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C AND C∗ AMONG INTERMEDIATE RINGS

JOSHUA SACK AND SALEEM WATSON

Abstract. Given a completely regular Hausdorff space X, an in-
termediate ring A(X) is a ring of real valued continuous functions
between C∗(X) and C(X). We discuss two correspondences be-
tween ideals in A(X) and z-filters on X, both reviewing old results
and introducing new results. One correspondence, ZA, extends
the well-known correspondence between ideals in C∗(X) and z-
filters on X. The other, ZA, extends the natural correspondence
between ideals in C(X) and z-filters on X. This paper highlights
how these correspondences help clarify what properties of C∗(X)
and C(X) are shared by all intermediate rings and what properties
of C∗(X) and C(X) characterize those rings among intermediate
rings. Using these correspondences, we introduce new classes of
ideals and filters for each intermediate ring that extend the notion
of z-ideals and z-filters for C(X), and with ZA, a new class of filters
for each intermediate ring A(X) that extends the notion of e-filter
for C∗(X).

1. Introduction

Let X be a completely regular topological space, C(X) the ring of all
continuous real-valued functions on X, and C∗(X) the ring of bounded
continuous real-valued functions on X. A ring A(X) of continuous func-
tions on X is called an intermediate ring if

C∗(X) ⊆ A(X) ⊆ C(X) .
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The rings C∗(X) and C(X) have been studied extensively, and the theory
is beautifully presented in the book Rings of Continuous Functions by
Leonard Gillman and Meyer Jerison [8]. Although the rings C(X) and
C∗(X) are very different rings, they do share some crucial properties.
The properties they do share are proved in different ways in each case.
Much research on these rings can be described in terms of explaining the
similarities and difference between these rings. In this article we organize
some of the results of this research, as well as new results, around the
following two questions.

• Which properties of C∗(X) and C(X) are shared by all interme-
diate rings?

• Which properties of C∗(X) and C(X) characterize these rings
among intermediate rings?

With these questions in mind we give new proofs of some results and
extend others. A class of ideals for all intermediate rings, that extends
the class of e-ideals in C∗, was defined in [2, p. 49]. We introduce a com-
plementary class of filters for each intermediate ring A(X), that coincides
with the class of e-filters when A(X) = C∗(X). We furthermore intro-
duce new classes of ideals and filters for each intermediate ring A(X) that
coincide with the classes of z-ideals and z-filters when A(X) = C(X).
In general, the results we present are those that are in the same spirit
as the Gillman and Jersion book—that is, those results that relate the
algebraic structure of the ring A(X) to the topology of X. We also give
examples and counterexamples to help motivate the various definitions
on intermediate rings A(X). Wherever appropriate, we state open prob-
lems whose solution would help complete the answers to the two questions
stated above.

One of the main differences between C∗(X) and C(X) is the way in
which the ideals of each ring correspond to z-filters on X. These cor-
respondences are used in proving many of the properties of C∗(X) and
C(X). The key to extending these correspondences to intermediate rings
is a type of local invertibility of functions called E-regularity. In Sec-
tion 2 we present the definition of E-regularity and state some of its main
properties. In Section 3 we review how the correspondence for C∗(X)
can be extended to intermediate rings A(X) by using E-regularity. We
then introduce for each intermediate ring A(X), a new class of filters,
called ZA-filters, and we establish relationships between maximal ideals
in A(X) and ZA-ultrafilters on X (Theorem 3.9). We also provide a bi-
jective correspondence between z-ultrafilters on X and ZA-ultrafilters on
X (Proposition 3.11). In Section 4 we review how the correspondence for
C(X) can be extended to intermediate rings A(X) by using E-regularity.
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We then introduce for each intermediate ring A(X), a new class of ideals
and filters, called ZA-ideals and ZA-filters, and we establish relationships
between maximal ideals in A(X) and ZA-ultrafilters on X (Theorem 4.9).
We also show that every maximal ideal in A(X) is a ZA-ideal (Corol-
lary 4.8), and we provide a bijective correspondence between z-ultrafilters
on X and ZA-ultrafilters on X (Proposition 4.10). In Section 5 we com-
pare the correspondences that extend those of C∗ and C, and present an
explicit formula that relates them. In Section 6, we discuss properties of
C∗ and C that characterize them among intermediate rings, and we state
several open problems relating to this.

Intermediate rings of continuous functions have been studied by several
authors. D. Plank [10] gives a description of their maximal ideals. In [11],
[12], and [2] the correspondence between ideals and z-filters for C∗(X) is
generalized to intermediate rings. In [9], the correspondence between
ideals in C(X) and z-filters on X is generalized to all intermediate rings.
In [5] it is shown that intermediate rings can be realized as certain rings
of fractions of C∗(X). In [1] a description is given for the intersection
of the free maximal ideals in such rings. Some examples and methods of
constructing intermediate rings of continuous functions can be found in
[6, 7].

2. Local invertibility in A(X) on subsets of X

The sets C(X) and C∗(X) form commutative rings under pointwise
addition and pointwise multiplication [8]. Any intermediate ring A(X)
is a lattice with respect to the operations of pointwise minimum and
maximum:

(f ∨ g)(x) = max{f(x), g(x)}
(f ∧ g)(x) = min{f(x), g(x)} .

This result is from [2, Theorem 1.1] and the remark that immediately
follows.

One of the main tools we use for rings of continuous functions is the
analysis of those subsets of X on which f is “locally invertible” with
respect to A(X). Specifically, we have the following definition.

Definition 2.1 (E-regularity). If f ∈ A(X) and E is a set in X, we say
that f is E-regular in A(X) if there exists g ∈ A(X), such that fg(x) = 1
for all x ∈ E.

The following is adapted from [11].

Lemma 2.2. Let f, g ∈ A(X) and let E,F ⊆ X.
(a) If f is E-regular and F -regular, then f is E ∪ F -regular.
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(b) If f is bounded away from 0 on E, then f is E regular.
(c) If 0 < f(x) ≤ g(x) for all x ∈ E, and if f is E-regular, then g is

E-regular.
(d) If f is E-regular and g is F -regular, then fg is E∩F -regular and

f2 + g2 is E ∪ F -regular.

Whenever we apply E-regularity, E will be either a zero set or a co-
zero set. A zero set is a set of the form Z(f) = {x | f(x) = 0} for some
f ∈ C(X). A co-zero set is the complement of some zero set in X. The
set of zero sets of X is Z[X] = {Z(f) | f ∈ C(X)}. A z-filter on X is the
intersection of a filter on X with the set Z[X] of zero-sets on X. Recall
that a filter is a non-empty set of subsets of X closed under the formation
of supersets and finite intersections and that does not include the empty
set. A z-ultrafilter is a z-filter F such that any zero set A ̸∈ F is disjoint
from some zero set in F . Given a set E ⊆ X, let ⟨E⟩ be the collection of
z-supersets of E, and given a collection E ⊆ Z[X], let ⟨E⟩ be the smallest
set containing E closed under z-supersets and finite intersections. Note
that ⟨E⟩ is either a z-filter or is Z[X].

3. From C∗(X) to A(X)

The well-known correspondence between ideals in C∗(X) and z-filters
on X is described as follows. Let Eϵ(f) = {x : |f(x)| ≤ ϵ}, and let
E(f) = {Eϵ(f) : ϵ > 0}; then the correspondence is given by

I → E[I] =
∪
f∈I

E(f).

We have the following important property of E from [8].

Proposition 3.1. f ∈ C∗(X) is noninvertible in C∗(X) if and only if
⟨E(f)⟩ is a z-filter on X.

Although E can be defined on any intermediate ring A(X), we show
that the property in Proposition 3.1 does not hold whenever A(X) prop-
erly contains C∗(X).

Proposition 3.2. If A(X) properly contains C∗(X), then there is a func-
tion g ∈ A(X) that is invertible in A(X), but where ⟨E(g)⟩ is a z-filter.

Proof. Let f ∈ A(X) \ C∗(X). Then let h = |f | ∨ 1. Since A(X) is a
lattice, |f | = f ∨ −f ∈ A(X) and hence h ∈ A(X). Let g = h−1. Note
that g is bounded, and hence g ∈ C∗(X). Now since h is unbounded,
g is not invertible in C∗(X), and hence by Proposition 3.1, ⟨E(g)⟩ is a
z-filter. But g ∈ A(X) has an inverse in A(X). �
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Toward extending E, we point out that proposition 3.1 is connected
to the fact that a function f is invertible in C∗(X) if and only if f is
bounded away from zero. Now, each Eϵ(f) is a set whose complement
bounds |f | away from ϵ, and hence is such that f is “locally invertible”.
More formally, f is (Eϵ(f))

c-regular in C∗(X) (Definition 2.1). This leads
to the following reformulation of E, which follows from [9, Theorem 2.1]:

(3.1) ⟨E(f)⟩ = {E ∈ Z[X] : f is Ec-regular in C∗(X)}.
We now generalize this with the following definition.

Definition 3.3. Let A(X) be an intermediate ring. For f ∈ A(X), we
define

ZA(f) = {E ∈ Z[X] : f is Ec-regular in A(X)}.
For an ideal I ⊂ A(X), we define ZA[I] =

∪
f∈I ZA(f), and for a z-filter

F on X, we define Z←A (F) = {f ∈ A(X) : ZA(f) ⊆ F}.
The map ZA extends Proposition 3.1 from C∗(X) to any intermediate

ring A(X), as the following theorem from [11] shows:

Theorem 3.4. f ∈ A(X) is noninvertible in A(X) if and only if ZA(f)
is a z-filter on X.

The following lemma, which follows from [11, Lemmas 2 and 3], gives
a basic tool in proving many of the properties of the z-filter ZA(f) in
Lemma 3.6.

Lemma 3.5. Let f ∈ A(X), and let F be a z-filter on X. Then ZA(f) ⊆
F if and only if limF fh = 0 for all h ∈ A(X).

The next lemma shows to what extent ZA maps products and sums
of functions to respectively meets and joins on the lattice of z-filters aug-
mented with the set of all zero sets.

Lemma 3.6. Let f, g ∈ A(X).
(a) If 0 ≤ f ≤ g, then ZA(f) ⊆ ZA(g).
(b)

∩
ZA(f) = Z(f).

(c) ZA(fg) = ZA(f) ∧ ZA(g).
(d) ZA(f + g) ⊆ ZA(f) ∨ ZA(g).
(e) If f, g ≥ 0, then ZA(f + g) = ZA(f) ∨ ZA(g).

Item (a) is proved in [11, Theorem 1 and Lemma 1(d)]. Item (b) is
shown in [12, Proposition 2.2]. Items (c), (d), and (e) are proved in [9,
Lemma 1.5]. Furthermore, observe that parts (c) and (e) show that the
collection of elements of the form ZA(f) for f ≥ 0 forms a lattice.

Notice that Lemma 3.6(c) implies that for any f ∈ A(X) we have

ZA(f) = ZA(f
2).
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So when dealing with the z-filter ZA(f) we often can assume, without
loss of generality, that f ≥ 0.

Parts (a) and (b) of the next two theorem are proved in [11] and [2]
respectively; we include shorter proofs here for completeness.

Theorem 3.7. Let A(X) be an intermediate ring of continuous functions.
(a) If I is an ideal in A(X) then ZA[I] is a z-filter on X.
(b) If F is a z-filter on X then Z←A [F ] is an ideal in A(X).

Proof. (a) If E,F ∈ ZA[I], there exist f, g ∈ I such E ∈ ZA(f) and
F ∈ ZA(g). We may assume f, g ≥ 0 by the above remark. Now by
Lemma 3.6(e), ZA(f) ∨ ZA(g) = ZA(f + g) ⊆ ZA[I]. Since E ∩ F ∈
ZA(f) ∨ ZA(g), it follows that E ∩ F ∈ ZA[I].

(b) If f, g ∈ Z←A [F ], then by Lemma 3.6(d) ZA(f + g) ⊆ ZA(f) ∨
ZA(g) ⊆ F , so f + g ∈ Z←A [F ]. Now if f ∈ Z←A [F ] and g ∈ A(X), then
by Lemma 3.6(c) ZA(fg) ⊆ ZA(f), so fg ∈ Z←A [F ]. �

Part (a) of this theorem shows that ZA maps ideals in A(X) to z-filters
on X. Furthermore, ZA does indeed extend E; according to [9, Corollary
1.3], for any ideal I ∈ C∗(X),

ZC∗ [I] = E[I].

The behavior of ZA on maximal ideals and Z←A on z-ultrafilters is ad-
dressed in Theorem 3.10 in the next section.

3.1. ZA-ideals and ZA-filters. In general, if I is an ideal in A(X) and
F is a z-filter on X, it is easy to see that

(3.2) Z←A [ZA[I]] ⊇ I and ZA[Z←A [F ]] ⊆ F .

Equality does not hold in general; when it does we have the following
definition.

Definition 3.8. An ideal I is called a ZA-ideal if Z←A [ZA[I]] = I
and a z-filter F is called a ZA-filter if ZA[Z←A [F ]] = F . A maximal
ZA-filter (i.e., not properly contained in any other ZA-filter) is called a
ZA-ultrafilter.

Clearly, every maximal ideal is a ZA-ideal. However, not every ideal is
a ZA-ideal, and not every z-filter is a ZA-filter. For example, in C(R) let
M0 be the ideal consisting of all functions vanishing at 0 and O0 be the
ideal consisting of all functions vanishing on a neighborhood of 0. It is
easy to see that ZC [M0] = ZC [O0] so that Z←C [ZC [O0]] = M0, and clearly
M0 strictly contains O0. So O0 is not a ZC-ideal. For A(X) = C∗(R),
the z-ultrafilter U0 consisting of all zero sets in R containing 0 is not a
ZA-filter. In fact, ZA[Z←A [U0]] is the z-filter consisting of all zero-set
neighborhoods of 0.
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It is easy to see that the following identities always hold

(3.3) ZA[Z←A [ZA[I]]] = ZA[I] and Z←A [ZA[Z←A [F ]]] = Z←A [F ].

It follows from these that if I is an ideal in A(X) then ZA[I] is a ZA-
filter, and if F is a z-filter on X then Z←A [F ] is a ZA-ideal. It is shown in
[6, Theorem 3.13] that ZA-ideals are the intersections of maximal ideals.
If A(X) = C∗(X) then ZA-ideals and ZA-filters are called e-ideals and
e-filters, respectively, as given in [8, p. 33].

Theorem 3.9. Let A(X) be an intermediate ring of continuous functions.
(a) If M is a maximal ideal then ZA[M ] is a ZA-ultrafilter.
(b) If V is a ZA-ultrafilter then Z←A [V] is a maximal ideal.

Proof. (a) Clearly ZA[M ] is a ZA-filter. If F is a ZA-filter and ZA[M ] ⊆
F , then by (3.2)

M ⊆ Z←A [ZA[M ]] ⊆ Z←A [F ].

Since M is maximal, M = Z←A [F ]. It follows that ZA[M ] = ZA[Z←A [F ]] =
F . So ZA[M ] is a ZA-ultrafilter.

(b) Clearly Z←A [V] is a ZA-ideal. Suppose N is an ideal and Z←A [V] ⊆
N . Then, because V is a ZA-ultrafilter, we have

V = ZA[Z←A [V]] ⊆ ZA[N ].

Thus ZA[N ] is a ZA-filter containing the ZA-ultrafilter V, and so V =
ZA[N ]. It follows that Z←A [V] = Z←A [ZA[N ]] ⊇ N . Thus Z←A [V] = N
and so Z←A [V] is maximal. �

It is known [8] that there is a one-to-one correspondence between the
z-ultrafilters on X and the maximal ideals of C∗(X). It is also known
[8] that there is a one-to-one correspondence between the z-ultrafilters
on X and the maximal ideals of C(X). It was noted in [8, p. 82] that
“It is a remarkable fact that these two problems not only have solutions,
but a common one.” The next theorem shows that the single map ZA

provides an injective correspondence between maximal ideals in A(X) and
z-filters on X, including the cases where A(X) is C(X) or C∗(X). It is
stated in [11] and proved in [2], though its proof uses special properties
of C(X). Here we provide a self contained proof, based only on the
properties of ZA and the Stone-Čech compactification of X. The Stone-
Čech compactification βX of X is an extension of X with the Stone
topology; we identify every point p ∈ βX with a unique z-ultrafilter Up

on X.

Theorem 3.10. Let A(X) be an intermediate ring of continuous func-
tions.
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(a) If U is a z-ultrafilter on X, then Z←A [U ] is a maximal ideal in
A(X). Furthermore, the map Z←A is one-one from the z-ultrafilters
on X onto the maximal ideals of A(X).

(b) If M is a maximal ideal then ZA[M ] is contained in a unique
z-ultrafilter.

Proof. (a) Given a z-ultrafilter Up, note from (3.2), (3.3), and the defini-
tions that V = ZA[Z←A [Up]] is the largest subset of Up that is a ZA-filter.
Furthermore, suppose S is a zero set that is not in Up. We show that S is
disjoint from some set in V, and hence (by contrapositive) any z-filter con-
taining V is contained in Up. As S ̸∈ Up, then p ̸∈ clβX S. By normality
of βX and Urysoln’s Lemma, there exists a function g′ ∈ C(βX) that is 0
on a neighborhood of p and 1 on clβX(S). If g is the restriction of g′ to X,
then by the density of X in βX, p ∈ clβX Z(g), and hence Z(g) ∈ Up. It
follows that limUp gh = 0 for all h ∈ A(X). By Lemma 3.5, g ∈ Z←A [Up],
and so ZA(g) ⊆ ZA[Z←A [Up]] = V. Finally, if R = {x ∈ X : |g(x)| ≤ 1/2},
then R ∈ ZA(g) ⊆ V and R ∩ S = ∅. Since V is the largest ZA-filter
contained in U , and every z-filter that contains V is contained in U , we
have that V is a ZA-ultrafilter. By Theorem 3.9(b), Z←A [V] is a maximal
ideal. As U ⊇ V, we have that Z←A [U ] is an ideal containing Z←A [V], and
hence is maximal.

Suppose Up ̸= Uq, so p and q are distinct points of βX. By the normal-
ity of βX and Urysohn’s Lemma, there exists a continuous function g′ on
βX such that g′ is zero on a neighborhood of p and 1 on a neighborhood of
q. If g is the restriction of g′ to X, then limUp gh = 0 for all h ∈ A(X) but
limUq g = 1. So by Lemma 3.5, g ∈ Z←A [Up] but g /∈ Z←A [Uq]. This estab-
lishes the injectivity of Z←A . Surjectivity follows from a routine exercise
involving (3.2).

(b) Suppose ZA[M ] is contained in the distinct z-ultrafilters Up and
Uq. Then Z←A [Up] ⊇ Z←A [ZA[M ]] ⊇ M , so Z←A [Up] = M . Similarly,
Z←A [Uq] = M . So Up = Uq by part (a). �

Proposition 3.11. The correspondence U −→ ZA[Z←A [U ]] is one-one
from the set of z-ultrafilters on X onto the set of ZA-ultrafilters.

Proof. If U1 ̸= U2 then by Theorem 3.10(a) M1 = Z←A [U1] and M2 =
Z←A [U2] are distinct maximal ideals. By (3.3), M1 and M2 are ZA-ideals.
Thus Z←A [ZA[M1]] = M1 ̸= M2 = Z←A [ZA[M2]]. This shows that the map
is one-one.

Now if V is a ZA-ultrafilter then V = ZA[Z←A [V]], so V is contained
in a unique z-ultrafilter U by 3.10(b). Since Z←A [V] is a maximal ideal
by Theorem 3.9(b) and Z←A [U ] ⊇ Z←A [V] it follows that Z←A [U ] = Z←A [V].
Thus ZA[Z←A [U ]] = V and this shows that the correspondence is onto. �
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4. From C(X) to A(X)

The natural correspondence between ideals I in C(X) and z-filters on
X is given by

I → Z[I] = {Z(f) : f ∈ I}.
The following important property of Z follows from [8].

Proposition 4.1. f ∈ C(X) is noninvertible in C(X) if and only if
⟨Z(f)⟩ is a z-filter on X.

Although Z can be defined on any intermediate ring A(X), we show
that the property in Proposition 4.1 does not hold whenever A(X) is
properly contained in C(X).

Proposition 4.2. If A(X) is properly contained in C(X), then there is
a function g ∈ A(X) that is not invertible in A(X), but where ⟨Z(g)⟩ is
not a z-filter.

Proof. Let f ∈ C(X) \A(X). Note that f = (f ∧ 1)(f ∨ 1). Hence either
(f∧1) ̸∈ A(X) or (f∨1) ̸∈ A(X). First assume that (f∧1) ̸∈ A(X). Then
h = (f ∧ 1) − 2 ̸∈ A(X). Let g = h−1. Then g is bounded, and is hence
in A(X). But as h ̸∈ A(X), g is not invertible in A(X). But Z(g) = ∅,
and hence ⟨Z(g)⟩ = Z[X], and is not a z-filter. If (f ∧ 1) ∈ A(X), then
(f∨1) ̸∈ A(X). We then set h = (f∨1) and follow the same argument. �

We would like to extend Z to all intermediate rings in such a way that
ensures that the property in Proposition 4.1 is preserved. To this end, let
us compare how Z and ZC act on, for example, the function f(x) = x.
Note that

ZC(f) = {E ∈ Z[X] : f is Ec-regular in C(X)}
= {E ∈ Z[X] : there is an open set U , with 0 ∈ U ⊆ E}.

To better compare Z to the definition of ZA, we want to describe ⟨Z(f)⟩
in terms of E-regularity. We then note that

⟨Z(f)⟩={E ∈ Z[X] : 0 ∈ E}
={E ∈ Z[X] : for all zero sets H ⊆ Ec, f is H-regular in C(X)}.

We now generalize this with the following definition.

Definition 4.3. Let A(X) be an intermediate ring. For f ∈ A(X), we
define

ZA(f) = {E ∈ Z[X] : f is H-regular in A(X) for all zero sets H ⊆ Ec}.
For an ideal I ⊂ A(X), we define ZA[I] =

∪
f∈I ZA(f), and for a z-filter

Z on X, we define Z←A (F) = {f ∈ A(X) : ZA(f) ⊆ F}.
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It is easy to see that for f ∈ A(X)

(4.1) ZA(f) ⊆ ZA(f).

To compare the correspondences ZA and ZA on ideals, it is clear that
ZA[I] ⊆ ZA[I].

The map ZA extends Proposition 4.1 from C(X) to any intermediate
ring A(X), as the following theorem from [9, Proposition 2.2] shows:

Theorem 4.4. f ∈ A(X) is noninvertible in A(X) if and only if ZA(f)
is a z-filter on X.

Question 1. Let f ∈ A(X), and let F be a z-filter on X. Is it the case
that ZA(f) ⊆ F if and only if limF fg = 0 for every g ∈ A(X)?

Observe that the left-to-right direction of Question 1 immediately fol-
lows from (4.1) together with Lemma 3.5. The right-to-left direction
remains open.

Question 2. Let f, g ∈ A(X). Which properties analogous to those of
Lemma 3.6 hold with ZA in place of ZA?

We will see in Section 5 how the analog of Lemma 3.6(a) does hold.
The following is from [9, Theorem 4.3].

Theorem 4.5. If I is an ideal in A(X), then ZA[I] is a z-filter on X.

Theorem 4.5 shows that ZA maps ideals in A(X) to z-filters in X.
Furthermore, ZA does extend Z; according to [9, Corollary 2.4], for any
ideal I ∈ C(X),

ZC [I] = Z[I].

Question 3. Is it the case that if F is a z-filter on X, then Z←A [F ] is an
ideal in A(X)?

4.1. ZA-ideals and ZA-filters. Note that ZA and Z←A are well-defined
on all subsets of A(X) and subsets of P(X) respectively. In general, if I
is a subset of A(X) and F is a collection of subsets of X, it is easy to see
that

(4.2) Z←A [ZA[I]] ⊇ I and ZA[Z
←
A [F ]] ⊆ F .

Definition 4.6. An ideal I is called a ZA-ideal if Z←A [ZA[I]] = I and a
z-filter F is called a ZA-filter if ZA[Z

←
A [F ]] = F . A maximal ZA-filter is

called a ZA-ultrafilter.

Not every ideal is a ZA-ideal and not every z-filter is a ZA-filter.
For example, if A(X) = C(R) then the principal ideal generated by the
function f(x) = x is not a z-ideal and hence not a ZA-ideal ([8, p. 26]).
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From [9, Example 4.5 and Theorem 4.7], any free z-ultrafilter U on [0,∞)
that contains the natural numbers is not a ZC∗ -filter.

It is easy to see that the following identities always hold

(4.3) ZA[Z
←
A [ZA[I]]] = ZA[I] and Z←A [ZA[Z

←
A [F ]]] = Z←A [F ].

It follows that if I is an ideal in A(X) then ZA[I] is ZA-filter. If A(X) =
C(X) then ZA-ideals and ZA-filters are simply z-ideals and z-filters, re-
spectively, as given in [8, p. 26–27].

The next theorem shows that the single map ZA provides another (see
Theorem 3.10) injective correspondence between maximal ideals in A(X)
and z-filters on X, including the case where A(X) is C(X) or C∗(X).

Theorem 4.7. Let A(X) be an intermediate ring.
(a) If U is a z-ultrafilter on X, then Z←A [U ] is a maximal ideal in

A(X). Furthermore, there is a bijective correspondence between
z-ultrafilters on X and maximal ideals in A(X), given by

U 7→ Z←A [U ].
(b) If M is a maximal ideal then ZA[M ] is contained in a unique

z-ultrafilter.

Proof. (a) The proof is in [9, Theorems 4.7 and 4.8].
(b) This follows from Theorem 3.10(b) and the fact that ZA[M ] ⊆

ZA[M ]. �

Corollary 4.8. Every maximal ideal is a ZA-ideal.

Proof. Let M be a maximal ideal in A(X). By Theorem 4.7(b), ZA[M ] is
contained in a unique z-ultrafilter U . By (4.2) and the monotocity of Z←A

M ⊆ Z←A [ZA[M ]] ⊆ Z←A [U ].
By Theorem 4.7(a), Z←A [U ] is a maximal ideal, and hence must be equal
to M . Thus M = Z←A [ZA[M ]]. �

It was shown in Theorem 3.9 that Z←A provides a correspondence be-
tween ZA-ultrafilters on X and maximal ideals in A(X), for all interme-
diate rings, including C(X) and C∗(X). Here we show the the same is
true for Z←A .

Theorem 4.9. Let A(X) be an intermediate ring.
(a) If M is a maximal ideal then ZA[M ] is a ZA-ultrafilter.
(b) If V is a ZA-ultrafilter then Z←A [V] is a maximal ideal.

Proof. The proof is similar to that of Theorem 3.9, though we present
a detailed version here, that makes it clear that we do not depend on
knowing that Z←A takes z-filters to ideals (see Question 3).
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(a) Clearly by (4.3), ZA[M ] is a ZA-filter. If U is a ZA-ultrafilter and
ZA[M ] ⊆ U , then by Corollary 4.8

M = Z←A [ZA[M ]] ⊆ Z←A [U ].

By Theorem 4.7(a), Z←A [U ] is a maximal ideal, and hence must be equal to
M . It follows that ZA[M ] = ZA[Z

←
A [U ]] = U . So ZA[M ] is a ZA-ultrafilter.

(b) Suppose N is an ideal and Z←A [V] ⊆ N . Then, because V is a
ZA-ultrafilter, we have

V = ZA[Z
←
A [V]] ⊆ ZA[N ].

Thus ZA[N ] is a ZA-filter containing the ZA-ultrafilter V, and so V =
ZA[N ]. Then by (4.2), Z←A [V] = Z←A [ZA[N ]] ⊇ N . Thus Z←A [V] = N and
so Z←A [V] is a maximal ideal. �

Proposition 4.10. The correspondence U −→ ZA[Z
←
A [U ]] is one-one

from the set of z-ultrafilters on X onto the set of ZA-ultrafilters.

Proof. The proof is similar to the proof of Proposition 3.11. �

5. Comparing the correspondences

In this section we compare the correspondences ZA and ZA. These give
us a way of comparing E with Z, which cannot be compared directly, since
they are defined on different rings. But the question of comparison is not
new, as it is stated in [8, p. 30] that the correspondence between ideals
and z-filters in C(X) occurs in a “rudimentary form” in C∗(X).

Given a z-filter F , we write hF for the hull of F :

hF = {U : U is a z-ultrafilter, and F ⊆ U}.

Given a collection U of of z-ultrafilters, we write kU to denote the kernel
of U:

kU =
∩
U∈U

U .

The following theorem from [9] provides a comparison between these
correspondences.

Theorem 5.1. For any intermediate ring A(X) and non-invertible func-
tion f ∈ A(X),

ZA(f) = khZA(f).

Observe that kh is monotone, whence a ZA analog to Lemma 3.6(a)
immediately follows from Lemma 3.6(a) itself.

For the inverse maps, we have the following theorem from [9, Theorem
4.7], which shows that Z←A and Z←A agree on z-ultrafilters on X.
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Theorem 5.2. If A(X) is an intermediate ring and U is a z-ultrafilter
on X, then Z←A [U ] = Z←A [U ].

We know from Theorem 3.10(b) that if M is a maximal ideal in A(X),
then ZA(M) is contained in a unique z-ultrafilter on X. Let us denote that
z-ultrafilter by ZA(M). Similarly, we know from Theorem 4.7(b) that
ZA(M) is contained in a unique z-ultrafilter on X, and we denote this by
ZA(M). From [2, Theorem 3.4], we have that given any two intermediate
rings A(X) and B(X), the map M 7→ Z←B ZA[M ] is a bijective map
between maximal ideals in A(X) and maximal ideals in B(X). Note that
because ZA[M ] ⊆ ZA[M ] is contained in a unique z-ultrafilter and hence
ZA[M ] = ZA[M ] for every maximal ideal M ∈ A(X). From this together
with Theorem 5.2, we have that Z←B ZA is the exact same map as Z←B ZA

on maximal ideals, and hence is also such a bijection.

6. Characterizing C and C∗ among intermediate rings

In this section, we investigate properties of C and C∗ that characterize
them among intermediate rings. It is shown in [9, Theorem 1.2] that the
correspondence E characterizes C∗(X) among its intermediate rings in
the following sense.

Theorem 6.1. Let A(X) be an intermediate ring. Then A(X) = C∗(X)
if and only if ZA(f) = ⟨E(f)⟩ for all f ∈ A(X).

The proof in [9] of this theorem makes an unstated assumption that
f ≥ 0. It is worth noting that this is a valid assumption, since for any
function f ∈ A(X), it holds that |f | ∈ A(X) (from [2, Theorem 1.1]), that
ZA(f) = ZA(|f |) (from Lemma 3.6(c)), and that E(f) = E(|f |) (directly
from the definition of E).

Similar to Theorem 6.1, the correspondence Z characterizes C(X)
among its intermediate rings in the following sense, as was shown in [9,
Theorem 2.3].

Theorem 6.2. Let A(X) be an intermediate ring. Then A(X) = C(X)
if and only if ZA(f) = ⟨Z(f)⟩ for all f ∈ A(X).

We know from [9, Proposition 4.5] that ZA(M) need not be a z-
ultrafilter for every maximal ideal M . We also know from [8] that ZC(M)
is a z-ultrafilter for every maximal ideal M . This leads to the following
question.

Question 4. Is it the case that A(X) = C(X) if and only if ZA(M) is a
z-ultrafilter for every maximal ideal M?
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If A(X) = C(X) then every z-filter is a ZA-filter because in this case
ZA = Z and it is known that Z[Z←[F ]] = F for every z-filter F ([8], p.
26). We ask if this property characterizes C(X).

Question 5. Is it the case that A(X) = C(X) if and only if every z-filter
on X is a ZA-filter on X?
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