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CONTINUOUS CHARACTERS OF WEAKENED
GROUP TOPOLOGIES FOR Rn

T. CHRISTINE STEVENS

Abstract. We study the continuous characters of a collection of
metrizable group topologies for Rn that are weaker than the usual
topology. These topologies are defined by choosing a sequence {vj}
of elements of Rn and specifying the approximate rate {pj} at
which it converges to zero. If {vj} goes to infinity sufficiently fast
in the usual topology, then such a group topology always exists.
Since neither the resulting groups nor their completions are locally
compact, classical duality theory does not apply to them. We inves-
tigate the group of their continuous characters, proving, for exam-
ple, that there are infinitely many non-trivial characters, which are
arranged in a “fractal-like” fashion. These group topologies for Rn

are not reflexive, in the sense of Pontryagin-van Kampen duality.

1. Introduction

In this paper we investigate the continuous characters of a collection of
metrizable group topologies for Rn that are created by choosing a sequence
{vj} of elements of Rn and specifying the approximate rate {pj} at which
it will converge to zero. The topologies in question, which are always
weaker than the usual topology, are defined in [11].

The current paper is part of a larger project, part of which has been
conducted in collaboration with Jon W. Short, that explores the local
and global properties of these topological groups. Previous papers ([9],
[10], [12]) have studied the effects on the topology of changing either
the “converging sequence” {vj} or the “rate sequence” {pj}. We now turn
our attention to the continuous characters of these topological groups.
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Since their completions are not locally compact, the Pontryagin-van Kam-
pen duality theorem does not apply to them. Moreover, it is not obvious
a priori that they will have any non-trivial continuous characters, for
Nienhuys [8] gave an example of a group topology for R that is metrizable
and weaker than the usual topology, but for which the only continuous
character is the trivial one.

Our main theorem settles this question by proving that the topolog-
ical groups under consideration always have infinitely many non-trivial
continuous characters. In fact, the group of continuous characters is al-
gebraically isomorphic to an uncountable subgroup of Rn that is dense in
Rn in the usual topology, and the complement of that subgroup is also
uncountable and dense.

Our work is related to recent results on the duality theory of abelian
topological groups that are not locally compact. These results were thor-
oughly surveyed by M.J. Chasco, D. Dikranjan, and E. Martín-Peinador
in [4]. Indeed, it was a question from Dikran Dikranjan that prompted
the author to undertake a careful study of the continuous characters of
the groups in this paper. As we will see, our main theorem implies that
these groups are not Pontryagin-reflexive.

After providing the necessary background and terminology in Section 2,
we state the main theorem in Section 3 and prove it in Section 4. Section
5 proves a theorem involving Pontryagin duality and lays out possible
avenues for future research.

2. Notation and Terminology

R will denote the set of real numbers and Rn the (set-theoretic) product
of n copies of R; the group operation on these sets will always be addition.
We will often write an element x of Rn as x = (x1, . . . , xn), where each
xi ∈ R. If x, y ∈ Rn, then ∥x∥ will denote the usual Euclidean norm of x,
and d(x, y) = ∥x− y∥ is the usual Euclidean distance from x to y. Since
we will be examining many different group topologies for Rn, topological
statements will always mention the specific topology under consideration.
The usual topology for Rn will be denoted by U .

N, Z, and Q will denote, respectively, the natural numbers, the inte-
gers, and the rational numbers. Unless stated otherwise, all sums will be
assumed to have only finitely many terms.

T will denote the multiplicative group of complex numbers of modulus
1, and it is always assumed to have the usual topology that it inherits from
the complex numbers. We define an invariant metric ρ on T by letting
ρ(eix, eiy) = min{|x − y − 2πn| : n ∈ Z}, and we note that ρ generates
the usual topology for T.
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If (H, T ) is an abelian topological group, then (H, T )∧ will denote the
set of all T -continuous homomorphisms from (H, T ) to T. The compact-
open topology makes (H, T )∧ a topological group, known as the dual of
(H, T ), and (H, T )∧ is complete whenever (H, T ) is metrizable [4, Fact
A, p. 2294].
Definition 2.1. An abelian topological group (H, T ) is Pontryagin-reflex-
ive if the evaluation map from (H, T ) to (H, T )∧∧ is a topological isomor-
phism, where (H, T )∧∧ is the dual of (H, T )∧ and has the compact-open
topology.

Our strategy for constructing group topologies on Rn relies on the
notion of a groupnorm (or simply a norm).
Definition 2.2. A groupnorm on an abelian group G is a function
ν : G → R satisfying, for all x, y ∈ G,

(i) ν(x) ≥ 0;
(ii) ν(x) = 0 if and only if x = 0;
(iii) ν(x+ y) ≤ ν(x) + ν(y);
(iv) ν(x) = v(−x).
If ν is a groupnorm on G, then the function r(x, y) = ν(x−y) defines a

translation-invariant metric on G, and the corresponding metric topology
makes G a topological group. Blurring the distinction between the norm
ν, the metric r, and the topology it induces on G, we will denote by (G, ν)
the group G with the topology induced by r.

In [11] the author introduced the following method for constructing
metrizable group topologies on Rn that are weaker than the usual topol-
ogy. Their continuous characters are the subject of this paper.
Proposition 2.3. [11, Proposition 4.1] Let {pj : j ∈ N} be a non-
increasing sequence of positive real numbers which converges to zero
in the usual topology on R, and let {vj : j ∈ N} be a sequence of non-
zero elements of Rn such that {∥vj∥} is non-decreasing and the sequence
{pj+1∥vj+1∥/∥vj∥} has a positive lower bound. Then the function ν :
Rn → R defined by

ν(x) = inf
{∑

|cj |pj +
∥∥∥x−

∑
cjvj

∥∥∥ : cj ∈ Z
}

is a groupnorm on Rn such that ν(x) ≤ ∥x∥ for all x ∈ Rn and ν(vj) ≤ pj.
ν gives rise to a metrizable group topology on Rn, weaker than the standard
topology, in which vj → 0.

Another way to describe ν is that it is the largest norm on Rn such that
ν(vj) ≤ pj for all j ∈ N and ν(x) ≤ ∥x∥ for all x ∈ Rn. Roughly speaking,
we can say that an element x of Rn is near the origin in the ν-topology if
there is an element of the subgroup generated by the sequence {vj} that
is near x in the usual topology and also near the origin in the ν-topology.
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Definition 2.4. If the sequences {vj} and {pj} satisfy the hypothesis of
Proposition 2.3, then ({vj}, {pj}) will be called a sequential-norming pair
(SNP) for Rn. If the groupnorm they induce is ν, then ({vj}, {pj}, ν) will
be called a sequential-norming triple (SNT ) for Rn.

For example, ({(j! +
√
2, jπ)}, {1/j}) is an SNP on R2. If ν is the

corresponding norm, then ν(j! +
√
2, jπ) ≤ 1/j, and thus {(j! +

√
2, jπ)}

converges to zero in (R2, ν) at least as fast as 1/j converges to zero in the
usual topology for R.

It is important to note that, if ({vj}, {pj}, ν) is an SNT on Rn, then
the ν-topology might not be a product topology, in the sense that the pro-
jections of (Rn, ν) onto the coordinate axes (with the subspace topology)
need not be continuous.

3. Continuous characters

Let ({vj}, {pj}, ν) be an SNT for Rn, let f : Rn → T be a ν-continuous
homomorphism, and let x = (x1, . . . , xn) be in Rn. Since the ν-topology
is weaker than the usual topology U for Rn, it follows that f is also U-
continuous, and thus f must have the form

(3.1) f(x) = exp(i(θ1x1 + · · ·+ θnxn)),

where θk ∈ R, 1 ≤ k ≤ n. For any θ = (θ1, . . . , θn) ∈ Rn, we will let fθ
denote the homomorphism defined by (3.1). Given an SNT, we want to
study the set of all θ ∈ Rn such that fθ is ν-continuous. It is easy to see
that this set, which we will denote by G, is a subgroup of Rn. Our main
theorem is the following:

Theorem 3.1. Let G = {θ ∈ Rn : fθ is ν-continuous}. G is an uncount-
able U-dense subgroup of Rn whose complement is also uncountable and
U-dense in Rn.

The proof of Theorem 3.1 is contained in Section 4. Before embarking
on that proof, we give some examples of continuous characters and note
a situation in which, without Theorem 3.1, the existence of continuous
characters might not be readily apparent.

We begin with a few examples where n = 1, that is, with SNT’s for the
real numbers R. If ({vj}, {pj}, ν) is an SNT for R, let V be the subgroup
of R that is generated by the converging sequence {vj}. If V is discrete
in the usual topology for R, then it is easy to find non-trivial continuous
characters of (R, ν), since any U-continuous homomorphism from R to T
whose kernel contains V will be ν-continuous.

For the SNT ({j!}, {1/j}, ν1), for instance, we have V = Z. It is clear
that 2πZ ⊆ G, because any character of the form f2πm, where m ∈ Z,
will map all the integers to 1 and thus will be ν1-continuous. We claim,
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moreover, that 2πQ ⊆ G. Let p, q ∈ Z, with q ̸= 0. Then q divides
j! whenever j ≥ q, and thus f2π(p/q)(j!) = 1, for all sufficiently large j.
Therefore 2πQ ⊆ G, and G is dense in R, as Theorem 3.1 predicts.

If we look instead at the SNT ({j! + 1}, {1/j}, ν2), then 2πZ is still a
subset of G, for the same reason as before. But π /∈ G, because fπ(vj) =
exp(iπ(j! + 1)) = −1 for all j ≥ 2, and thus G does not contain 2πQ.
In this example, it is not as easy to find the closure of G, without the
help of Theorem 3.1. From this example we also see that G might not be
closed under scalar multiplication by rational numbers, and thus it is not
necessarily a vector space.

Finally, consider the SNT ({j! +
√
2}, {1/j}, ν3). Then V is a dense

subgroup of R in the usual topology, and we cannot construct non-trivial
ν3-continuous characters simply by mapping every element of V to the
identity. Indeed, without Theorem 3.1, it is not obvious that there are
any non-trivial ν3-continuous characters.

Turning our attention to SNT’s on Rn, where n > 1, we find that the
situation remains complicated. For the SNT ({(j!, (−1)j)}, {1/j}, ν4) on
R2, for example, it is easy to see that 2πQ×2πZ ⊆ G, but it is difficult to
find the closure of G without using Theorem 3.1. When n > 1, we must
also deal with situations where the subgroup generated by the sequence
{vj} is neither discrete nor dense in (Rn,U).

4. Proof of Main Theorem

Throughout this section, ({vj}, {pj}, ν) will be an SNT on Rn, and G
and fθ will be as in Theorem 3.1. The proof of Theorem 3.1 is accom-
plished by means of a lemma and four propositions.

The following preparatory lemma provides a “Lipschitz-like” condition
that is sufficient to guarantee that a homomorphism fθ : Rn → T is ν-
continuous. It says that fθ will be ν-continuous if the image under fθ of
the “converging sequence” {vj} converges to the identity at roughly the
rate {pj}.

Lemma 4.1. Let f : Rn → T be a U-continuous homomorphism. If there
is a positive real number α such that ρ(f(vj), 1) ≤ αpj for all sufficiently
large j, then f is ν-continuous.

Proof. Let m be a natural number such that ρ(f(vj), 1) ≤ αpj for all
j ≥ m, and let ϵ > 0 be given. Without loss of generality, we may
assume that ϵ < pm. Because f is U-continuous, there is a δ > 0 such
that ρ(f(x), 1) < ϵ/2 whenever ∥x∥ < δ. We may assume that δ <
min(ϵ, ϵ/(2α)). If ν(x) < δ, then the definition of ν implies that x can
be written in the form x = y +

∑
cjvj , where cj ∈ Z, y ∈ Rn, the sum

is finite, and ∥y∥ +
∑

|cj |pj < δ. Note that every non-zero cj in this
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expression must have pj ≤ |cj |pj < δ < ϵ < pm, and thus all such cj have
index j > m, so that ρ(f(vj), 1) ≤ αpj . Since ∥y∥ < δ, we know that
ρ(f(y), 1) < ϵ/2. Since f is a homomorphism and ρ is invariant, we know
that, for all a, b ∈ Rn, ρ(f(a+ b), 1) = ρ(f(a)f(b), 1) = ρ(f(a), f(b)−1) ≤
ρ(f(a), 1) + ρ(1, f(b)−1) = ρ(f(a), 1) + ρ(f(b), 1). It follows that

ρ(f(x), 1) = ρ(f(y +
∑

cjvj), 1) ≤ ρ(f(y), 1) +
∑

|cj |ρ(f(vj), 1)

< ϵ/2 + α
∑

|cj |pj < ϵ/2 + δα < ϵ/2 + ϵ/2 = ϵ.

Hence f is ν-continuous. �

The next four propositions prove Theorem 3.1 by showing, successively,
that G is infinite, U- dense in Rn, and uncountable, and that the comple-
ment of G in Rn is also dense and uncountable. We begin by noting that,
since ({vj}, {pj}, ν) is an SNT, we can choose a positive constant k such
that

(4.1) 0 < k <
pj+1∥vj+1∥

∥vj∥

for all j ∈ N. Our first proposition states that G is infinite.

Proposition 4.2. The group G is infinite.

Proof. We will prove that G is non-trivial, from which it will immediately
follow that G is infinite. We start by establishing some notation. Choose
α > 0 such that

(4.2) π/α < k.

For each j ∈ N , we define a collection of parallel hyperplanes in Rn. If
j ∈ N and m ∈ Z, we write vj as vj = (vj1 , . . . vjn) and let

Hj,m = {x ∈ Rn : vj1x1 + · · ·+ vjnxn = 2πm}.

Then Hj ,m is a hyperplane in Rn. If we fix j ∈ N and take the union of
{Hj,m : m ∈ Z}, then we get the set of all θ ∈ Rn such that fθ(vj) = 1.

For future reference, we compute the distance (in the usual metric)
between parallel hyperplanes. If r, s ∈ R and Hr = {x ∈ Rn : vj1x1 +
· · · + vjnxn = r} and Hs = {x ∈ Rn : vj1x1 + · · · + vjnxn = s}, it is an
exercise in multi-variable calculus to show that the distance between Hr

and Hs is |r− s|/∥vj∥. (See, for example, Exercise 60 on p. 88 of [7].) In
particular, the distance between Hj,m and Hj,m+1 is 2π/∥vj∥.

We will now describe a procedure for finding a non-zero θ ∈ Rn such
that ρ(fθ(vj), 1) ≤ αpj , for all sufficiently large j. According to Lemma
4.1, this will enable us to conclude that fθ is ν-continuous.
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Since k and α were chosen to satisfy (4.2) and since pj → 0 in the usual
metric, we can choose s ∈ N such that, for all j ≥ s,

(4.3) pj +
π

α
< k

and

(4.4) pjα < π.

For j ≥ s, we will inductively choose integers mj ∈ Z and points Pj,mj on
the hyperplane Hj,mj such that, if Aj,mj is the closed ball around Pj,mj

of radius αpj/∥vj∥ (in the usual metric), then Aj+1,mj+1 ⊆ Aj,mj . We
begin by choosing an arbitrary ms ∈ Z and then choose as Ps,ms to be
any point on the hyperplane Hs,ms .

Assuming that Pj,mj has been chosen, we show how to choose Pj+1,mj+1

so that Aj+1,mj+1 ⊆ Aj,mj . Consider the family {Hj+1,z : z ∈ Z} of
hyperplanes. Since consecutive members of this family are 2π/∥vj+1∥
apart, every element of Rn is at most π/∥vj+1∥ away from one (or two) of
these hyperplanes. In particular, we can choose mj+1 ∈ Z so that Pj,mj

is at most π/∥vj+1∥ away from Hj+1,mj+1 . Let Pj+1,mj+1 be a point on
Hj+1,mj+1 such that d(Pj,mj , Pj+1,mj+1) ≤ π/∥vj+1∥, and let Aj+1,mj+1

be the closed ball around Pj+1,mj+1 of radius αpj+1/∥vj+1∥. To show
that Aj+1,mj+1 ⊆ Aj,mj , let Q ∈ Aj+1,mj+1 . Then

d(Pj,mj , Q) ≤ d(Pj,mj , Pj+1,mj+1) + d(Pj+1,mj+1 , Q)

≤ π

∥vj+1∥
+

αpj+1

∥vj+1∥
=

π + αpj+1

∥vj+1∥
.

It follows from (4.3) that αpj+1 + π < kα, and thus

d(Pj,mj
, Q) < kα/∥vj+1∥.

Then (4.1) and the fact that {pj} is non-increasing imply that d(Pj,mj , Q)<
pj+1α/∥vj∥ ≤ pjα/∥vj∥, and thus Q ∈ Aj,mj .

Proceeding in this way, we get a decreasing sequence

(4.5) As,ms ⊇ As+1,ms+1 ⊇ . . .

of non-empty U-compact subsets of Rn, whose intersection is therefore
non-empty. In fact, since the diameter of the closed ball Aj,mj converges
to zero as j → ∞, the intersection consists of a single point θ. We claim
that fθ is ν-continuous.

To establish this claim, we first show that, for each j ≥ s, Aj,mj is a
subset of the closed region bounded by the hyperplanes that are defined
by the equations

vj1x1 + · · ·+ vjnxn = 2πmj ± αpj .
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This follows from the fact that these hyperplanes are 2αpj/∥vj∥ apart and
the fact that Pj,mj , which is on Hj,mj , is halfway between them. Since
any point in Aj,mj is at most αpj/∥vj∥ from Pj,mj , it must lie in the
desired closed region.

Thus θ must satisfy the inequality |vj1θ1 + . . . vjnθn − 2πmj | ≤ αpj
for all j ≥ s. It follows from the definition of the invariant metric ρ
that ρ(fθ(vj), 1) ≤ αpj , and we conclude from Lemma 4.1 that fθ is ν-
continuous. By choosing the initial integer ms and the initial point Ps,ms

in such a way that Ps,ms is more than αps/∥vs∥ away from the origin (in
the usual metric), we can guarantee that 0 /∈ As,ms . Thus θ ̸= 0, and
fθ is not the trivial homomorphism. It follows that G, as a non-trivial
subgroup of Rn, is infinite. (Another way to show that G is infinite is to
note that there are infinitely many choices for the initial point Ps,ms that
make the corresponding closed balls As,ms pairwise disjoint.) �

We now prove that G is U-dense in Rn.
Proposition 4.3. G is dense in (Rn,U).
Proof. To prove this proposition, we refine the procedure that was given
in the proof of Proposition 4.2 for choosing the sequence (4.5). Let Q ∈ Rn

and ϵ > 0 be given, and recall that there is a natural number s such that
inequalities (4.3) and (4.4) hold for all j ≥ s. Since pj → 0 and ∥vj∥ → ∞
in the usual metric, we may assume, without loss of generality, that

(4.6) αps/∥vs∥ ≤ ϵ/2

and
2π/∥vs∥ ≤ ϵ.

Let E1 and E2 be, respectively, the closed balls around Q of radius ϵ
and ϵ/2 (in the usual metric). Since E2 has diameter ϵ and consecutive
hyperplanes in the family {Hs,z : z ∈ Z} are 2π/∥vs∥ ≤ ϵ apart, we can
choose ms ∈ Z such that Hs,ms intersects E2. If we choose the initial point
Ps,ms to be any point in that intersection, then the triangle inequality and
(4.6) imply that, for every X ∈ As,ms ,

d(Q,X) ≤ d(Q,Ps,ms) + d(Ps,ms , X) ≤ ϵ/2 + αps/∥vs∥ ≤ ϵ,

and thus As,ms ⊆ E1. If we proceed as in the proof of Proposition 4.2
to construct the sequence (4.5), then the corresponding θ will be in E1.
Therefore G is U-dense in Rn. �

To prove that G is uncountable, we will modify the procedure that
was described in the proof of Proposition 4.2 for choosing the sequence
{Pj,mj}. Our strategy is first to choose a fixed natural number t > 1,
and then to choose the point Pj+1,mj+1 in such a way that, at each step,
there are at least t acceptable choices for Pj+1,mj+1 . The proof of the
next proposition contains the details.
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Proposition 4.4. G is uncountable.

Proof. After choosing t ∈ N with t > 1, we adopt a new criterion for
selecting α and s. Instead of making (4.2) true, as we did in the proof
of Proposition 4.2, we choose α > 0 to satisfy the stronger inequality
tπ/α < k, and we then choose s ∈ N so that the inequalities (4.4) and

(4.7) pj +
tπ

α
< k

hold for all j ≥ s. We choose the initial point Ps,ms and the corresponding
closed ball As,ms as in the proof of Proposition 4.2.

Assuming that Pj,mj has been chosen, we consider the closed ball F
around it of radius αpj

∥vj∥ − αpj+1

∥vj+1∥ (in the usual metric). Clearly F ⊆
Aj,mj , and we note that the radius of F must be strictly positive, for
the inequalities (4.7) and (4.1), combined with the fact that the sequence
{pj} is non-increasing, imply that

pj+1 < k <
pj+1∥vj+1∥

∥vj∥
≤ pj∥vj+1∥

∥vj∥
,

so that pj+1

∥vj+1∥ <
pj

∥vj∥ . Our goal is to choose mj+1 ∈ Z and a point
Pj+1,mj+1 on the hyperplane Hj+1,mj+1 in such a way that Aj+1,mj+1 ⊆
Aj,m, and we want to estimate the number of distinct integers mj+1 that
make this possible. We claim that F intersects at least t distinct hy-
perplanes in the family {Hj+1,z : z ∈ Z}. To prove this, first divide the
diameter of F by the distance 2π/∥vj+1∥ between consecutive hyperplanes
in this family, obtaining the ratio

2

(
αpj
∥vj∥

− αpj+1

∥vj+1∥

)
∥vj+1∥
2π

=
α

π

(
∥vj+1∥pj
∥vj∥

− pj+1

)
.

Using the fact that pj ≥ pj+1 and then applying (4.1) and (4.7), we find
that

α

π

(
∥vj+1∥pj
∥vj∥

− pj+1

)
≥ α

π
(k − pj+1) > t.

Thus there are at least t hyperplanes in the family {Hj+1,z : z ∈ Z} that
intersect F , and we choose Pj+1,mj+1 to be any point in F that is on one
of them. We again let let Aj+1,mj+1 be the closed ball around Pj+1,mj+1

of radius αpj+1/∥vj+1∥. Then the triangle inequality guarantees that the
distance from any point in Aj+1,mj+1 to Pj,mj is no more than

αpj+1

∥vj+1∥
+ d(Pj+1,mj+1 , Pj,mj ) ≤

αpj+1

∥vj+1∥
+

αpj
∥vj∥

− αpj+1

∥vj+1∥
=

αpj
∥vj∥

,

so that Aj+1,mj+1 ⊆ Aj,mj . As before, we obtain a decreasing sequence
(4.5) of non-empty compact sets that converges to a θ ∈ Rn that makes
fθ ν-continuous.
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Finally, we observe that two choices for Pj+1,mj+1 that lie on differ-
ent hyperplanes in the family {Hj+1,z : z ∈ Z} will yield closed balls
Aj+1,mj+1 that are disjoint, for (4.4) implies that the radius αpj+1

∥vj+1∥ of
the closed ball Aj+1,mj+1 is less than half the distance between any two
distinct hyperplanes in the family {Hj+1,z : z ∈ Z}, which is at least

2π
∥vj+1∥ . Thus choosing Pj+1,mj+1 to be on a different hyperplane will pro-
duce a different value of θ. Since there are at least t distinct hyperplanes
to choose from at each step in the construction of the sequence (4.5),
and since these choices yield distinct continuous characters, we conclude
that G is uncountable. Moreover, the elements of G are arranged in a
“fractal-like” fashion. �

We now turn our attention to the complement of G in Rn.

Proposition 4.5. The complement of G is uncountable and dense in
(Rn,U).

Proof. To show that the complement of G is uncountable, we use an
argument similar to the proof of Proposition 4.4 (which in turn refers
back to the proof of Proposition 4.2). In those proofs, we now replace the
hyperplane Hj,m by

H ′
j,m = {x ∈ Rn : vj1x1 + · · ·+ vjnxn = (2m+ 1)π}.

We again obtain a decreasing sequence (4.5) of non-empty compact sets
that converges to some θ ∈ Rn.

In the modified construction, however, the closed ball Aj,mj is con-
tained within the closed region bounded by the hyperplanes

vj1x1 + · · ·+ vjnxn = (2mj + 1)π ± αpj ,

and thus |vj1θ1 + . . . vjnθn − 2πmj − π| ≤ αpj . It follows that

ρ(exp(i(vj1θ1 + · · ·+ vjnθn − π)), 1) ≤ αpj .

Since ρ is invariant, this implies that

ρ(fθ(vj),−1) = ρ(−fθ(vj), 1) = ρ(− exp(i(vj1θ1 + · · ·+ vjnθn)), 1)

= ρ(exp(i(vj1θ1 + · · ·+ vjnθn − π)), 1) ≤ αpj .

Hence fθ(vj) → −1 as j → ∞, and thus fθ is not ν-continuous. Therefore
the complement of G is non-empty. Moreover, as in the proof of Proposi-
tion 4.4, we can arrange things so that, at each step, the point Pj+1,mj+1

can be chosen to be on any one of at least t > 1 distinct hyperplanes, each
of which will lead to a different value of θ that makes fθ not ν-continuous.
It follows that the complement of G is uncountable.
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Finally, we prove that the complement of G is U-dense in Rn. This is
easily accomplished by taking the proof of Proposition 4.3 and replacing
each hyperplane Hj,m by the hyperplane H ′

j,m, as defined above. The
argument in the proof of Proposition 4.3 then shows, mutatis mutan-
dis, that every Q ∈ Rn is arbitrarily close to a θ such that fθ is not
ν-continuous. �

To obtain a proof of Theorem 3.1, we simply combine Propositions 4.2
through 4.5.

5. Duality and some open questions

We conclude with some remarks about duality and some questions for
future investigation. If ({vj}, {pj}, ν) is an SNT for Rn, then Theorem
3.1 describes the group G as a subgroup of (Rn,U). It says nothing,
however, about the compact-open topology Tco that G acquires as the
dual of (Rn, ν). It would be useful to determine the topological structure
of G in the topology Tco. Using Theorem 3.1, we can prove the following
result:
Theorem 5.1. The topology UG that G inherits from U is properly con-
tained in Tco, and (Rn, ν) is not Pontryagin-reflexive.
Proof. Since the dual of (Rn,U) is (Rn,U), we can think of UG as the
compact-open topology that G acquires when regarded as a group of char-
acters of (Rn,U). Because ν is weaker than U , it follows that UG ⊆ Tco.
As we noted in Section 2, G is complete in the uniform structure asso-
ciated with the compact-open topology Tco. If the two topologies were
equal, then G would also be complete in the uniform structure generated
by UG, contradicting the fact that G is not closed in (Rn,U).

To prove that (Rn, ν) is not Pontryagin-reflexive, we first note that it
cannot be complete, by [5, p. 99, Cor. 6], and then invoke the fact that, for
metrizable groups, completeness is a necessary condition for Pontryagin
reflexivity [3, Cor. 2] �

We close by indicating some possible directions for future research. As
noted in [2, p. 84], the dual group of an abelian topological group is always
locally quasi-convex in its compact-open topology, and thus a group that
is Pontryagin-reflexive must be locally quasi-convex. Although topological
groups that are generated by SNT’s are not Pontryagin-reflexive, it would
be interesting to determine whether they are nevertheless locally quasi-
convex.

One can also invert the question posed in this paper. Instead of finding
the continuous characters of a given SNT, one could ask what subgroups
of Rn can occur as the character groups of SNT’s. Given an uncountable,
U-dense subgroup G of Rn, can one find an SNT ({vj}, {pj}, ν) such that
G is the group of ν-continuous characters?
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Finally, the strategies used here to construct topologies and continuous
characters on Rn might be adapted to other abelian groups, thus shedding
light on the long-standing problem (mentioned in [6], p. 649) of iden-
tifying those abelian Hausdorff topological groups that are Pontryagin-
reflexive. According to Theorem 3 in [3], the completion of (Rn, ν) will
be Pontryagin-reflexive if and only if it is reflexive with respect to the
convergence structure described in [1].

The author hopes to investigate some of these questions in a future
paper.
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