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SEPARATING CURVE COMPLEX
OF THE GENUS TWO SURFACE:
QUASI-DISTANCE FORMULA

AND HYPERBOLICITY

HAROLD SULTAN

Abstract. We prove that the separating curve complex of
S2,0 satisfies a quasi-distance formula akin to the quasi-distance
formulas for the marking and pants complexes of Howard A.
Masur and Yair N. Minsky, and for the disk and arc complexes
of Masur and Saul Schleimer. The proof uses basic properties of
Farey graphs in conjunction with tools of Masur and Minsky and
Masur and Schleimer. As a corollary, we provide an alternative
proof that Csep(S2,0) is δ-hyperbolic, a fact implicit in the work
of Jeffrey Brock and Masur as well as explicit in recent work of
Jiming Ma.

1. Introduction

In recent years, the curve complex and natural relatives thereof have
been extensively featured in the geometric group theory literature. These
natural combinatorial complexes have proven to be extremely useful tools
with applications to a variety of settings including notably the study of
mapping class groups and Teichmüller space. For a broad overview of
the topics and close relations to various natural combinatorial complexes,
see, for instance, [3]. In this context, we study the coarse geometry of the
separating curve complex of the genus two surface.
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162 H. SULTAN

In studying the coarse geometry of natural combinatorial complexes,
being able to approximate distance is of fundamental interest. A promi-
nent idea in [7] is that distance in a combinatorial complex can sometimes
be approximated by summing over the distances in the subsurface projec-
tions to the curve complexes of certain subsurfaces. Specifically, the set of
subsurfaces summed over, or holes, are defined by the property that every
vertex of the combinatorial complex has nontrivial subsurface projections
into their curve complexes. Such an approximation, when it exists, is
called a quasi-distance formula. In fact, in their groundbreaking paper
[6], Howard A. Masur and Yair N. Minsky develop a notion of hierarchies
which, in particular, provides examples of quasi-distance formulas in the
marking and pants complexes.

The ideas in this paper are similar to, as well as motivated by, work of
Masur and Saul Schleimer in [7]. Using ideas implicit in [1], Masur and
Schleimer, in [7], establish axioms which are proven to be sufficient for
ensuring that a combinatorial complex satisfies a quasi-distance formula
and is δ-hyperbolic. In particular, verification of the Masur–Schleimer
axioms is used in [7] to prove that the disk complex and the arc com-
plex satisfy quasi-distance formulas and are δ-hyperbolic. Unfortunately,
as we will see, one of the Masur–Schleimer axioms fails in the case of
Csep(S2,0). Nonetheless, in this paper we are able to show by a direct
argument that Csep(S2,0) does in fact satisfy a quasi-distance formula.
Furthermore, carefully considering the Masur–Schleimer argument, as a
corollary we also obtain that Csep(S2,0) is δ-hyperbolic. Specifically, we
prove the following main theorem.

Theorem 1.0.1. The combinatorial complex Csep(S2,0) satisfies a quasi-
distance formula. That is, if we let NS denote the set of all nonseparating
essential subsurfaces of S2,0, then there is a constant K0 such that for all
k ≥ K0 there exists constants K(k) and L(k) such that for all α, β ∈
Csep(S2,0), we have the quasi-isometric relation

1

K

∑
Y ∈NS

{dC(Y )(α, β)}k − L ≤ dCsep(S2,0)(α, β)

≤ K
∑
Y ∈NS{dC(Y )(α, β)}k + L,

where the threshold function {f(x)}k is defined to be f(x) if f(x) ≥ k,
and 0 otherwise. Moreover, the combinatorial complex Csep(S2,0) is δ-
hyperbolic.

It is well known that the curve complex C(S) is δ-hyperbolic; see [5].
On the other hand, the separating curve complex Csep(S), in general, is
not δ-hyperbolic. In fact, for all closed surfaces S = Sg,0 with genus
g ≥ 3, Csep(S) contains natural quasi-isometric embeddings of Z2, an
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obstruction to hyperbolicity [8]. For S2,0, however, there are no such
natural non-trivial quasi-flats. Given this context, Schleimer conjectures
that Csep(S2,0) is δ-hyperbolic [8, Conjecture 2.48]. In this paper we
provide a proof in the affirmative of this conjecture. To be sure, the fact
that Csep(S2,0) is δ-hyperbolic is implicit in [2], as well as explicit in [4].

2. Preliminaries

2.1. Coarse geometry.

When studying large scale geometry, in place of the usual notions
of functions and isometries, it is often useful to consider the notions of
coarsely well-defined maps and quasi-isometries. The latter are natural
large scale generalizations of the former.

Definition 2.1.1. Given metric spaces X and Y, a map

f : X → 2Y \ ∅
is coarsely well defined if there exists a constant C such that for all x ∈ X,
diamY (f(x)) < C.

Given a coarsely well-defined map f : X → 2Y , by abuse of notation,
we will sometimes consider it as a map f : X → Y , obtained by assigning
to each x ∈ X an arbitrarily selected element y ∈ f(x).

Definition 2.1.2. Given metric spaces (X, dX) and (Y, dY ), a map

f : (X, dX)→ (Y, dY )

is called a (K,L) quasi-isometric embedding of X into Y if there exist
constants K ≥ 1 and L ≥ 0 such that for all x, x′ ∈ X, the following
inequality holds:

(2.1.1) K−1dX(x, x′)− L ≤ dY (f(x), f(x′)) ≤ KdX(x, x′) + L.

If, in addition, the map f is roughly onto, i.e., a fixed neighborhood of the
image is the entire codomain, f is called a quasi-isometry. Two metric
spaces are called quasi-isometric if there exists a quasi-isometry between
them. The special case of a quasi-isometric embedding with domain a
line (segment, ray, or bi-infinite) is a quasi-geodesic.

Remark 2.1.3. To simplify notation, in place of equation (2.1.1), we
sometimes write

dX(x, x′) ≈K,L dY (y, y′).
Similarly, we write dX(x, x′) .K,L dY (y, y

′) to imply dX(x, x′) ≤
KdY (y, y

′) + L. When the constants K and L are not important, they
may be omitted.
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2.2. Curve complex and separating curve complex.

Let S = Sg,n be a compact surface of genus g with n boundary com-
ponents. The complexity of S, denoted ξ(S), is a topological invariant
defined to be 3g − 3 + n. An isotopy class of a simple closed curve γ
on S is essential if it does not have a representative bounding a disk
or an annulus. We will only consider hyperbolic compact surfaces, and,
to streamline the exposition, we will use the term “curve” to refer to a
geodesic representative of an isotopy class of an essential simple closed
curve.

A multicurve is a (possibly empty) set of curves which are pairwise
disjoint. For any surface S with positive complexity, the curve complex of
S, denoted C(S), is the simplicial complex obtained by associating to each
curve a 0-cell, and, more generally, a k-cell to each multicurve consisting
of k + 1 curves. In the special case of low complexity surfaces which do
not admit disjoint curves, we relax the notion of adjacency to allow edges
between vertices corresponding to curves that intersect minimally on the
given surface. Along similar lines, given a curve γ ⊂ S, let N (γ) denote
a regular annular neighborhood of γ. Then the annular complex C(γ) is
defined as follows: Vertices correspond to isotopy classes, relative to the
boundary, of arcs connecting the two boundary components of N (γ), and
edges connect isotopy classes (relative to the boundary) of arcs which have
representatives with disjoint interiors. The annular complex measures the
twisting of arcs around the core curve γ and is quasi-isometric to Z. In
fact, for any fixed points x and y on different boundary components of
N (γ) and for any arc α ∈ C(γ), there exists an adjacent arc β ∈ C(γ)
with endpoints x and y.

A (multi)curve γ ⊂ S is said to be separating if S\γ consists of a disjoint
union of at least two connected essential subsurfaces, and nonseparating
otherwise. Given this distinction, we define the separating curve complex,
denoted Csep(S), to be the restriction of the curve complex to the subset
of separating curves. For certain low complexity surfaces, such as S2,0,
Csep(S), as defined, is a totally disconnected space. Accordingly, in such
circumstances, we relax the definition of connectivity and define two sepa-
rating curves to be connected by an edge if the curves intersect minimally
on the given surface. More generally, in such low complexity situations, a
set of k + 1 separating curves forms a k-simplex if the separating curves
pairwise intersect minimally. For our purposes we will only be interested
in the 1-skeleton of Csep(S). In particular, for the case of S2,0, two sepa-
rating curves in Csep(S2,0) are connected if and only if they intersect four
times.
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2.3. Essential subsurfaces, projections.

An essential subsurface Y of a surface S is a disjoint union of complex-
ity at least one subsurface which is a union of (not necessarily all) comple-
mentary components of a multicurve. Note that due to the requirement
that connected components of an essential subsurface have complexity
at least one, annuli are not essential subsurfaces nor are they connected
components of essential subsurfaces.

As multicurves are, in fact, sets of isotopy classes of essential sim-
ple closed curves, essential subsurfaces are only defined up to isotopy.
However, in light of our assumption that curves always refer to geodesic
representatives of their isotopy classes, we will similarly assume fixed rep-
resentatives of all essential subsurfaces by assuming that all boundary
components of essential subsurfaces are geodesics. An essential subsur-
face Y ⊆ S is proper if Y ( S. Two essential surfaces W,V ⊂ S are
disjoint if they have empty intersection, and intersecting otherwise. We
are implicitly using the fact that two geodesics on hyperbolic surfaces
never form a bigon [3].

An essential subsurface Y ⊂ S is called separating if the multicurve
∂Y contains a separating multicurve, and nonseparating otherwise. In
particular, note that the entire surface is always a nonseparating essential
subsurface.

Given a multicurve α ⊂ C(S) and a connected essential subsurface
Y ⊂ S such that α intersects Y, we can define the projection of α to
2C(Y ), denoted πC(Y )(α), to be the collection of vertices in C(Y ) obtained
by “surgering” the arcs of α ∩ Y along ∂Y to obtain simple closed curves
in Y . Specifically, the intersection α ∩ Y consists of a (possibly empty)
submulticurve β ⊂ α contained in Y , as well as a disjoint union of arc
subsegments of α with the endpoints of the arcs on boundary compo-
nents of Y. We define the projection πC(Y )(α) ⊂ C(Y ) to be the union
of the submulticurve β in conjunction with all curves obtained by the
following process. For an arc α ∩ Y , consider the union of the arc and
the components of ∂Y incident to the endpoints of the arc. Then take a
regular neighborhood of this union and define the subsurface projection
πC(Y )(α) to include all essential curves in the boundary of this regular
neighborhood. See Figure 1 for an example.

In [6], it is shown that subsurface projections are coarsely well defined.
Note that the projection πC(Y ) is only defined on curves intersecting Y. To
simplify notation, when measuring distance in the image subsurface com-
plex, we write dC(Y )(α1, α2) as shorthand for dC(Y )(πC(Y )(α1), πC(Y )(α2)).
In particular, for this distance to be well defined, α1 and α2 must both
intersect Y.
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πC(W )(α1)

α1

πC(W )(α2)

α2

FIGURE 1. Examples of subsurface projections.

2.4. Combinatorial complexes.

A combinatorial complex forMCG(S), (for short, a combinatorial com-
plex G(S)), is any graph with vertices defined in terms of multicurves on
a surface and edge relations defined in terms of upper bounds on inter-
section numbers between the corresponding multicurves. In addition, we
will assume that combinatorial complexes admit an isometric action of
the mapping class groupMCG(S). Examples of combinatorial complexes
of MCG(S) include the separating curve complex, the arc complex, the
pants complex, and the marking complex, as well as many others.

A hole for G(S) is defined to be any connected essential subsurface
or annulus such that every vertex of the combinatorial complex has non-
trivial subsurface projection into it. For example, for the arc complex,
holes are precisely all connected subsurfaces such that ∂S ⊂ ∂Y. On
the other hand, for the complex Csep(S2,0), holes are precisely the set of
nonseparating essential subsurfaces.

The central idea in [7], which is also implicit in [1], is that distance in
a combinatorial complex is approximated by summing over the distances
in the subsurface projections to the curve complexes of holes. In partic-
ular, if a complex has disjoint holes, then the complex admits non-trivial
quasi-flats, and hence cannot be δ-hyperbolic. Conversely, if a combi-
natorial complex has the property that no two holes are disjoint, then,
assuming a couple of additional Masur–Schleimer axioms, the complex is
δ-hyperbolic.
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2.5. Marking complex and hierarchy paths.

A complete marking µ on S is a collection of base curves and transverse
curves subject to the following conditions:

(1) The set of base curves {γ1, ..., γn} forms a top-dimensional simplex
in C(S). Equivalently, n = ξ(S).

(2) For each base curve γi, let Sγi denote the unique connected com-
plexity one essential subsurface in the complement S \ γi. Then
each base curve γi has a corresponding transversal curve ti, trans-
versely intersecting γi, such that ti intersects γi once if Sγi is
topologically S1,1 and twice if Sγi is topologically S0,4.

A complete marking µ is said to be clean if, in addition, each transverse
curve ti is disjoint from all other base curves γj . Two complete markings
µ and µ′ are compatible if they have the same base curves and, moreover,
for all i, the distance in the annular complex dC(γi)(ti, t

′
i) is minimal over

all choices of t′i. See [6] for technical details regarding the distance in
annular complex. For our purposes, it suffices to use the fact that traveling
in the annular complex is accomplished by taking an arc in a regular
neighborhood of the annulus and Dehn twisting it about the core curve
of the annulus. In [6], it is shown that there is a bound, depending only
on the topological type of S, on the number of clean complete markings
which are compatible with any given complete marking.

Let µ denote a clean complete marking with curve pair data (γi, ti);
then we define an elementary move to be one of the following two opera-
tions applied to the marking µ:

(1) Twist: For some i, we replace (γi, ti) with (γi, t
′
i) where t′i is the

result of one full or one half twist (when possible) of ti around γi.
(2) Flip: For some i, we interchange the base and transversal curves.

After a flip move, the resulting complete marking may no longer
be clean, in which case, as part of the flip move, we then replace
the non-clean complete marking with a compatible clean complete
marking. Since there is a uniform bound on the number of clean
complete markings which are compatible with any given complete
marking, a flip move is coarsely well defined.

The marking complex, M(S), is defined to be the graph formed by
taking clean complete markings of S to be vertices and connecting two
vertices by an edge if they differ by an elementary move.

In [6], a 2-transitive family of quasi-geodesics in M(S), called resolu-
tions of hierarchies, is developed. In broad strokes, hierarchies are defined
inductively as a union of geodesics of multicurves in the curve complexes of
essential subsurfaces or annuli, while resolutions of hierarchies are quasi-
geodesics in the marking complex associated to a hierarchy. By abuse of
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notation, throughout this paper, we will refer to resolutions of hierarchies
as hierarchies. The construction of hierarchies is technical, although, for
our purposes, the following theorem recording some of their properties
suffices.

Theorem 2.5.1 ([6, §4, p. 933]). For S = Sg,n and for all µ, ν ∈M(S),
there exists a hierarchy path ρ = ρ(µ, ν) : [0, n] → M(S) with ρ(0) = µ
and ρ(n) = ν. Moreover, ρ is a quasi-geodesic with constants depending
only on the topological type of S with the following properties:
[H1]: The hierarchy ρ shadows a C(S) geodesic of multicurves, gS , from

a multicurve a ⊂ base(µ) to a multicurve b ⊂ base(ν), called the
main geodesic of the hierarchy. That is, there is a monotonic map
φ : ρ→ gS such that for all i, φ(ρ(i)) ⊂ base(ρ(i)).

[H2]: There is a constant M1 such that if an essential subsurface or an
annulus Y ⊂ S satisfies dC(Y )(µ, ν) > M1, then there is a maximal
connected interval IY = [tY,1, tY,2] and a geodesic of multicurves,
gY , in C(Y ) from a submulticurve in base(ρ(tY,1)) to a submul-
ticurve in base(ρ(tY,2)) such that for all tY,1 ≤ t ≤ tY,2, ∂Y is
a submulticurve in base(ρ(t)) and ρ|IY shadows the geodesic gY .
Such a subsurface Y is called a component domain of ρ. By con-
vention, the entire surface S is always considered a component
domain.

The next theorem contains a quasi-distance formula for M(S) which
serves as both the motivation for, as well as an important ingredient in,
proving Theorem 1.0.1.

Theorem 2.5.2 ([6, Theorem 6.12]). For S = Sg,n, there is constant C0

such that for all c ≥ C0, there exist constants K(c) and L(c) such that
for all α, β ∈M(S), we have the quasi-isometry∑

Y⊆S

{dC(Y )(α, β)}c ≈K,L dM(S)(α, β),

where the sums are over all connected essential subsurfaces Y or annuli.

Remark 2.5.3. Note that holes for the marking complex are precisely
all essential subsurfaces Y or annuli. Hence, the sums in Theorem 2.5.2
are sums over all holes.

2.6. Farey graph.

The Farey graph is a classical graph which has vertices corresponding
to elements of Q ∪ {∞ = 1

0} and edges between two rational numbers in
lowest terms p

q and r
s if |ps− qr| = 1. The Farey graph can be drawn as

an ideal triangulation of the unit disk as in Figure 2.
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1/0

0/1

-1/1 1/1

1/2-1/2

2/1-2/1

1/3

2/3

3/2

3/1

FIGURE 2. Farey Graph with some vertices labeled.

A nice feature of the Farey graph is the so-called Farey addition prop-
erty which ensures that if rational numbers p

q and r
s are connected in

the Farey graph, then there is an ideal triangle in the Farey graph with
vertices p

q ,
r
s , and

p+r
q+s . The curve complexes C(S0,4) and C(S1,1) are iso-

morphic to the Farey graph. The isomorphism is given by sending the
meridional curve of the surfaces to 1

0 , the longitudinal curve of the surfaces
to 0

1 , and, more generally, the (p, q) curve to p
q .

3. Proof of Theorem 1.0.1

In subsection 3.1 we will show that Csep(S2,0) has a quasi-distance
formula as in Theorem 1.0.1. Then, in subsection 3.2, using the quasi-
distance formula for Csep(S2,0), we show that the Masur–Schleimer proof
for δ-hyperbolicity of a combinatorial complex found in [7] applies to
Csep(S2,0), thus proving that Csep(S2,0) is δ-hyperbolic.
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3.1. Csep(S2,0) has a quasi-distance formula.

We begin by recalling a lemma from [7] which, in particular, ensures
a quasi-lower bound for a quasi-distance formula for Csep(S2,0).

Lemma 3.1.1 ([7, Theorem 5.10]). For S = Sg,n and any combinatorial
complex G(S), there is a constant C0 such that for all c ≥ C0, there
exists constants K(c) and L(c) such that for all α, β ∈ G(S), we have the
relationship ∑

Y a hole for G(S)
{dC(Y )(α, β)}c . dG(S)(α, β).

In light of Lemma 3.1.1, to prove a quasi-distance formula for Csep(S2,0),
it suffices to obtain a quasi-upper bound on Csep(S2,0) distance in terms
of the sum of subsurface projections to holes. As motivated by [7], our
approach for doing so will be by relating markings to separating curves
and, more generally, by marking paths to paths in the separating curve
complex. In the rest of this subsection, let S = S2,0.

Let µ ∈M(S). Presently, we describe a coarsely well-defined mapping

φ : M(S)→ 2Csep(S).

If base(µ) contains a separating curve γi, then we define φ(µ) to contain
γi. On the other hand, if all three base curves of µ, (γ1, γ2, and γ3), are
nonseparating curves, then for any i, j, k ∈ {1, 2, 3}, i 6= j 6= k 6= i, denote
the essential subsurface Si,j := S \ γi, γj ' S0,4. Note that C(Si,j) is a
Farey graph containing the adjacent curves γk and tk. Let ok be a curve in
Si,j such that γk, tk, and ok form a triangle in C(Si,j). Note that ok is not
uniquely determined by this condition; in fact, there are exactly two pos-
sibilities for ok, which we denote o±k . Note that dC(Si,j)(o

+
k , o
−
k ) = 2. Then,

in this case (assuming that none of the base curves of µ are separating
curves), define φ(µ) to contain all the curves in the set {tio±i , tj , o

±
j , tk, o

±
k }

which are separating curves of S. The following lemma ensures that the
mapping φ always has non-trivial image.

Lemma 3.1.2. With the notation from above, assume base(µ)∩Csep(S) =
∅ and let γk, tk, ok form a triangle in the Farey graph C(Si,j). Then one
and only one of the curves γk, tk, or ok is separating curves of S.

Proof. The subsurface Si,j has four boundary components which glue up
in pairs inside the ambient surface S. Any curve α ∈ C(Si,j) gives rise to
a partition of the four boundary components of Si,j into pairs given by
pairing boundary components in the same connected component of Si,j\α.
In total, there are three different ways to partition the four boundary
components of Si,j into pairs. Precisely one of the three partitions has
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the property that any curve that gives rise to the given partition is a
separating curve. The partition corresponding to a (p, q)-curve on Si,j is
entirely determined by p mod 2

q mod 2
, with 0

0 = 1
1 . Using the Farey addition

property, it follows that each triangle in the Farey graph has exactly one
representative from each equivalence class. The lemma follows. �

The following theorem ensures that the mapping φ : M(S)→ Csep(S)
is coarsely well defined.

Theorem 3.1.3. Using the notation from Lemma 3.1.2, let ti and tj be
transversals which are separating curves. Then ti and tj are connected in
the separating curve complex Csep(S). Similarly, if ti and oj or oi and oj
are separating curves, the same result holds.

Proof. We will prove the first case; the similar statement follows from
the same proof. Specifically, we will show that the separating curves ti
and tj intersect four times. Up to action of MCG(S), there is only one
picture for a marking µ which does not contain a separating base curve, as
presented in Figure 3. Without loss of generality, we can assume ti = t1
and tj = t2. Notice that in the subsurface S2,3, as in Figure 3, the
base curve γ1 corresponds to the meridional curve 1

0 and, similarly, in
the subsurface S1,3, the base curve γ2 also corresponds to the meridional
curve 1

0 . Since t1 is connected to γ1 in the Farey graph C(S2,3), it follows
that t1 ∈ C(S2,3) is a curve of the form n

1 for some integer n. Similarly,
t2 ∈ C(S1,3) is a curve of the form m

1 for some integerm. As in the example
of Figure 3, it is easy to draw representatives of the two curves t1 and t2
which intersect four times. �

γ1 γ2
γ3

t1 t2

FIGURE 3. A marking µ on S = S2,0 with no separating curves.
Notice that dCsep(S)(t1, t2) = 1.
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The following lemma says that our coarsely well-defined mapping φ
which associates a separating curve to a clean complete marking is natural
with respect to elementary moves in the marking complex.

Lemma 3.1.4. If dM(S)(µ, ν) ≤ 1, then φ(µ) ∩ φ(ν) 6= ∅.

Proof. First, assume µ and ν differ by a twist move applied to the pair
(γi, ti). If µ has a separating base curve, then so does ν, as twists do not
affect base curves. Then, by definition, this separating base curve is in
the intersection φ(µ) ∩ φ(ν). On the other hand, if µ has no separating
base curves, then by Lemma 3.1.2, either tj or oj , for i 6= j, is a separating
curve. In either case, this separating curve is in the intersection φ(µ) ∩
φ(ν), and we are also done.

Next, assume µ and ν differ by a flip move applied to the pair (γi, ti).
Recall that after the flip move is performed, one must pass to a compatible
clean marking. Specifically, if µ = {(γi, ti), (γj , tj), (γk, tk)}, then ν =
{(ti, γi), (γj , t′j), (γk, t′k)}, where the transversals t′j and t′k are obtained
by passing to a compatible clean marking if necessary. If γi, γj , or γk is a
separating base curve, we are done. Finally, if none of the base curves of
µ is a separating curve, then we are also done as, again by Claim 3.1.2,
either tj or oj is a separating curve. In either case, this separating curve
is in the intersection φ(µ) ∩ φ(ν). �

Considering our coarsely well-defined mapping φ : M(S) → Csep(S)
in conjunction with Lemma 3.1.4, we have the following procedure for
finding a path between any two separating curves. Given α, β ∈ Csep(S),
complete the separating curves into clean complete markings µ and ν such
that α ∈ base(µ) and β ∈ base(ν). Then construct a hierarchy path ρ in
M(S) between µ and ν. Applying the mapping φ to our hierarchy path ρ
yields a path of separating curves in Csep(S) between the separating curves
α and β. By construction, the length of the obtained path in Csep(S)
between the separating curves α and β has length quasi-bounded above
by the length of the marking path ρ. In fact, in the following corollary,
we will use this procedure to obtain a quasi-upper bound on Csep(S2,0)
distance in terms of the sum of subsurface projection to holes. Note that
together with Lemma 3.1.1, Corollary 3.1.5 gives a quasi-distance formula
for Csep(S), thus completing the proof of Theorem 1.0.1. Recall that the
set of holes for Csep(S) is precisely the set of all nonseparating essential
subsurfaces or, equivalently, all essential subsurfaces whose boundary does
not contain a separating curve.
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Corollary 3.1.5. For S = S2,0, there is a constant K0 such that for
all k ≥ K0, there exists quasi-isometry constants such that for all α, β ∈
Csep(S),

dCsep(S)(α, β) .
∑

Y a hole for Csep(S)
{dC(Y )(α, β)}k.

Proof. As noted, we have a quasi-upper bound on dCsep(S)(α, β) given by
the length of a hierarchy path ρ : [0, n]→M(S) such that α ∈ base(ρ(0))
and β ∈ base(ρ(n)). In other words, by theorems 2.5.1 and 2.5.2, we
already have a quasi-upper bound of the form

dCsep(S)(α, β) .
∑

ξ(Y )≥1, or Y an annulus
{dC(Y )(α, β)}k.

Hence, it suffices to show that for all component domains Y in the above
sum which are not holes of Csep(S), there is a uniform bound on
diamCsep(S)(φ(IY )), where IY = [tY,1, ..., tY,m] is as in property [H2] of
Theorem 2.5.1. Since holes for Csep(S) consist of all nonseparating essen-
tial subsurfaces, we can assume Y is either an annulus or a separating
essential subsurface. Furthermore, since φ is coarsely well defined, it
suffices to show that for any such Y , the intersection

⋂m
j=1 φ(ρ(tY,j)) is

nonempty.
First, consider the case of Y an annulus. In this case, the subpath

of ρ in the marking complex corresponding to IY consists of a sequence
of clean complete markings ρ(tY,1), ..., ρ(tY,m), such that any adjacent
markings ρ(tY,j), ρ(tY,j+1) differ by a twist move along a fixed base curve
γi (which is the core of the annulus Y ). Then, exactly as in the first
paragraph of the proof of Lemma 3.1.4, it follows that

⋂m
j=1 φ(ρ(tY,j)) is

nonempty, thus completing the proof for Y an annulus.
On the other hand, if Y is a separating essential subsurface or, equiva-

lently, ∂Y contains a separating curve α ∈ Csep(S), then by property [H2]
of Theorem 2.5.1, the separating curve α is contained as a base curve in all
markings ρ(tY,j) for all j ∈ {1, ...,m}. In particular, α ∈

⋂m
j=1 φ(ρ(tY,j)).

This completes the proof. �

3.2. Csep(S2,0) is δ-hyperbolic.

In [7, §13], sufficient axioms are established for implying that a com-
binatorial complex admits a quasi-distance formula and, furthermore, is
δ-hyperbolic. The first axiom is that no two holes for the combinatorial
complex are disjoint. This is easily verified for Csep(S2,0). The rest of
the axioms are related to the existence of an appropriate marking path
{µi}Ni=0 ⊂ M(S) and a corresponding well-suited combinatorial path
{γi}Ki=0 ⊂ G(S). In particular, there is a strictly increasing reindexing
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function r : [J,K] → [0, N ] with r(J) = 0 and r(K) = N. In the event
that one uses a hierarchy as a marking path, the rest of the axioms can
be simplified as follows:

(1) (Combinatorial) There is a constant C1 such that for all i,

dC(Y )(γi, µr(i)) < C1

for every hole Y and, moreover, dG(S)(γi, γi+1) < C1.
(2) (Replacement) There is a constant C2 such that

[R1] if Y is a hole and r(i) ∈ IY , then there is a vertex γ′ ∈ G(S)
with γ′ ⊂ Y and dG(S)(γ, γ′) < C2;

[R2] if Y is a non-hole and r(i) ∈ IY , then there is a vertex γ′ ∈
G(S) with γ′ ⊂ Y or γ′ ⊂ S \ Y and dG(S)(γ, γ′) < C2.

(3) (Straight) There exist constants such that if for any subinterval
[p, q] ⊂ [0,K] with the property that dC(Y )(µr(p), µr(q)) is uni-
formly bounded for all non-holes, then dG(S)(γp, γq) . dC(S)(γp, γq).

Presently, we will show that in the case of the separating curve com-
plex Csep(S2,0), all of the above axioms, with the exception of [R2], hold.
Let ρ = {µi}ni=0 be a hierarchy path between two clean complete mark-
ings, each containing a separating base curve. Then, as in the proof of
Corollary 3.1.5, define the combinatorial path {γi}Ki=0 ⊂ Csep(S2,0) using
the coarsely well-defined map φ : M(S2,0) → Csep(S2,0) applied to the
hierarchy ρ. Let the reindexing function r be defined by

r(i) = max[0,N ]{j|γi ∈ φ(µj)}.

Given this setting, the first clause of the combinatorial axiom is imme-
diate from the definition of φ, while the “moreover” clause follows from
Lemma 3.1.4 and the fact that φ is coarsely well defined. Similarly, the
straight axiom follows from the properties of hierarchy paths of Theorem
2.5.1. Replacement axiom [R1] also holds, for if Y is a hole, then ∂Y con-
tains at most two nonseparating curves. Then, for all markings µ ∈ IY ,
base(µ) contains the at most two nonseparating curves ∂Y. Let γi be a
base curve of µ not in ∂Y. Then, by Lemma 3.1.2, one of γi, ti, or oi,
is a separating curve properly contained in Y. Lemma 3.1.2 ensures that
exactly one of the three curves γi, ti, or oi is a separating curve. On the
other hand, [R2] fails because if Y is an essential subsurface which is a
nonhole, then perforce by topological considerations, ∂Y ∈ Csep(S2,0). In
this case, there cannot exist any separating curve properly contained in
either Y or S2,0 \ Y.

Nonetheless, while the Masur–Schleimer axioms fail due to the failure of
[R2], Masur and Schleimer’s proof that a combinatorial complex satisfying
the Masur-Schleimer axioms is δ-hyperbolic carries through in the case of
Csep(S2,0). In §14 of [7], Masur and Schleimer prove that a combinatorial
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complex satisfying the Masur–Schleimer axioms satisfies a quasi-distance
formula. Then, in §20 of [7], they go on to prove that, in addition, a
combinatorial complex satisfying the Masur–Schleimer axioms is also δ-
hyperbolic. To be sure, in §20, in the course of proving δ-hyperbolicity,
the replacement axiom is not, in fact, ever directly needed. Instead, the
replacement axiom is only used in §14 to prove the existence of a quasi-
distance formula, and then this formula, in turn, is used in §20, along with
other axioms, to prove δ-hyperbolicity. Consequently, since, in this paper,
we have obtained a direct proof of the existence of a quasi-distance formula
for Csep(S2,0), it follows from the argument in §20 of [7] that Csep(S2,0) is
δ-hyperbolic.

3.3. A quasi-distance formula for Csep(S) in general?

Considering the arguments in section 3.1, naïve consideration sug-
gests appropriate modifications may provide a proof of a quasi-distance
formula for Csep(S) in general. However, this is certainly not immediate.
Specifically, an explicit construction in [9] implies that, for high enough
genus, there exist clean complete markings of closed surfaces which are
arbitrarily far (with respect to elementary moves) from any clean com-
plete marking containing a separating base or transversal curve. This is
in stark contrast to the situation in Csep(S2,0), for which we make strong
use of the fact that any clean complete marking is distance at most one
from a clean complete marking containing a separating base or transversal
curve.

Acknowledgments. I want to express my gratitude to my advisors
Jason Behrstock and Walter Neumann for their extremely helpful advice
and insights throughout my research. I would also like to acknowledge
Saul Schleimer for useful conversations relevant to this paper, as well as
the referee for many useful corrections and suggestions.

References

[1] Jason A. Behrstock, Asymptotic geometry of the mapping class group and Teich-
múller space, Geom. Topol. 10 (2006), 1523–1578.

[2] Jeffrey Brock and Howard Masur, Coarse and synthetic Weil-Petersson geometry:
Quasi-flats, geodesics and relative hyperbolicity, Geom. Topol. 12 (2008), no. 4,
2453–2495.

[3] Benson Farb and Dan Margalit, A Primer on Mapping Class Groups. Princeton
Mathematical Series, 49. Princeton, NJ: Princeton University Press, 2012.

[4] Jiming Ma, Hyperbolicity of the genus two separating curve complex, Geom. Ded-
icata 152 (2011), 147–151.



176 H. SULTAN

[5] Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves I:
Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149.

[6] , Geometry of the complex of curves II: Hierarchical structure, Geom.
Funct. Anal. 10 (2000), no. 4, 902–974.

[7] Howard Masur and Saul Schleimer, The geometry of the disk complex. Available
at arXiv:1010.3174v1 [math.GT].

[8] Saul Schleimer, Notes on the complex of curves. (Caltech, minicourse Jan. 2005
(revised 11/23/2006).)
Available at http://homepages.warwick.ac.uk/∼masgar/Maths/notes.pdf

[9] Harold Sultan, Separating pants decompositions in the pants complex, New York
J. Math. 18 (2012), 79–93.

Department of Mathematics; Columbia University; New York, NY 10027
E-mail address: HSultan@math.columbia.edu




