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RETRACTS OF TOPOLOGICAL GROUPS AND
COMPACT MONOIDS

KARL H. HOFMANN AND JOHN R. MARTIN

Abstract. In this note a space which is homeomorphic to a re-
tract of a topological group is called a GR-space and properties
which a GR-space must possess are investigated. GR-spaces have
earlier been called retral spaces by J. van Mill and G. J. Ridderbos
(2006). Every compact space which admits a topological left-loop
structure is a GR-space and every GR-space admits an H-space
structure. For every positive dimension there are compact con-
nected commutative monoids with zero which fail to be GR-spaces.
A characterization is given for the compact GR-spaces which are
homeomorphs of n-spheres, real projective n-spaces, compact sur-
faces, compact bordered surfaces and absolute retracts for the class
of compact Hausdorff spaces. In the process, we observe and prove
that the Möbius band is both a submonoid and a homotopy retract
of the solid torus as compact topological commutative semigroup
with identity.

1. Introduction

In this note all spaces are Hausdorff and the term map or mapping shall
always mean continuous function.
The concepts of a topological left-loop and an H-space are two general-
izations of the notion of a topological group and relationships between
these two concepts are discussed in [10]. In this note another generaliza-
tion of a topological group is introduced which we call a GR-space and
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relationships among GR-spaces, H-spaces, absolute retracts and topo-
logical left-loops are discussed. In the case of compact manifolds, GR-
spaces often admit an algebraic structure which is richer than that of an
H-space. For instance, it is shown that the compact bordered surfaces
which are GR-spaces (the closed unit disc, the annulus, and the Möbius
band) are all submonoids of the solid torus which is a GR-space. In fact,
the noncontractible compact GR-spaces considered in this note which are
not topological groups to begin with are either commutative monoids or
Moufang loops.
Recall that a space Q has the fixed point property (fpp) if every
self-mapping of Q has a fixed point. In 2006, J. van Mill and
G. J. Ridderbos already investigated GR-spaces under the name of
retral spaces. Their results imply that every GR-space continuum with
the fixed point property is locally connected, and they observed that the
pseudo-arc is not a GR-space.

Definition 1.1. A space X is called a topological group retract (or GR-
space) if X is homeomorphic to a retract of some topological group G.
A space X is said to be an H-space if there is a mapping m : X ×X → X
and an identity element e ∈ X such that m(e, x) = m(x, e) = x for all
x ∈ X. If the multiplicationm is associative, then X is called a topological
monoid. If a space has the property that for every a, b ∈ X there is an
autohomeomorphism h of X such that h(a) = b, then X is said to be
homogeneous. In [10] it is shown that if X is a retract of a homogeneous
H-space, then X admits an H-space structure. Since a topological group
is a homogeneous H-space and every topological group is a retract of
itself, it follows that

Every topological group is a GR-space and every GR-space admits an H-
space structure.

In [10] we proposed the following definitions:

Definition 1.2. A left-loop is a set X with a multiplication (x, y) 7−→ xy
and a right identity e (i.e., xe = x for all x ∈ X) such that for all a, b ∈ X
the equation ax = b is uniquely solvable for x. The solution x is denoted
a\b.
A topological left-loop is a topological space X whose underlying set is a
left-loop and is such that the functions (x, y) 7−→ xy and (x, y) 7−→ x\y
from X ×X into X are continuous.

It was shown in [10] that a compact space carries the structure of a topo-
logical left loop if and only if it is homeomorphic to a quotient space of
a topological group such that the quotient map has a continuous cross
section. In particular, under these circumstances it is a GR-space.
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2. Elementary Properties of GR-Spaces

A space X is called an AR(compact)-space if it is a retract of every com-
pact space Z in which it is imbedded. It is well known that a spaceX is an
AR(compact)-space iff it is homeomorphic to a retract of some Tychonoff
cube ([16, Thm. 3.6]).

Proposition 2.1. (i) Every GR-space X admits an H-space structure.
Furthermore, if X is homeomorphic to a retract of an abelian topological
group, then X admits a commutative H-space structure.
(ii) The fundamental group of an arcwise connected GR-space X is

abelian.
(iii) If X is a GR–space which is homeomorphic to a retract of a con-

nected Lie group, then the universal covering space of X is a GR-
space.

(iv) A retract of a GR-space is a GR-space.
(v) A product space X =

∏
α∈J

Xα is a GR-space iff each factor space

Xα is a GR-space.
(vi) Every AR(compact)-space is a GR-space. In fact, every AR

(compact)-space is homeomorphic to a retract of a compact group.
(vii) The disjoint sum X =

∑
α∈J

Xα of a nonempty family of spaces is

a GR-space iff each Xα is a GR-space.
(viii) The class of H-spaces properly contains the class of GR-spaces.

In fact, for every positive dimension there is a contractible contin-
uum which is not a GR-space but which admits the structure of a
commutative monoid.

Proof. (i) ([10]) Let G be a topological group and let r : G → X be
a retraction from G onto X. Since G is a homogeneous space, X is
homeomorphic to a retract of G which contains the identity element e
of G. Consequently, we may assume that e ∈ X. Define a mapping
m : X × X → X by m(x, y) = r(xy) for all x, y ∈ X. Then, for all
x, y ∈ X, we have
(1) m(e, y) = r(ey) = r(y) = y,

m(x, e) = r(xe) = r(x) = x,
and, if G is abelian,
(2) m(x, y) = r(xy) = r(yx) = m(y, x).

(ii) An arcwise connected GR-space admits an H-space structure and
hence has an abelian fundamental group.

(iii) Suppose that X is a retract of a connected Lie group G. Since the
properties of arcwise connectedness and local contractibility are preserved
by retractions, X is semilocally simply connected and therefore has a
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universal covering space X̃. Moreover, since X is a retract of G, X̃ is a
retract of the universal covering group G̃ ([17, Thm. 1.1]).

(iv) If G is a topological group and r : G→ Y and s : Y → X are retrac-
tions, then the composition mapping sr : G → X is a retraction from G
onto X.

(v) Let X =
∏
α∈J

Xα be a GR-space. Then, since each factor space Xα

is homeomorphic to a retract of X, each Xα, α ∈ J , is a GR-space by
(iv). Now suppose for each α ∈ J , the mapping rα : Gα → Xα is a
retraction from a topological group Gα onto Xα. Let G =

∏
α∈J

Gα. Then

z 7→ (rα(z)) : G→ X determines a retraction from G onto X.

(vi) It suffices to show that every retract of a Tychonoff cube is a GR-
space. But this follows from (iv) and (v) since the closed unit interval
I = [0, 1] is a retract of the real line R. Since I is also a retract of the circle
group S1, it follows that every AR(compact)-space is homeomorphic to a
retract of a compact group.

(vii) Suppose that the disjoint sum X =
∑
α∈J

Xα is a GR-space. Let

p ∈ Xα and define a function r : X → Xα from X onto Xα by

r(x) =

{
x if x ∈ Xα,
p if x /∈ Xα.

Then, since each Xα is an open (and closed) subset of X, the mapping r
is continuous and a retraction from X onto Xα.
For a proof of the converse, now suppose that each Xα, α ∈ J , is a GR-
space. Let G be a group such that cardG = cardJ and topologize G by
endowing it with the discrete topology. Then X =

∑
g∈G

Xg. Let Xg be

a retract of a topological group Hg, g ∈ G, and consider the topological
group H =

∏
g∈GHg × G. Denote the projection map from H onto the

factor G by p : H → G. Then {p−1(g)|g ∈ G} is a pairwise disjoint open
cover of H. For each g ∈ G, let rg be a retraction which maps p−1(g)
onto a homeomorphic copy of Xg. These retraction mappings determine
a retraction from H onto a homeomorphic copy of X as required.

(viii) In [14], three examples are given of contractible plane continua which
admit the structures of commutative monoids, namely, the Cantorian
swastika (for a picture see [11, p. 270, Figure 8]), two Cantor fans tangent
along a segment, and the “closed up” sin(1/x)–curve in the plane together
with “its interior”, that is, the bounded component of its complement in
the plane. The examples all fail to be locally connected. Moreover, since
an arcwise connected plane continuum has the fixed point property iff its
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fundamental group is trivial [6], it follows that each example has the fixed
point property. In [15] it is shown that every continuum with the fixed
point property that is a retract of a topological group is locally connected.
Consequently, none of the three examples is a GR-space. The product of
any one of the three examples with a topological power of the closed unit
interval I yields a contractible continuum which admits the structure of
a commutative monoid with zero. Such a product space cannot be a
GR-space by Proposition 2.1(v). As the first two examples given have
dimension one, the assertion follows. ut

We remark that Cohen [4] exhibited a compact contractible two-dimen-
sional monoid with zero whose underlying space fails to have the fixed
point property (see [11. p. 250, Example 5.1.1], and [13]).

Remark 2.2. There are many examples of continua which are not GR-
spaces but which admit the structures of commutative monoids. Recall
that I denotes the unit interval and D the complex unit disk under mul-
tiplication. The monoid

C
def
= {(e−r, e2πir) ∈ I× D : 0 ≤ r ∈ R} ∪ {0} × D

consisting of a spiral winding down onto the boundary of a disk is not
locally connected and has the fixed point property. Consequently, an
arbitrary product with factors consisting of C, compact connected Abelian
groups, closed unit intervals and Möbius bands would provide examples.

Remark 2.3. In [15] van Mill and Ridderbos show that the pseudo-
arc is not a GR-space. Since A. L. Hudson and P. S. Mostert
have shown in [12] that a finite-dimensional homogeneous continuum that
admits a monoid structure must be a group, the pseudo-arc does not
admit the structure of a monoid. The the Hudson-Mostert result can also
be applied to positive-dimensional Menger curves since they are finite-
dimensional homogeneous continua that do not admit the structure of
topological left-loops by [10].

3. GR-Spaces and Compact Monoids

A metrizable AR(compact)-space is called an AR-space and every such
space is homeomorphic to a retract of the Hilbert cube Q. Since Q has
the fixed point property (fpp) and retractions preserve the fpp, it follows
that every AR-space has the fpp. An ANR-space is a space which is
homeomorphic to a neighbourhood retract of Q.
A self-mapping f of a space X is called a deformation if f is homotopic
to the identity map 1X .
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Proposition 3.1. Let X be a GR-space which is a connected ANR-space.
Then either the Euler characteristic χ(X) vanishes or X is an AR-space.

Proof. Since an ANR-space has the homotopy type of a compact polyhe-
dron ([3, Cor. 44.2]), it follows that X admits an H-space structure and
has the homotopy type of a connected compact polyhedron. Then, by the
remarks following Corollary IV.2 in [5], χ(X) = 0 or χ(X) = 1, in which
case X is contractible. Since a contractible ANR-space is an AR-space
([1, p. 101]), the result follows. ut

Corollary 3.2. Let M be a GR-space which is a connected compact n-
manifold. Then either M is contractible and has the fixed point property,
or χ(M) = 0 and M admits a fixed point free deformation.

Proof. A finite-dimensional compact metric space is an ANR-space iff
it is locally contractible ([1, p. 122]) so M satisfies the hypotheses of
Proposition 3.1. It only remains to note (see [2, p. 145]) that a compact
n-manifold with χ(M) = 0 admits a fixed point free deformation. ut

We note that Corollary 3.2 shows that, if n > 0, no 2n-sphere S2n, real
projective 2n-space RP2n or complex (or quaternionic) projective space is
a GR-space (see [2, pp. 30–33]).
Proposition 3.2 in [10] involves the fixed point sets of a smooth compact
n-manifold M having nondegenerate topological left-loops as boundary
components. The result depends only on the fact that if X is a nonde-
generate compact topological left-loop, then χ(X) = 0. It follows from
Poincaré duality (see [7, Ex. 33, p. 260]) that the boundary ∂C of a com-
pact contractible manifold C is a homology sphere and, consequently, C
could not serve as a boundary component ofM . Thus Corollary 3.2 above
applies and the concept of a compact topological left-loop can be replaced
by the more general notion of a compact GR-space in Proposition 3.2 in
[10] to obtain the following result.

Proposition 3.3. Every nonempty closed subset of a smooth compact
n-manifold M whose boundary components are nondegenerate GR-spaces
is the fixed point set of an autodiffeomorphism of M . In the case where
M is a noncontractible GR-space the word nonempty can be deleted. ut

In [10, Prop. 1.3] it is shown that every topological left-loop is a homoge-
neous space. It follows that no bordered surface (a connected 2-manifold
with nonempty boundary) admits a topological left-loop structure. How-
ever, Proposition 2.1 shows that the closed unit disk D and the annulus
S1 × I are GR-spaces. In fact, in what follows, it is shown that these
two examples, together with the Möbius band M, are the only compact
bordered surfaces which are homeomorphic to GR-spaces.
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It is interesting, both from an elementary geometry as well as from a
topological algebra point of view, to describe the relation between a solid
torus ST3 and the Möbius band M explicitly as follows.

Examples 3.4. (See Figure 1) (a) Let T = R/Z denote the additive
circle group and notice that the unit interval I = [0, 1] is a compact topo-
logical monoid (that is, semigroup with identity) under multiplication.
The complex unit disc D = {re2πiu : r ∈ I, u ∈ R} is likewise a compact
monoid. Hence the solid torus ST3 def

= D × T is a GR-space which is a
compact commutative monoid (and thus, in particular, an H-space).

Figure 1

(b) The mapping f : I×R/2Z→ ST3 given by f(r, t+2Z) = (reπit, t+Z) is
a morphism of compact monoids mapping the “annulus” I×R/2Z in such
a fashion that the image in the solid torus ST3 is naturally isomorphic to
the quotient (I× R/2Z)/R modulo the kernel relation R which identifies
(r1, t1+2Z) and (r2, t2+2Z) if and only if n def

= t2−t1 ∈ Z and r1 = r2e
πin;

now n ∈ Zmeans eπin ∈ {1,−1}, and since r1, r2 ≥ 0, the relation n = −1
occurs precisely when r1 = r2 = 0, that is, for two different elements in
the annulus I × R/2Z we have (r1, t1 + 2Z)R(r2, t2 + 2Z) if and only if
r1 = r2 = 0 and t2 − t1 ∈ Z, that is, if they are “opposite” points on the
boundary component {0}×R/2Z of the annulus. This quotient, however,
is the Möbius band (see [11, p. 243, Example 2.3.3.5] and [10, Example
2.8(ii)]). Therefore,
the Möbius band M = im f is a submonoid of the monoid ST3, the solid
torus.
Since eπi = −1, the Möbius band M is invariant under the involution
(z, u+ Z) 7→ (−z, u+ Z).
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(c) For τ ∈ I and z = x+iy ∈ D define hτ : D→ D by hτ (x+iy) = x+iτy.
Then τ 7→ hτ defines a homotopy from the identity map to the projection
of D onto the horizontal diameter and thus defines a homotopy retraction.
Moreover,

hτ (−z) = −hτ (z).

Thus n ∈ Z implies eπinhτ (e−πinz) = hτ (z). Thus we may define
H : ST3 × I→ ST3 by

H((z, u+ Z), τ) = (eπiuhτ (e−πiuz), u+ Z)).

This is a well defined homotopy of the solid torus into itself. If z = reπiu,
then H((z, u+ Z), τ) = (z, u+ Z), that is,
there is a homotopy retraction H of the solid torus ST3 onto the Möbius
band M ⊆ ST3, and therefore M is a GR-space.

(d) A parametrisation of an embedding of ST3 into R3 is obtained as
follows: Let

Rz(s) =

 cos 2πs − sin 2πs 0
sin 2πs cos 2πs 0

0 0 1

 , and

Ry(t) =

 cos 2πt 0 − sin 2πt
0 1 0

sin 2πt 0 cos 2πt


be the rotation groups around the z-axis, respectively, the y-axis, and let

T : R3 → R3, T

 x
y
z

 =

 x+ 2
y
z


the translation in x-direction by 2 units. Then

ST3 =

Ry(t)T

r·Rz(s)
 1

0
0

 : r ∈ I, s, t ∈ R


is an embedding of ST3 into R3 and the Möbius band

M =

Ry(2s)TRz(s)

 r
0
0

 : r ∈ I, s ∈ [0, 1]


embedded into it.

(e) We note in passing, that the morphism f of (b) extends to a morphism
F : D× R/2Z → ST3 which is a double covering of ST3. If we denote by
φ : ST3 → D×R/2Z the isomorphism given by φ(z, r+Z) = (z, 2r+ 2Z),
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then the composition Φ
def
= F ◦ φ : ST3 → ST3 yields a double covering

endomorphism of topological monoids of the solid torus which maps the
annulus I×T (“one half of a horizontal section [−1, 1]×T ⊆ D×T = ST3”)
onto the Möbius submonoid M of ST3.

(f) Even though we do not find a reference of the particular embedding
of M and D into ST3 discussed here, the class of compact topological
semigroups to which they belong is amply discussed in [8, 9], and [11,
pp. 83ff., pp. 200ff., notably pp. 209ff., where the bordered n-manifolds
which can be endowed with a continuous monoid structure are completely
classified].

We remark that the closed unit disk D and the (so-called) solid Klein
bottle M× I show that the boundary of a compact n-manifold which is a
GR-space (and indeed even a compact commutative monoid) may or may
not be orientable (or be a GR-space) since ∂D = S1 and

∂(M × I) is the Klein bottle which is a nonorientable compact surface
that fails (having a nonabelian fundamental group) to admit an H-space
structure and fails to be embeddable into 3-space R3. In particular,
M× I is not embeddable into R3.

Note in this context that the solid torus ST3 is a compact tubular neigh-
borhood within R3 of the Möbius band M′ def

= Φ([0, 1/2]) × T) whose
boundary is a 2 torus ∼= T2. Semigroup theoretically, M′ is an ideal of M.

Proposition 3.5. If X is a compact bordered surface, then X admits
an H-space structure iff X is a GR-space. Moreover, X must be homeo-
morphic to a space which is the closed unit disk D, the annulus S1 × I or
the Möbius band M.

Proof. It suffices to show that if X is not one of D, S1 × I or M , then
X does not admit an H-space structure. This follows since the remain-
ing possibilities all contain wedge products of more than one circle as
deformation retracts and, consequently, have nonabelian fundamental
groups. ut

Note that all three surfaces are monoids and indeed submonoids of the
solid torus ST3.

In [10] a space X is called a quotient retract (or a quotient retract of G)
if there is a topological group G with a closed subgroup C such that the
quotient map p : G → G/C has a continuous cross section σ : G/C → G.
It follows that
A quotient retract is a GR-space and a quotient retract of a compact Lie
group is an orientable closed manifold.
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Furthermore, in [10] it is shown that a compact space X admits a topo-
logical left-loop structure iff X is a quotient retract of some topological
group. The results of this note and [10, Prop. 2.2] yield the following
result.

Theorem 3.6. If X is an n-sphere Sn, real projective n-space RPn, a
compact surface, a compact bordered surface or an AR(compact)-space,
then X admits an H-space structure iff X is a GR-space. Moreover, if
X is not an AR(compact)-space, then X must be homeomorphic to one
of the spaces M, S1 × I, T2 ∼= S1 × S1, Sn or RPn, where n = 0, 1, 3, 7. ut

Note that all these spaces are compact monoids with the exception of
n = 7 in which case they are Moufang loops. All those with dimX < 3
are commutative monoids.

Question 3.7. Is it true that every compact n-manifold which admits an
H-space structure is a GR-space?
A first step towards an answer to this question would be a the answering
of the following more special question

Question 3.8. Is it true that every compact n-manifold which admits the
structure of a compact topological monoid is a GR-space?
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