre-image π−1

0 (Kω) is invariant under ∆Lk+1 .
Using Theorem 5.3, there is a simple closed curve, Jω ⊂ K̄ω ⊂ ω ⊂ X/Ap
with base point cω such that Jω ∩ Wk = {cω} and π−1

0 (Jω) is exactly
pLk+1 solenoids that permute under Ap.

Let Wk+1 := Wk ∪
⋃
ω∈Ωk

Jω, and let Ck+1 := Ck ∪{cω|ω ∈ Ok}. This
completes the induction, and so there is a strictly increasing sequence of
natural numbers {Ln} as well as sets W :=

⋃∞
k=0Wk, C :=

⋃∞
k=0 Ck, and

B :=
⋃∞
k=0Bk.

Let µ := π−1
0 (W ). Bestvina’s characterization of a Menger curve is that

it is the unique connected and locally connected compactum of dimension
1 having the disjoint arc property[3].

Claim 1. The space µ has covering dimension dimµ = 1.

Define B := {{ω ∈ Ωi} ∪
⋃
b∈Bi

St(b,Ωi)|i ∈ N}. Since mesh(Ωi) → 0
as i → ∞, the collection B forms a property S basis for W . For any
B ∈ B, the boundary ∂B is a finite number of points, thusW has covering
dimension dimW = 1.

For each B ∈ B, the pre-image π−1
0 (B) consists of a finite number of

open sets and the collection B′ := {B′ ⊂ X|B′ is a component of π−1
0 (B)

for some B ∈ B} forms a basis for µ. Since, for each B ∈ B, the boundary
∂B is a finite set, for any B′ ∈ B′ the boundary ∂B′ is a finite number of
Cantor sets and is thus 0-dimensional. Therefore, we have dimµ = 1.

Claim 2. The space µ is connected.

Pick points y1, y2 ∈ µ. There is an n ∈ N such that π0(yi) ∈ Wn for
both i = 1, 2. There is an arc joining π0(yi) to W0 which lifts to arcs in
µ starting at yi for both i = 1, 2, and since the pre-image π−1

0 (W0) = Σx
is the solenoid which is connected, the points y1 and y2 lie in the same
component of µ. Since y1, y2 were an arbitrary pair of points in µ, the
space µ is connected.

Claim 3. The space µ is locally connected.

Using the bases B and B′ defined in claim 1, it suffices to show that
each B′ ∈ B′ has only finitely many components. This further reduces to
showing that each B ∈ B has only finitely many components, which in
turn reduces to showing that for every i ∈ N, the intersection ω ∩W has
finitely many components for every ω ∈ Ωi.
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For an arbitrary ω ∈ Ωi, either ω ∩ Wi is of type I (and thus is an
arc) or of type X (and thus four arcs meeting in a common point). In
either case, ω ∩Wi is connected. Let w ∈ ω ∩W , then w ∈ Wn for some
n ≥ i. From the construction of Wn, finitely many arcs in ω join w to Wi.
Since w was chosen arbitrarily, ω ∩W is connected. Hence every B ∈ B
is connected, and thus every B′ ∈ B has finitely many components and µ
is locally connected.

Claim 4. The space µ has the Disjoint Arc Property (DD1P ).

Let f1, f2 : [0, 1]→ µ be arcs in µ. Given ε > 0, there is an n ∈ N that
is so large that the following hold true:

(1) The projection of the starting point π0fi(0) ∈Wn for i = 1, 2.
(2) The loop size (i.e. mesh(Ω′n−1)) is at most 2−n < ε

2 .
(3) The subgroup ∆Ln ≤ Ap is such that d(x, gx) < ε

2 for every
x ∈ X and g ∈ ∆Ln .

Consider the arc projections π0fi : [0, 1] → W for i = 1, 2, then approx-
imate each by Wn obtaining arcs f ′i : [0, 1] → Wn for i = 1, 2. For any
g ∈ ∆Ln and i = 1, 2, any lift f̂i : [0, 1]→ µ of f ′i taking f ′i(0) to gfi(0) is
such that d(f1, f̂i) < ε.

Since the image of each f ′i can be decomposed into finitely many simply
connected pieces in Wn which lift uniquely up to choice of base-point and
there are uncountably many choices for lifts by choosing a base-point by
g ∈ ∆Ln , it follows that there are lifts f̂1, f̂2 such that d(fi, f̂i) < ε and
f̂1 ∩ f̂2 = ∅. Thus µ has the Disjoint Arc Property (DD1P ).

Since µ is a compact, connected, locally connected 1-dimensional metric
space with the disjoint arc property, using Bestvina’s characterization of
the Menger curve [3], the space µ is a Menger curve. �

Thus Theorem 5.4 produces, for each x ∈ X, a Ap-invariant Menger
curve. If we restrict the free Ap-action to one of these Menger curves,
we obtain a free Ap action on µ1 with a one-dimensional orbit space.
This is similar, but not identical, to the free Ap action on µ1 obtained by
A. N. Dranishnikov [4], and later described by Zhiqing Yang [11]. To
readily see that the two actions are different, simply compare the orbit
spaces of the respective actions. Below is a representation of each orbit
space up to the third stage of each of their constructions. The orbit space
µ1
/Ap from Theorem 5.4 on the left has cut points, while the orbit space

from Dranishnikov’s action on the right only has local cut points.
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µ1
/Ap from Theorem 5.4 Dranishnikov’s µ1

/Ap [4, 11]
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With slight modifications to the construction in Theorem 5.4, the fol-
lowing can be constructed without difficulty:

Corollary 5.5. The Menger curve µ can be constructed so that the in-
herited free Ap action on it is precisely the one described by A.N. Dran-
ishnikov [4, 11].

Corollary 5.6. The Menger curve, µ, can be constructed in such a fash-
ion that there is a point x ∈ µ such that Apx locally separates µ but no
other orbit does so.

Corollary 5.7. The Menger curve, µ, can be constructed in such a fash-
ion that the orbit space of this sub-action, µ/Ap ∼= µ1 is a Menger curve
as well.
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