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ON IDEMPOTENTS IN COMPACT LEFT
TOPOLOGICAL UNIVERSAL ALGEBRAS

DENIS I. SAVELIEV

Abstract. A standard fact important for applications is that any
compact left topological semigroup has an idempotent. We extend
this to certain compact left topological universal algebras.

1. Introduction

A well-known fact is that any compact left topological semigroup has
an idempotent, i.e. an element forming a subsemigroup. This firstly
was established for compact topological semigroups independently by
Numakura [1] and Wallace [2, 3], and in the final form (perhaps)
by Ellis in [4]. This fact, despite its easy proof, is fundamental for
Ramsey–theoretic applications in number theory, algebra, topological dy-
namics, and ergodic theory. Hindman’s Finite Products Theorem, van
der Waerden’s and Szemerédy’s Arithmetic Progressions Theorems, and
Furstenberg’s Multiple Recurrence Theorem can be mentioned as widely
known examples. Many such applications have no (known) alternative
proofs. The crucial fact for all them is the existence of idempotent ultra-
filters over semigroups.
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Let us shortly recall what are idempotent ultrafilters. The set ββX
of ultrafilters over a set X with a natural topology generated by basic
(cl)open sets {u ∈ ββX : S ∈ u}, S ⊆ X, forms the largest (Stone–Čech
or Wallman) compactification of the discrete space X. If · is a binary
operation on X, it extends to a binary operation on ββX by letting for all
u, v ∈ ββX

uv =
{
S ⊆ X : {a ∈ X : {b ∈ X : ab ∈ S} ∈ u} ∈ v

}
.

The extended operation is continuous in its second argument with any
fixed first, i.e. the groupoid (ββX, · ) is left topological; moreover, it is
continuous in its first argument whenever the fixed second is in X. Not
many algebraic properties are stable under this extension, but associativ-
ity is. Hence any semigroup X extends to the compact left topological
semigroup ββX, and therefore, there exists an ultrafilter u ∈ ββX that is an
idempotent of the extended operation. The book [5] is a comprehensive
treatise on ultrafilter extensions of semigroups and various applications;
it contains also some historical remarks.

The ultrafilter extension actually is a general construction. As was
shown in [7], arbitrary first-order model on X, i.e. a set X with some
operations and relations on it, canonically extends to the model on ββX
such that its model-theoretic properties are, in a sense, completely anal-
ogous to the topological properties of ββX. Certainly, not all extended
models contain idempotents; associativity is essential in Ellis’ result. In
this note, we replace it by other, much wider algebraic conditions thus
showing that compact left topological universal algebras satisfying these
conditions have single-point subalgebras. We also mention applications
using idempotent ultrafilters over such algebras. For simplicity, we con-
sider here only universal algebras with one or two binary operations and
give outlines rather than complete proofs; this suffices however to demon-
strate related ideas. General results in this direction, with detailed proofs,
a number of examples, and a discussion of close concepts, can be found
in [8].

2. Basic Concepts

Fix some terminology. An algebra is a universal algebra, i.e. a set with
arbitrary operations of any arities on it. A groupoid is an algebra with one
binary operation. As a rule, we call the operation a multiplication and
write rather xy than x ·y. If F is an n-ary operation on X, an idempotent
of F is an a ∈ X such that F (a, . . . , a) = a. An idempotent of an algebra
is a common idempotent of all its operations, i.e. an element forming
a subalgebra. An idempotent algebra consists of idempotents only.
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In the sequel, all topological spaces are assumed to be Hausdorff. An
algebra endowed with a topology is left topological iff for any its opera-
tion F , the unary map

x 7→ F (a1, . . . , an, x)

is continuous, for any fixed a1, . . . , an ∈ X. Right topological algebras are
defined dually. An algebra is semitopological iff all unary maps obtained
from any of its operation by fixing all but one argument are continu-
ous, and topological iff all its operations are continuous. In particular,
a groupoid is semitopological iff it is left and right topological simultane-
ously, and topological if its multiplication is continuous. This hierarchy
does not degenerate, even for compact semigroups (see e.g. [5]).

An algebra is minimal iff it includes no proper subalgebras, and min-
imal compact iff it carries a compact topology and includes no proper
compact subalgebras. Clearly, an algebra may include no minimal sub-
algebra (e.g. consider (N \ {0},+), the additive semigroup of positive
natural numbers). Contrary to this, any compact algebra does include
a minimal compact subalgebra (using that the space is Hausdorff, apply
Zorn’s Lemma to the family of compact subalgebras ordered by the con-
verse inclusion). Of course, idempotents form minimal subalgebras of the
least possible size. For the largest possible size, note that any minimal
algebra is one-generated, hence its cardinality cannot exceed ℵ0 and the
cardinality of its language; e.g. a minimal algebra with at most countably
many operations is at most countable. The cardinality of a minimal com-
pact algebra can be larger. As we shall see, certain algebraic properties
restrict the possible size of minimal and minimal compact algebras.

An occurrence of a variable x in a term t(x, . . .) is right-most iff for
any operation F , whenever

F (t1(x, . . .), . . . , tn(x, . . .))

is a subterm of t, then x occurs in tn(x, . . .) but not ti(x, . . .) with i < n.
E.g. in the language of groupoids, all the occurrences of the variable x in
the terms x, vx, v(vx), (v1v2)(v3x) are right-most, while all its occurrences
in the terms v, xv, x(vx), (v1x)(v2x) are not. A left-most occurrence is
defined dually. Clearly, if the occurrence of x in t is right-most (or left-
most), then x occurs there exactly once.

Lemma 2.1. Let X be a left topological algebra and t(v1, . . . , vn, x) a term
with the right-most occurrence of the last argument. Then the map

x 7→ t(a1, . . . , an, x)

is continuous, for any fixed a1, . . . , an ∈ X.

Proof. By induction on the construction of t. �
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3. One Operation

The following theorem generalizes Ellis’ result to groupoids satisfying
certain algebraic conditions.

Theorem 3.1. Let X be a compact left topological groupoid, and let r(v1),
s(v1, v2), t(v1, v2, v3) be some terms, where s(v1, v2) has the right-most
occurrence of the last argument. If X satisfies

s(x, y) · s(x, z) = s(x, t(x, y, z)) and

s(x, y) = s(x, z) = r(x) → s(x, yz) = r(x),

then it has an idempotent.

Sketch of proof. The conditions of Theorem 3.1 are universal formulas,
so any subgroupoid of X should satisfy them. By using Zorn’s Lemma,
isolate a minimal compact subgroupoid A and show that A consists of
a single point. Pick any a ∈ A. Since the occurrence of x in s(v, x) is
right-most, the map x 7→ s(a, x) is continuous by Lemma 2.1. Hence the
first condition implies that s(a,A) = {s(a, b) : b ∈ A} is a compact sub-
groupoid of A, whence s(a,A) = A, and so B = {b ∈ A : s(a, b) = r(a)}
is nonempty. Now the second condition implies that B is a compact sub-
groupoid of A, whence B = A, and then aa = a by the first condition. �

Although the conditions of Theorem 3.1 look technical, they follow
from various easy particular identities. Thus any compact left topological
groupoid satisfying such identities does have an idempotent. Let us give
some examples.

First af all, the associativity law implies the conditions, with r(v) = v,
s(v1, v2) = v1v2, t(v1, v2, v3) = v2v1v3. Thus Ellis’ result follows from
Theorem 3.1.

Next, let us call the following identity

x(yz) = (xz)y

left skew associativity and groupoids satisfying it left skew semigroups.
The identity clearly follows from the conjunction of associativity and
commutativity but implies neither of them. Left skew associativity also
implies the conditions of Theorem 3.1, with r(v) = v, s(v1, v2) = v1v2,
t(v1, v2, v3) = (v1v3)v2. Thus we see: Any compact left topological left
skew semigroup has an idempotent.

There are many identities strictly weaker than associativity that imply
the conditions of Theorem 3.1. E.g., so is the identity (of Bol–Moufang
type)

(xx)(yz) = ((xx)y)z.
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Here r(v) = vv, s(v1, v2) = (v1v1)v2, t(v1, v2, v3) = v2((v1v1)v3). Exam-
ples of this kind can be easily multiplied.

Using of the conditions of Theorem 3.1 is essential; in general, neither
minimal compact left topological groupoids, neither minimal groupoids,
when the latter exist, need consist of a single point. E.g. there exist
countable minimal commutative quasigroups (see [8] for an example). To
mention a topological counterpart, consider the identity

x(yz) = (xy)(xz),

called left distributivity . Thus a groupoid (X, · ) satisfies it iff the map
x 7→ ax is an endomorphism, for any fixed a ∈ X. Right distributivity
is defined dually, and distributivity is the conjunction of left and right
versions.

Such groupoids arise in knot theory, where they usually are idempo-
tents, and also in set theory, where, as Laver has shown, nontrivial el-
ementary embeddings of Vδ into itself with their application operation
f · g =

∪
α<δ f(g |Vα) form a free left distributive groupoid without min-

imal subgroupoids. The existence of such embeddings is an extremely
large cardinal axiom, and it is still a major open problem whether the ax-
iom is necessary to prove a purely algebraic fact about certain finite left
distributive groupoids, so-called Laver’s tables (the currently best known
result is that the fact is unprovable in Primitive Recursive Arithmetic;
see [9] and references there).

Ježek and Kepka have shown that in distributive groupoids, terms of
the form (wx)(yz) are idempotents (see [10] for an elementary proof), and
hence so are all terms with more than two occurrences (of the same or
distinct variables). The one-sided case differs; in [11] we have shown: All
minimal left distributive groupoids are finite, and for any finite n there
exists exactly one (up to isomorphism) such groupoid of cardinality n.
There exists a minimal compact topological left distributive groupoid of
cardinality 22

ℵ0. (The proof of the latter fact uses the algebra of ultrafil-
ters.)

Let us now discuss an application of Theorem 3.1. As mentioned, any
groupoid uniquely extends to the compact left topological groupoid of
ultrafilters over it; moreover, associativity is stable under this extension,
so any semigroup extends to the semigroup of ultrafilters over it. One
can ask about more stable identities. Elsewhere we prove the follow-
ing sufficient condition: Let an identity s1 = s2 be equivalent to some
identity t1 = t2 such that the common variables of t1 and t2 appear in
these terms in the same ordering, and any common variable occurs in
each of the terms only once. Then the identity s1 = s2 is stable under ββ .
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In particular, identities that follow from associativity are stable under ββ
whenever one of its terms is repeatless (or linear), i.e. each variable occurs
in it at most once. (On the other hand, it can be shown that e.g. neither
commutativity, nor idempotency is stable. A question arises whether this
sufficient condition is also necessary.)

An interesting case is when some identities are stable under ββ and at
the same time imply the conditions of Theorem 3.1. If a groupoid satisfies
such identities, one can apply Theorem 3.1 to the groupoid of ultrafilters
over it, thus obtaining an idempotent ultrafilter. The identity

(wx)(yz) = ((wx)y)z

is an example. It is stable under ββ (by the condition given above) and
implies the weaker identity (xx)(yz) = ((xx)y)z, which in turn implies
the conditions of Theorem 3.1 (as we have already noted). Therefore,
it provides an idempotent ultrafilter. (Note that we could not use the
identity (xx)(yz) = ((xx)y)z, which is not repeatless and actually is not
stable under ββ .)

As mentioned, such ultrafilters allow us to obtain significant combina-
torial results. E.g. the following version of Hindman’s Finite Products
Theorem holds:

Theorem 3.2. If a groupoid X satisfies (wx)(yz) = ((wx)y)z, then
any of its finite partitions has a part containing a countable sequence
a0, . . . , an, . . . together with finite products

an0(an1 . . . (ank
ank+1

) . . .)

for all n0 < n1 < . . . < nk < nk+1. Moreover, if X does not have idem-
potents or is right cancellative, one can find such a sequence consisting of
pairwise distinct elements.

Proof. For the proof and various refinements, see [12]. �

4. More Operations

Theorem 3.1 can be generalized to the case of one operation of ar-
bitrary arity, in the expected way. Let us now pass to algebras with
many operations. For simplicity we consider only the case of two binary
operations, denoted below as addition and multiplication, although it is
possible to establish a general result about arbitrary algebras, for which
we refer to [8].

Theorem 4.1. Let (X,+, · ) be a compact left topological algebra such that
any compact subgroupoid of its additive groupoid (X,+) has an idempo-
tent. Let q1(v), q2(v), r(v), s(v1, v2), t1(v1, v2, v3), t2(v1, v2, v3) be some
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terms, where q1(v), q2(v) are additive, and s(v1, v2) has the right-most
occurence of the last argument. If X satisfies

x+ x = x → r(x) + r(x) = r(x),

s(x, y) + s(x, z) = s(x, t1(x, y, z)),
s(x, y) · s(x, z) = s(x, t2(x, y, z)),

and
s(x, y) = s(x, z) = r(x) → s(x, y + z) = q1(r(x)),
s(x, y) = s(x, z) = r(x) → s(x, yz) = q2(r(x)),

then it has an idempotent.

Sketch of proof. Let A be a minimal compact subalgebra of X, a ∈ A
an additive idempotent. The map x 7→ s(a, x) is continuous, hence the
conditions imply firstly that s(a,A) is a compact subalgebra of A, and
secondly that B = {b ∈ A : s(a, b) = r(a)} is a compact subalgebra of A,
so B = A. Then aa = a follows. �

Theorem 4.1 extends Theorem 3.1 since any groupoid (X, · ) satisfying
the conditions of Theorem 3.1, with some r, s, and t, can be turned into
an algebra (X,+, · ) satisfying the conditions of Theorem 4.1 by defining
an extra operation + as the projection onto the first argument: x+y = x
for all x ∈ X. In result, (X,+) is a left-zero semigroup, and one can put
q1(v) = q2(v) = v, t1(v1, v2, v3) = v2, the same r, s, and t as t2.

Let us consider some examples of identities implying the conditions of
Theorem 4.1. The identity

x(y + z) = xy + xz

is left distributivity of · w.r.t. + . Thus an algebra (X,+, · ) satisfies it iff
the map x 7→ ax is an endomorphism of (X,+), for any fixed a ∈ X. If
+ and · coincide, this gives left distributive groupoids mentioned above.
Right distributivity of · w.r.t. + is defined dually, and distributivity of ·
w.r.t. + is the conjunction of left and right versions.

An algebra (X,+, ·) is a left semiring iff both its groupoids are semi-
groups and · is left distributive w.r.t. + . Right semirings are defined
dually, and semirings are algebras that are left and right semirings simul-
taneously. E.g. (N,+, · ) is a semiring; ordinals with their usual addition
and multiplication form a left semiring; if (X,+) is a semigroup then
(XX ,+, ◦) is a left semiring where f ◦ g (x) = g(f(x)); and if (X,+) is
a compact topological semigroup, then (C(X),+, ◦) is a compact topolog-
ical left semiring where C(X) is the subset of XX consisting of continuous
maps, or else continuous endomorphisms, with the standard topology.
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Left semirings satisfy the conditions of Theorem 4.1, with q1(v1) =
v1 + v1, q2(v1) = r(v1) = v1, s(v1, v2) = v1v2, t1(v1, v2, v3) = v2 + v3,
t2(v1, v2, v3) = v2v1v3. One gets: Any compact left topological left semi-
ring has an idempotent (see [6, 13]). Thus if it is minimal compact then
it consists of a single point, and an interesting question is about an alge-
braic counterpart of this, i.e. whether any minimal left semiring consists of
a single point. This is indeed the case for finite left semirings (since their
discrete topology is compact), and we also were able to establish the fol-
lowing result: Any minimal semiring consists of a single point (see [13]).
The complete answer however seems open.

Extending (N,+, · ) to ultrafilters, one gets the algebra (ββN,+, · ) with
two semigroups which however satisfies neither left nor right distributivity.
The set N∗ = ββN\N of nonprincipal ultrafilters is its compact subalgebra.
A long-standing problem is whether some three particular a, b, c ∈ N∗

satisfy a(b + c) = ab + ac or (a + b)c = ac + bc. As van Douwen shown
(see [14]), such ultrafilters, if they exist at all, are topologically rare. We
can take another step in the negative direction (see [13]): Neither closed
subalgebra of (N∗,+, · ) is a left semiring. This follows from the fact
that the algebra has no common idempotents (actually, no a ∈ N∗ with
a+ a = aa, see [5]), despite the existence of additive idempotents as well
as multiplicative ones. The complete solution of the problem also remains
open. Acually, a much weaker problem whether there exist a, b, c, d ∈ N∗

satisfying a+ b = cd remains open for decades.
As in the case of one operation, it is not difficult to provide other

identities that imply the conditions of Theorem 4.1. E.g. let us generalize
the concept of left semirings by preserving left distributivity of · w.r.t. +
but weakening both associativity laws to

((w + x) + y) + z = (w + x) + (y + z),
((wx)y)z = (wx)(yz).

These algebras yet satisfy the conditions of Theorem 4.1 (required terms
can be obtained from the terms for left semirings if one takes rather xx
than x), so any such compact left topological algebra has an idempotent.
Both identities are stable under ββ , so any algebra satisfying them carries
additively idempotent ultrafilters as well as multiplicatively idempotent
ones. Furthermore, it can be shown that under left distributivity of +
w.r.t. · some multiplicatively idempotent ultrafilters are in the closure
of the set of additively idempotent ultrafilters. This fact leads to the
following result (established by Hindman and Bergelson for the semiring
of natural numbers, see [5]) generalizing Theorem 3.2:



IDEMPOTENTS IN COMPACT ALGEBRAS 45

Theorem 4.2. If (X,+, · ) satisfies the two identities above and left dis-
tributivity of · w.r.t. +, then any of its finite partitions has a part con-
taining countable sequences a0, . . . , an, . . . and b0, . . . , bn, . . . together with
finite sums

an0 + (an1 + . . .+ (ank
+ ank+1

) . . .)

and products
bn0(bn1 . . . (bnk

bnk+1
) . . .)

for all n0 < n1 < . . . < nk < nk+1. Moreover, if each of the opera-
tions does not have idempotents or is right cancellative, one can find such
sequences consisting of pairwise distinct elements.

Proof. See [12]. �
Finally, consider algebras (X, ◦, · ) satisfying the following identities:

(x ◦ y) ◦ z = x ◦ (y ◦ z),
(x ◦ y)z = x(yz),
x(y ◦ z) = xy ◦ xz,

x ◦ y = xy ◦ x.
It follows that (X, · ) is a left distributive groupoid (and conversely, it can
be shown that any left distributive groupoid extends to such an algebra).
As Laver has established, elementary embeddings with their application ·
and composition ◦ form algebras satisfying these identities (see [9]). Un-
like the case of one left distributive operation, any such compact left
topological algebra does have an idempotent: as (X, ◦) is a semigroup, it
has an idempotent a, then it easily follows from the identities that aa is
a common idempotent. We think that a study of ultrafilter extensions of
these algebras could throw light upon the problem of Laver’s tables.

Acknowledgement. I thank the anonymous referee who pointed out that
the existence of idempotents in compact right topological right semirings
was independently established in [6] and that the problem of the existence
of a, b, c, d ∈ N∗ such that a+ b = cd is still open.
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