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ESTIMATING THE DIMENSION OF A MANIFOLD AND
FINDING LOCAL CHARTS ON IT BY USING

NONLINEAR SINGULAR VALUE DECOMPOSITION
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Abstract. In this paper we propose a method of using nonlinear
generalization of Singular Value Decomposition (SVD) to arrive at
an upper bound for the dimension of a manifold which is embedded
in some RN . We have assumed that the data about its co-ordinates
is available. We would also assume that there exists at least one
small neighborhood with sufficient number of data points. Given
these conditions, we show a method to compute the dimension of
a manifold. We begin by looking at the simple case when the
manifold is in the form of a lower dimensional affine subspace. In
this case, we show that the well known technique of SVD can be
used to (i) calculate the dimension of the manifold and (ii) to get
the equations which define the subspace. For the more general case,
we have applied a nonlinear generalization of the SVD (i) to search
for an upper bound for the dimension of the manifold and (ii) to
find the equations for the local charts of the manifold. We have
included a brief discussion about how this method would be highly
useful in the context of the Takens’ embedding which is used in the
analysis of a time series data from a dynamical system. We show
a specific problem that has recently been found out when applying
this method. One very effective solution is to develop a model
which is based on local charts and for this purpose a good estimate
of the underlying dimension of an embedded data is required.
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1. Introduction

In this paper we show a method to compute the dimension of a manifold
and to find equations for its charts. Here, we illustrate it by an example
of a simple geometrical object. The main application of this method,
however, could be in the context of an analysis of a dynamical system from
observed data, which has been embedded in some RN using a method
known as the Takens’ delay embedding [1]. A companion paper about
ECG data analysis uses the results of this paper in this context [2].

In the case of a geometrical object, let us assume that the manifold has
already been embedded in some RN and the data about its co-ordinates is
available. We would also assume that there exists at least one small neigh-
borhood with sufficient number of data points. For the case of dynamical
systems, this requires the existence of a property known as Recurrence [3].

In what follows, section 2 describes how the technique of singular value
decomposition can be used to find the dimension of a manifold when the
manifold is an affine subspace. Section 2.1 discusses a numerical example
of finding the dimension when an unknown subspace is embedded in R4.
Section 3 generalizes the method for a realistic case when the manifold is
not a linear subspace. Section 3.1 shows a numerical example of finding
the equation for a local neighborhood on a manifold using the co-ordinate
data of möbius strip. The paper ends with a brief discussion of how the
method can be useful in some of the problems involving the modeling and
the stability analysis of dynamical systems from time series data.

2. The case of an M-dimensional subspace embedded in
RN where N > M

In this section and the next one, we are going to look at a manifold that
has already been embedded in RN , and the coordinates of a large number
of points which belong to this manifold are available as a numerical data.
In these two sections we will discuss how to implement a numerical tech-
nique to investigate if the data belongs to a manifold which might have a
dimension less than N . First, in this section we will look at a relatively
simpler case when the manifold is an affine subspace of RN . In the next
section we would look at a more general case of an M dimensional man-
ifold embedded in RN . In any case, given the data it would always be
worthwhile to first check if an affine subspace is an adequate description
of the manifold under consideration.

Our first step to check for the possibility of the existence of an affine
subspace is to locate the centroid of the data and reset it as a new ori-
gin. Trivially if the data belonged to an affine subspace this centroid
would also belong to the same subspace. Further, if we were now to
set the centroid as the new origin, we would get a linear vector sub-
space if and only if the original data belonged to an affine subspace.
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This reduces our investigation to see if the modified data belongs to a
linear subspace. In practice a numerical technique of Singular Value De-
composition (SVD) is quite suited to do this task.

The Singular Value decomposition (SVD) is based on a theorem that
says that any matrix B of size (P ×N); (where P ≥ N , usually P ≫ N is
better for a noisy data) can be decomposed into three matrices as follows:
U , a column orthogonal matrix of size (P × N) ; W, a diagonal square
matrix of size (N×N) and V , an orthogonal square matrix of size (N×N);
such that,

(2.1) B = UWV T ,

where V T represents transpose of the matrix V . The diagonal entries of
W are called the singular values.

To use this tool, we construct a matrix D whose rows represent vari-
ous data points and the columns correspond to various coordinates. Thus
the entry in the ith row and jth column would be the value of the jth

co-ordinate of the ith data point. So that if x1, x2, . . . xN are the vari-
ables representing the N coordinates, Di,j would be the value of xj at ith
observation point.

The nth coordinate of the centroid of all the data points represented
by D is given by,

(2.2) dn =
1

P

P∑
p=1

Dp,n for n = 1, 2 . . .N.

Therefore to set the centroid as origin we create a new matrix A such
that,

(2.3) Ap,n = Dp,n − dn for all p.

Using the result of SVD given in Eq. 2.1 we can now prove two simple
theorems. For these theorems, the matrices W and V are assumed to
have been computed from the given data matrix using readily available
procedures [5].

Theorem 2.1. If the SVD of the matrix A defined above gives Q singular
values which are zero then there exists an N −Q dimensional affine sub-
space on which the data resides and the equations defining the subspace
are given as follows,

(2.4)
N∑

n=1

Vn,q(Zn − dn) = 0; for q = (N−Q+ 1) . . .N

where, V is the orthogonal matrix we got after SVD. Z represents the
co-ordinates of RN and dn is the centroid of the data points.
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Theorem 2.2. If the matrix A defined above, represents a collection of
points which lie on a linear subspace of codimension Q which is defined
by Q independent linear algebraic homogenous equations, then the SVD
of A will have at least Q singular values which are zero.

We begin with the proof of the Theorem 2.1 in the main text of this
paper. Theorem 2.2 is proved in the Appendix.

Proof (Theorem 2.1):

Singular value decomposition of matrix A,

(2.5) A = UWV T .

By post multiplying Eq. 2.5 by V we get,

(2.6) AV = UW.

Upon transposing,

(2.7) V TAT = WUT .

Note: WT = W as W is a diagonal square matrix.
Expanding, for any column p we get,

(2.8)
N∑

n=1

V T
m,nA

T
n,p =

N∑
n=1

Wm,nU
T
n,p.

If we define Yn(p) = AT
n,p + dn for all p; Y (p) would be the original

data vector at pth data point. Therefore, using Eq. 2.8 we find that, if
we have Q singular values going to zero; all the data vectors (from the
original data, before the correction for centroid was applied) will fit the
following equation:

(2.9)
N∑

n=1

Vn,q(Zn − dn) = 0 for q = (N−Q+ 1) . . .N.

Z is in RN and the above set of equations represent the governing
equations for an N −Q dimensional affine subspace of RN .

2.1. Numerical Example of a linear subspace. We started with 100
samples each of two random variables g1 and g2. Both were selected
using a program to find uniform random numbers in the interval [0, 1].
From each of these pairs, coordinates for points in R4 were selected by
using linear transformations. These coordinates became the column en-
tries of the A matrix. The first column of this matrix, representing a
coordinate S1 consisted of 0.2g1 + 0.4g2 ; second column S2 consisted
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of 0.3g1+ 0.5g2; third column S3 consisted of 0.5g1+ 0.6g2; and the last
column S4 consisted of 0.7g1 + 0.1g2. Singular values of the data matrix
A (after the removal of the column means dn) were , 3.29739

1.32848
0
0

 .

And the V matrix was, −0.35101 −0.33214 −0.87549 0
−0.46934 −0.34316 0.31836 −0.74874
−0.64884 −0.21017 0.33987 0.64756
−0.48531 0.85308 −0.12906 −0.14165

 ,

and the mean vector d was,  0.2925
0.39093
0.53994
0.40198

 .

Expanding Eq.2.9 using the last 2 columns of this V matrix we get

(2.10)
4∑

n=1

Vn,3(Zn − dn) = 0,

(2.11)
4∑

n=1

Vn,4(Zn − dn) = 0.

Now we can find 2 final equations in terms of (S1, S2, S3, S4) corre-
sponding to the last two zero singular values. Those equations are:

−0.74874(S2−0.39093)+0.64756(S3−0.53994)−0.14165(S4−0.40198) =
0 and

−0.87549(S1−0.2925)+0.31836(S2−0.39093)+0.33987(S3−0.53994)−
0.12906(S4− 0.40198) = 0.
We re-write these equations to get the coordinates S1 and S2 in terms of
S3 and S4 as follows,

(2.12) S1 = 0.7027S3− 0.07862S4− 0.05531.
S2 = 0.86487S3− 0.18918S4− 0.00001.

Now consider a new space R2 given by co-ordinates (T1, T2) where
T1 = S3, T2 = S4. We get the following diffeomorphisms defining the
local chart co-ordinates:
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(2.13) S1
S2
S3
S4

 =

 0.7027 −0.07862
0.86487 −0.18918

1 0
0 1

 .

[
T1
T2

]
+

 −0.05531
−0.00001

0
0


and the inverse is,

(2.14)
[

T1
T2

]
=

[
0 0 1 0
0 0 0 1

]
.

 S1
S2
S3
S4


Thus we can see that T1 and T2 define local coordinates of a two

dimensional manifold which contains the data. (In this simple case they
also turn out to be the global co-ordinates.) This creates an upper bound
on the dimension of the manifold as 2. (This is only an upper bound
because there may be a submanifold which contains the data.)

3. Finding nonlinear equations from data using
nonlinear SVD

The method which we discussed in section 2, using the conventional
method of SVD may not work for many of the practical cases for the
reason that the data may not be confined to a linear subspace. For such
situations, the SVD procedure can still be used with one modification,
which is to augment the data matrix by additional columns generated from
a set of trial nonlinear functions fk(x1, x2, . . . xN ) of the N variables [4].
To see this modified procedure, we recall that every row of the original
data matrix D consisted of the observed values of the N co-ordinates. Now
if we denote the kth trial function by fk(x1, x2, . . . xN ), the augmented
matrix E can be represented as,

Ep,n = Dp,n; for n = 1, 2 . . .N

Ep,N+k = fk(Dp,1, Dp,2, . . . Dp,N ); for k = 1, 2 . . .K.

This is equivalent to embedding the N dimensional system in a higher
dimension N + K. Though the system is nonlinear in N dimensions, it
happens many times that the system is linear in the higher dimension
N +K, if the choice of trial functions is successful. (The choice of trial
functions are often arbitrary based on trial and error. Often the trial
functions are polynomial combinations of the variables. At times the
physical situation of the problem might suggest some specific choice of
trial functions). Thus, in N + K dimensional space we hope that the
system will confine to an affine subspace.
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Following the same idea used in section 2 for constructing the matrix
A from the matrix D, we now construct a matrix F from the matrix E by
removing the column averages. In addition to the previously calculated
mean vector d (given Eq. 2.2) we also define a mean vector g for the
additional columns as,

(3.1) gk =
1

P

P∑
p=1

Ep,N+k for k = 1, 2 . . .K.

Now the modified F matrix is given by,

Fp,n = Ep,n − dn; for n = 1, 2 . . .N(3.2)
Fp,N+k = Ep,N+k − gk; for k = 1, 2 . . .K.(3.3)

Now, if that the SVD of this F matrix gives Q singular values that
are zero, we would once again get Q equations using a slightly modified
formula in the extended N +K dimensional space,

(3.4)
N+K∑
n=1

Vn,qF
T
n,q = 0; for q = (N−Q+ 1) . . .N.

However, using the known set of nonlinear equations we can see that
the data vectors will obey the following equation at all the points, if the
singular values are exactly zero.

(3.5)
N∑

n=1

Vn,q(Zn − dn) +
N+K∑
k=N

Vn,q(fk − gk) = 0

for q ranging from (N −Q+1) to N . V is now an orthogonal matrix that
has dimension (N +K)× (N +K).

As in the linear case, if we have Q equations in Eq. 3.5 we conclude
that we have a manifold of at the most N −Q dimension.

3.1. Numerical example: Möbius Strip embedded in R3. Consider
the data generated on a möbius strip that is represented by the following
parametrization,

(3.6)

x(u, v) = (1 + v.cos
u

2
)cos(u)

y(u, v) = (1 + v.cos
u

2
)sin(u)

z(u, v) = v.sin(u)
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Figure 1. Möbius Strip projected to R2

where 0 ≤ u < 2π and −0.3 ≤ v ≤ 0.3. The parameter u runs around the
strip while v moves from one edge to the other. Its projection in R2 can
be seen in Figure. 1

Assume that we have generated data in the form of co-ordinates (x, y, z)
in R3 using the set of equations given by Eq. 3.6. Given the data we wish
to find a small neighborhood in the manifold where sufficient number of
data points are available. This neighborhood data will be thus a small
subset of the whole data. We use this subset to see if there is any rela-
tionship that exists between the co-ordinates.

Identification of a neighborhood based on the property of
Recurrence: A point in state space is said to be recurrent if the time
series generated by the system keeps on visiting the neighborhood of the
point [3]. We identify a neighborhood for some recurrent point as follows:
we start with some initial point (x0, y0, z0) and record its evolution in the
state space. For the neighborhood of a reference point, the Euler metric
– L2 norm (square root of sum of squared distances between vectors) of
the reference point with respect to all its neighbors is defined to be less
than some threshold value ∆. For finding a small neighborhood of a par-
ticular point (xp, yp, zp) we measured the distance of all the vectors with
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respect to the reference recurrent point in the state space. For the nu-
merical simulation explained below (0.7, 0, 0) was chosen as the reference
point. The threshold ∆ was set as 0.032. As the trajectory approaches
the neighborhood with a distance less than ∆, they were considered as
the members of the neighborhood.

We collect the data belonging to the neighborhood into a matrix D.
D has a dimension P × 3, where P is the number of data points in the
neighborhood. Create the matrix A from matrix D by removing the
column averages of the data points from D as shown in Eq. 2.3. For the
specific neighborhood we have selected, the singular values of A matrix
were, [

0.352
0.01

2.286× 10−5

]
.

The low third value is encouraging but to improve the accuracy, we em-
bedded the co-ordinates in R9 (from R3) by using nonlinear trial functions
of the x, y, z co-ordinates of the data points (for this particular demon-
stration we have limited the columns to just the quadratics). We created
the extended data matrix E from D matrix by augmenting the trial func-
tions x2, y2, z2, xy, xz, yz to the D matrix. Now the E matrix can be
denoted as,

E =
[
x y z x2 y2 z2 xy xz yz

]
.

Note that E has dimension P ×9 where P is the number of data points
in the neighborhood. Next step is to generate the matrix F from E by
removing the mean vector d and g from E as explained in Eq. 3.2 and
3.3. The mean vector d was,

[
0.694
0.086
−0.018

]
,

and the mean vector g was,
0.481
0.01

4.667× 10−4

0.059
−0.013

−2.172× 10−3

 .
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We did the SVD of F matrix and the singular values were,

0.43287
0.024

4.02788× 10−4

8.31511× 10−6

2.43449× 10−8

1.28177× 10−10

2.19759× 10−12

9.08467× 10−14

0


.

Note that the 9th singular value is zero. Using the Eq. 3.5, we get a
relationship between the coordinates as,

(3.7)
3∑

n=1

Vn,9(Zn − dn) +

9∑
k=4

Vn,9(fk − gk) = 0.

Expanding this we get an equation for the local neighborhood on man-
ifold as,

0.05(x − d1) + (1.185 × 10−4)(y − d2) + (4.378 × 10−4)(z − d3) +
0.334(x2 − g1) + 0.319(y2 − g2) − 0.855(z2 − g3) + (5.139 × 10−5)(xy −
g4)− (4.046× 10−4)(xz − g5)− 0.231(yz − g6) = 0.

Substituting the mean values we get the exact equation for the mani-
fold as, 0.05x+ (1.185× 10−4)y + (4.378× 10−4)z + 0.334x2 + 0.319y2 −
0.855z2 + (5.139× 10−5)xy − (4.046× 10−4)xz − 0.231yz − 0.198 = 0.

This equation implies that the manifold is at the most 2 dimensional.
We can now choose y and z co-ordinates and create a chart that goes
from (y, z) to (x, y, z). Using the above equation, for every point (y, z)
we can get a quadratic equation of the form (αx + βx2 + γ) = 0 for the
neighborhood on the manifold where,

(3.8) α = 0.05 + (5.139× 10−5)y − (4.046× 10−4)z
β = 0.334

γ = (1.185×10−4)y+(4.378×10−4)z+0.319y2−0.855z2−0.231yz−0.198.

Solution of this quadratic equation gives a prediction for the x data.
Fig. 2. shows a comparison between predicted and original x data.
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Figure 2. The upper figure shows the x data and its
prediction xpred; the error between the data and its pre-
diction is shown in the lower figure.

4. Possible application to dynamical systems

We find that the methods reported here have an interesting application
to nonlinear dynamics. This is because it offers a solution to a specific
problem that arises in the analysis of time series data generated by some
unknown dynamical system. It is quite common in such cases to embed
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the data some high dimensional RN using Takens’ embedding, using de-
layed coordinates (refer Appendix C). Takens’ Delay embedding theorem
gives the conditions under which a dynamical system can be reconstructed
from a time series generated by it [1]. The reconstruction is diffeomorphic
to the original dynamics and it preserves the properties of the dynamical
system and it does not change under smooth coordinate changes. To be
sure of the embedding, the minimum embedding dimension m is (2d+1)
where d is the dimension of the manifold on which the dynamics resides.
This has been improved somewhat to the criterion that says the embed-
ding dimension should be (> 2h), where h is the box counting dimension.

It has been a common practice to use such embedded data to model
the dynamical system. However, there is problem that we have recently
found [6] in using this approach which is particularly serious if we use
such a model to predict the stability of the original system. The problem
is that if the data is actually generated by a non-linear dynamical system
of dimension d, and if the data were to be free of noise it would occupy
a d dimensional submanifold in the embedded space. But if the data
were to be noisy, we would now have a very large number of competing
dynamical systems which agree on the d dimensions but disagree on the
m − d dimensions. Therefore, in some of these m − d dimensions the
system might be asymptotically unstable, while the original system was
quite stable.

The best way to resolve this problem is to carry out the modeling
using an atlas and develop local charts in d dimension itself if we can find
the dimension and charts from the numerical data. We have shown in a
companion paper [2] that this can be done.

5. Appendix A: Proof of Theorem 2.2

The Q linear algebraic homogeneous equations can always be written
as,

(5.1) GZ = 0

where G is Q×N constant matrix of maximal rank Q, and Z is a column
vector of dimension N representing the co-ordinates in RN .

Now consider the transpose of the data matrix A. Each of the columns
of AT represents a vector which will also belong to the subspace governed
by the Eq. 5.1. Recall the SVD of matrix A,

(5.2) A = UWV T .

By post multiplying Eq. 5.2 by V we get,

(5.3) AV = UW.
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Upon transposing,

(5.4) V TAT = WUT .

Now if we denote any of the columns of AT by X and the corresponding
column of the UT by u,

(5.5) V Tx = Wu,

(5.6) x = VWu.

But x lies on the subspace defined by GZ = 0.
Substituting Eq. 5.6 in Eq. 5.1 we get,

(5.7) GVWu = 0

u is the equivalent co-ordinates of the data points in the U matrix. Since
Eq. 5.7 has to be true for all u,

(5.8) GVW = 0.

Consider the matrix product M = GV . G has rank Q and V being
an orthogonal matrix is of full rank N which is higher than Q. Now by
using the Sylvester’s inequality for the product of two matrices [7], rank
of the product GV is at least Q +N −N = Q. In fact, we know that it
is Q because G has only Q rows.

Now consider the product of M with W and let the rank of W be R.
Again by using the same inequality, the rank of MW is at least Q+R−N .
But we know that it is zero, because of Eq. 5.8. This implies that the
rank of W is at the most N −Q. Since W is a diagonal matrix, it means
that at least Q of the diagonal elements, the singular values must be zero.
This proves the theorem 2.2 for the linear subspace.

6. Appendix B: A verification of using the procedure
of nonlinear SVD to find explicit nonlinear

equations for charts on the manifold

Consider X data, 100 random numbers selected from a uniform noise
distribution in the interval [0,1]. Generate Y data from X using a qua-
dratic equation of the form Y = aX+bX2+c; where the coefficients were
a = 2, b = 3, c = 1.5. Now the goal is to predict a, b, c from the data X,Y
using the procedure of nonlinear SVD. The procedure to determine the
coefficients of a quadratic equation are explained below.

step1: Create a data matrix D with columns X,X2, Y .
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step2: Remove the means X̄, X̄2, Ȳ from the columns X,X2, Y to
create a matrix A with columns x1, x2, x3, where x1 = X−X̄, x2 = X2−
X̄2, x3 = Y − Ȳ . Record the means: X̄ = 0.50593, X̄2 = 0.33601, Ȳ =
3.51989

step3: Do the SVD of A matrix. The singular values of the A matrix
in this case were, [

14.62048
0.52504

1.21589× 10−15

]
.

And the third column of the V matrix were,[
0.53452
0.80178
−0.26726

]
.

The 3rd singular value can be considered to be zero because of the round-
ing error.

step4: Using the Eq. 3.5, get a relationship between the third column
of V matrix and the coordinates x1, x2, x3 as,

0.53452x1 + 0.80178x2− 0.26726x3 = 0

x3 =
0.53452

0.26726
x1 +

0.80178

0.26726
x2

x3 = 2x1 + 3x2

Substitute for the actual data coordinates,

Y − Ȳ = 2(X − X̄) + 3(X2 − X̄2)

Y − 3.51989 = 2(X − 0.50593) + 3(X2 − 0.33601)

(6.1) Y = 2X + 3X2 + 1.5

Hence the parameters of the quadratic equation are recovered.

7. Appendix C: Takens Delay Embedding

The standard Takens embedding (also known as delay embedding) is
a method of reconstruction of the state space with time delayed data
segments (known as the embedding vectors) [1]. A typical embedding
vector ei ∈ Rm is the m dimensional embedding vector generated from
the given time series of {d} = d1, d2 . . . dn, where di ∈ R as follows.

e1 = (d1 d2 . . . dm ).

e2 = (d2 d3 . . . dm+1 ).

. . .

ei = (di di+1 . . . dm+i ).

. . .
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The collection {ei} ∈ Rm is a delay embedding of the given data {d}. A
matrix E, created from k such embedding vectors represents the delay
embedding

(7.1) E =


(e1)
(e2)
. . .
. . .

(ek)

 =

 d1 d2 . . . dm
d2 d3 . . . dm+1

. . .
dk dk+1 . . . dm+k

 .
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