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WHEN HAUSDORFF CONTINUA HAVE NO GAPS

PAUL BANKSTON

Abstract. An interpretation of betweenness on a set is gap free
if each two distinct points of the set have a third point between
them. In this paper we are interested in gap free betweenness
relations naturally induced by the topology of Hausdorff continua.
In particular, we say c lies between a and b in the K-interpretation
precisely when every subcontinuum that contains both a and b also
contains c. We explore the connection between K-gap freeness and
hereditary unicoherence.

1. Introduction

If [ , , ] is a ternary relation on a set X interpreting a notion of
betweenness, then we say the structure ⟨X, [ , , ]⟩ is gap free if each two
elements of X always have a third element between them. This amounts
to satisfying the universal-existential sentence

Gap Freeness: ∀ ab ∃ x (a ̸= b → ([a, x, b] ∧ x ̸= a ∧ x ̸= b))

in the appropriate first-order language Lt (see, e.g., [5]).
This paper is a continuation of [1], in which road systems are intro-

duced as a means of unifying the majority of known interpretations of
the intuitive notion of betweenness. Briefly, a road system is an ordered
pair ⟨X,R⟩, where X is a nonempty set of points and R is a collection of
nonempty subsets of X—the roads—satisfying (1) every singleton subset
of X is a road and (2) every doubleton subset of X is contained in at
least one road. The road system is additive if the union of two overlap-
ping roads is a road; the system is separative if for any a, b, c ∈ X, with
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b ̸= c, there is a road containing a that also contains exactly one of b and
c. If a, b ∈ X, R(a, b) comprises the roads connecting a and b; i.e., the
family {R ∈ R : a, b ∈ R}. Then the R-interval with bracket points a and
b is [a, b]R :=

∩
R(a, b). We write [a, c, b]R to indicate that point c lies

between a and b; i.e., when c ∈ [a, b]R. The relation [ , , ]R is then said
to be induced by the road system R; a ternary relation induced by a road
system on a set is called an R-relation. So we refer to a road system as
being gap free just in case the same goes for its induced R-relation.

Theorem 2.0.1 in [1] lays down first-order criteria that characterize
when a ternary relation is an R-relation, namely the universal Lt-sentences

Symmetry: ∀ abc ([a, c, b] → [b, c, a]);
Reflexivity: ∀ ab [a, b, b];
Minimality: ∀ ab ([a, b, a] → b = a); and
Strong Transitivity: ∀ abcdx (([a, c, b]∧[a, d, b]∧[c, x, d]) → [a, x, b]).

A ternary relation satisfying the first three of these sentences is called
basic; in interval terms, basic ternary relations are characterized by saying
[a, b] = [b, a], [a, b] ⊇ {a, b}, and [a, a] = {a}. When we add strong
transitivity, we get [c, d] ⊆ [a, b] whenever c, d ∈ [a, b]. (Transitivity is just
strong transitivity with each occurrence of d replaced by a; see [1].) Gap
freeness in basic ternary structures ⟨X, [ , , ]⟩ just says that [a, b] always
properly contains {a, b} when a ̸= b. It is a kind of “density” property;
indeed, when [ , , ] is induced by a total ordering in the classical way,
gap freeness and order density are the same.

Separativity in a road system is easily seen to be equivalent to its
induced R-relation satisfying

Antisymmetry: ∀ abc (([a, c, b] ∧ [a, b, c]) → b = c).

And a road system (see [1, Theorem 4.0.5]) is contained within an additive
road system with the same induced R-relation if and only if its induced
R-relation satisfies

Disjunctivity: ∀ abcx ([a, x, b] → ([a, x, c] ∨ [c, x, b])).

In [1] we discuss three topological interpretations of betweenness, each
induced by an additive road system reflecting an aspect of the topology
of a connected space. Of the three, the most restrictive and extensively
studied is the Q-interpretation, defined by saying [a, c, b]Q holds precisely
when either c ∈ {a, b} or a and b lie in separate quasicomponents of X\{c}.
By replacing “quasicomponents” in this definition with “components,” we
obtain the slightly weaker C-interpretation [ , , ]C . It is not very difficult
to show that the collection C of connected subsets of a connected space
X provides a separative, additive road system inducing [ , , ]C . With a
bit more effort, one can also show that [ , , ]Q is induced by a separative,
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additive road system containing C (see [1, Theorem 6.1.2 and Corollary
6.2.2]).

When the space X is a Hausdorff continuum, Q-gap freeness makes
the space a dendron and is known [7] to be equivalent to the connected
intersection property: the intersection of any two connected subsets is
connected.

Here we continue the study of the K-interpretation of betweenness in
Hausdorff continua, defined by saying [a, c, b]K holds for c ̸∈ {a, b} pre-
cisely when a and b lie in separate continuum components of X \ {c}. As
with the C-interpretation, it is straightforward to show that the collection
K of connected closed subsets (i.e., subcontinua) of X provides an additive
road system inducing [ , , ]K . However, K may not be separative: if X is
the classic sin(1/x)-continuum, a is a point on the “curvy bit,” and b and
c are points on the “straight bit,” then every subcontinuum containing a
and b (a and c, respectively) also contains c (b, respectively). (See [1,
Example 6.3.2].)

So in first-order terms, both the Q- and the C-interpretations of be-
tweenness satisfy the antisymmetry condition, while the K-interpretation
may not.

K-gap freeness in Hausdorff continua is much weaker than C-gap free-
ness, but is still closely related to certain weakened versions of the con-
nected intersection property. One such is hereditary unicoherence, saying
that the intersection of any two subcontinua is connected. In this pa-
per we show that (1) K-gap freeness—along with some related first-order
properties—is strictly weaker than hereditary unicoherence; however, (2)
strong K-gap freeness, a natural refinement of K-gap freeness in the ab-
sence of antisymmetry, is equivalent to the conjunction of hereditary uni-
coherence and hereditary decomposability (also a consequence of Q-gap
freeness [7]). In a later paper [2], we focus on the role of antisymmetry. In
particular, we show that the conjunction of gap freeness and antisymme-
try in the K-interpretation of betweenness is equivalent to saying that all
K-intervals with more than one point are Hausdorff arcs, i.e., Hausdorff
continua with precisely two noncut points.

2. K-Gap Freeness and Hereditary Unicoherence

From here on, we will be considering only continua, i.e., compact con-
nected spaces, that satisfy the Hausdorff separation axiom, and so contin-
uum will be our nickname for Hausdorff continuum. Similarly, a subset of
a topological space will be termed a subcontinuum if its subspace topol-
ogy is that of a continuum. A continuum, or any topological space, is
nondegenerate if it contains more than one point.
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Also, unless otherwise stated, we will regard all betweenness notions
arising from a continuum X as those related to the road system ⟨X,K⟩.
This will allow us to drop the letter K from most prefixes and subscripts.

We begin with a simple interval characterization of hereditary unico-
herence.

Proposition 2.1. A continuum is hereditarily unicoherent if and only if
each of its intervals is connected.

Proof. If M and N are subcontinua of X and M ∩ N is disconnected,
then there are two points a and b in separate components of M ∩N . This
provides a disconnection of [a, b] ⊆ M∩N . Conversely, if X is hereditarily
unicoherent and a, b ∈ X, then K(a, b) is a downwardly directed family
of subcontinua; i.e., the intersection of each two of its members contains
a third. By basic continuum theory (see, e.g., [6]), [a, b] =

∩
K(a, b) is a

subcontinuum. �

In the study of continua there are some important results that go under
the rubric of boundary bumping theorems. The most useful of these for
our purposes is the following.

Lemma 2.2 ([6, Corollary 5.5]). If M is a subcontinuum of continuum
Y and U is a proper open subset of Y that contains M , then there is a
subcontinuum N with M ⊆ N ⊆ U and M ̸= N .

For a direct application of this, we have the following proposition.

Proposition 2.3. Let X be a continuum with a, b ∈ X distinct and [a, b]
connected. Then there exists c ∈ [a, b] with c ̸= a and b ̸∈ [a, c].

Proof. Applying Lemma 2.2, let Y be [a, b], let M be {a}, and let U
be [a, b] \ {b}. Then we have a nondegenerate subcontinuum N of [a, b],
properly containing a and missing b. Pick c ∈ N \ {a}. �

Hereditarily unicoherent continua are clearly gap free, by Proposition
2.1. By Proposition 2.3, however, their K-interpretations satisfy an os-
tensibly more restrictive Lt-sentence, namely

Semi-strong Gap Freeness: ∀ ab ∃ x (a ̸= b → ([a, x, b] ∧ x ̸= a
∧ ¬[a, b, x])).

We remark that the first-order statement of semi-strong gap freeness dif-
fers from that of gap freeness only in the replacement of the subformula
x ̸= b by the more restrictive ¬[a, b, x]. If we now similarly replace the
other inequality, we obtain

Strong Gap Freeness: ∀ ab ∃ x (a ̸= b → ([a, x, b] ∧ ¬[x, a, b] ∧
¬[a, b, x])).
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Of course, in the presence of antisymmetry, these three gap freeness no-
tions collapse into one. And since both the Q- and the C-interpretations
of betweenness are antisymmetric, it is only in the K-interpretation that
there is an issue.

In this section we concentrate on showing that even semi-strong gap
freeness is not enough to ensure hereditary unicoherence in a continuum.
In section 3 we show that the existence of centroids, another consequence
of hereditary unicoherence, is still not enough, and in section 4 we show
that strong gap freeness in a continuum is actually equivalent to the con-
junction of hereditary unicoherence and hereditary decomposability. We
take up a deeper study of antisymmetry for the K-interpretation in [2].

If X is a continuum, recall that a decomposition of X is an ordered
pair ⟨M,N⟩ of proper subcontinua whose union is X. X is (hereditarily)
decomposable if (every nondegenerate subcontinuum of) X has a decom-
position. X is (hereditarily) indecomposable if (every subcontinuum of) X
fails to be decomposable. Hereditary indecomposability is equivalent to
the property that the intersection of two overlapping subcontinua is one or
the other of them; hence, by Proposition 2.1, all intervals in hereditarily
indecomposable continua are subcontinua.

Lemma 2.4. Let ⟨M,N⟩ be a decomposition of continuum X and suppose
H is a subcontinuum of X intersecting both M and N . If C is a component
of H ∩M , then C intersects N .

Proof. Assume otherwise, that C ⊆ H \ N . Since H intersects N , we
know that H \N is a proper open subset of H, and we may use Lemma
2.2 to obtain a new subcontinuum D with C ̸= D, but C ⊆ D ⊆ H \N ⊆
H ∩M . This contradicts the assumption that C is maximally connected
in H ∩M . �

We define a continuum X to be an annulus if it has a decomposition
⟨M,N⟩ such that M ∩ N is a union of two disjoint nondegenerate sub-
continua. An annulus X = M ∪N is crooked if M and N are hereditarily
indecomposable. (For example, glue two pseudo-arcs together appropri-
ately [6].) Clearly, no annulus is unicoherent, let alone hereditarily so. We
show that every crooked annulus is semi-strongly gap free nevertheless.

By way of notation: If Y is a topological space and y ∈ Y , then C(y, Y )
denotes the component of y in Y .

Lemma 2.5. If X is a crooked annulus with defining decomposition
⟨M,N⟩ such that M ∩ N = A ∪ B and H is a subcontinuum that in-
tersects A, then either H ⊆ A or H ⊇ A.

Proof. If either H ⊆ M or H ⊆ N , then the conclusion follows because
both M and N are hereditarily indecomposable. So assume H intersects
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both M \ N and N \M . Then of course H ̸⊆ A, so it remains to show
H ⊇ A.

If C is a component of H ∩ M , then, by Lemma 2.4, C intersects A
or C intersects B. If C also contains points of M \ N , then hereditary
indecomposability for M ensures that C ⊇ A or C ⊇ B. We are done
if there is at least one component, either of H ∩ M or of H ∩ N , that
contains A.

So suppose C ⊇ B and C ∩ A = ∅ for every C that is either a com-
ponent of H ∩M containing points of M \N or a component of H ∩N
containing points of N \ M . Let x ∈ H \ N and y ∈ H \ M . Then
B ⊆ C(x,H ∩M) ∩ C(y,H ∩N); C(x,H ∩M) ∪ C(y,H ∩N) is disjoint
from A; and all other components of either H∩M or H∩N lie in A. Since
H intersects A, ⟨H∩A,C(x,H∩M)∪C(y,H∩N)⟩ forms a disconnection
of H and gives us a contradiction. �

No annulus is hereditarily unicoherent, as mentioned above.

Theorem 2.6. Every crooked annulus is semi-strongly gap free.

Proof. Let X, M , N , A, and B be as in Lemma 2.5. It will suffice to
show

(⋆) For any two distinct points x, y ∈ X, [x, y] contains nondegenerate
subcontinua S and T with x ∈ S and y ∈ T .

Indeed, suppose (⋆) holds. If S ∩ T = ∅, then any z ∈ S \ {x} (z ∈
T \{y}, respectively) witnesses the statements z ̸= x and ¬[x, y, z] (z ̸= y
and ¬[z, x, y], respectively). And if S ∩ T ̸= ∅, then S ∪ T ∈ K(x, y).
Hence, [x, y] = S ∪ T is connected and nondegenerate, so we may apply
Proposition 2.3.

If Y is an arbitrary subcontinuum of X and x, y ∈ Y , we denote by
[x, y]Y the interval in Y with bracket points x and y. Then, of course,
[x, y]Y ⊇ [x, y]X = [x, y]. In the remainder of the proof, x and y are two
distinct points of X, and H is a subcontinuum of X containing both x
and y (in symbols, H ∈ K(x, y)). We have two main cases dictated by
whether or not the two points lie in the same member of the decomposition
⟨M,N⟩.

Case 1: (x ∈ M \ N and y ∈ N \ M): Fix a ∈ A and b ∈ B. Then
[x, a]M ∩ [x, b]M ̸= ∅ and M is hereditarily indecomposable; so each inter-
val is a subcontinuum, and hence one of them is contained in the other.
In particular, [x, a]M ∩ [x, b]M is a nondegenerate subcontinuum of X that
contains x. We show [x, y] ⊇ ([x, a]M∩[x, b]M )∪([y, a]N∩[y, b]N ), thereby
establishing condition (⋆).

Fixing H, let C = C(x,H∩M). Then, by Lemma 2.4, C∩(A∪B) ̸= ∅.
But C is not contained in A ∪ B, A and B are also subcontinua of M ,
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and M is hereditarily indecomposable. Hence, either C ⊇ A or C ⊇ B.
In the first instance, C ⊇ [x, a]M ; in the second, C ⊇ [x, b]M . In either
case, we have H ⊇ C ⊇ [x, a]M ∩ [x, b]M .

By the same token, H ⊇ [y, a]N ∩ [y, b]N ; hence [x, y] ⊇ ([x, a]M ∩
[x, b]M ) ∪ ([y, a]N ∩ [y, b]N ), as desired.

Case 2: (x, y ∈ M): This case has three subcases, dictated by how
[x, y]M intersects A ∪B.

(2.1) ([x, y]M ⊆ M \ N): We show [x, y]M = [x, y], and for this, it
suffices to show that arbitrary H ∈ K(x, y) contains [x, y]M . This
is clearly true if H ⊆ M , so assume H intersects N and let C =
C(x,H ∩ M). Then, by Lemma 2.4, C intersects N ; hence, C
intersects, but is not a subset of, subcontinuum [x, y]M . Thus,
H ⊇ C ⊇ [x, y]M .

(2.2) ([x, y]M intersects A, but not B): If both x and y are in A, then,
by Lemma 2.5, every subcontinuum of X containing x and y must
either be contained in A or contain A. Hence, [x, y] = [x, y]M .

So assume y ∈ M \A; we show H ⊇ [x, y]M . If H ⊆ M , we are
done; so assume H ∩ (N \M) ̸= ∅ and let Cx = C(x,H ∩M) and
Cy = C(y,H ∩M). If both components intersect A, then at least
we have Cy ⊇ A, since y ̸∈ A; hence, Cx∩Cy ̸= ∅ and there is only
one component after all. Since that component contains both x
and y, it must contain [x, y]M . If either component is disjoint from
A, then it must intersect B, by Lemma 2.5. Since [x, y]M ∩B = ∅,
neither Cx nor Cy is contained in B. Thus, we have either Cx ⊇ B
or Cy ⊇ B, so either Cx ⊇ [x, y]M or Cy ⊇ [x, y]M (hereditary
indecomposability of M). Hence, H ⊇ [x, y]M , and therefore
[x, y] = [x, y]M .

(2.3) ([x, y]M intersects both A and B): If x ∈ A and y ∈ B, then
H ⊇ A∪B, by Lemma 2.5; hence, [x, y] ⊇ A∪B. Since A∪B =
M ∩N , we also know [x, y] ⊆ A ∪B. Hence, [x, y] = A ∪B, and
we have (⋆) holding.

If x ∈ A and y ∈ M \ N , then [x, y]M ⊇ B, so pick b ∈ B.
Then b ∈ [x, y]M ; hence, [y, b]M ⊆ [x, y]M . If H ⊆ M , then
H ⊇ [x, y]M ⊇ A ∪ [y, b]M . And if H ∩ (N \ M) ̸= ∅, then
let C = C(y,H ∩ M). If C ⊇ A, then C ⊇ [x, y]M because
x ∈ A. If C ⊇ B, then C ⊇ [y, b]M . In any event, C ⊇ [y, b]M , a
nondegenerate subcontinuum containing y. Since H also contains
A, we have [x, y] ⊇ A ∪ [y, b]M , and therefore (⋆).

Finally, if x, y ∈ M \ N , then [x, y]M ⊇ A ∪ B. Pick a ∈ A
and b ∈ B, with Cx = C(x,H ∩ M) and Cy = C(y,H ∩ M). If
H ⊆ M , then H ⊇ [x, y]M ⊇ [x, a]M ∪ [y, b]M . If H∩(N \M) ̸= ∅,
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then Cx ⊇ A or Cx ⊇ B. In the first instance, Cx ⊇ [x, a]M ; in
the second, Cx ⊇ [x, b]M . Thus, Cx ⊇ [x, a]M ∩ [x, b]M . Like-
wise, Cy ⊇ [y, a]M ∩ [y, b]M , and we infer that [x, y] ⊇ ([x, a]M ∩
[x, b]M ) ∪ ([y, a]M ∩ [y, b]M ). The first of these intersections is
a subcontinuum containing x and the second is a subcontinuum
containing y. Thus, we have (⋆) in this subcase too.

This completes the argument for Case 2, and hence the proof that X
is semi-strongly gap free. �

3. Existence of Centroids and
Hereditary Unicoherence

If ⟨X,R⟩ is a road system, with a, b, c ∈ X, we denote by [abc]R the
intersection [a, b]R∩[a, c]R∩[b, c]R. Elements of [abc]R are the R-centroids
of the ordered triple ⟨a, b, c⟩. The road system is centroidal if all of its
centroid sets are nonempty; i.e., if the following Lt-sentence holds for
⟨X, [ , , ]R⟩.

Centroid Existence: ∀ abc ∃ x ([a, x, b] ∧ [a, x, c] ∧ [b, x, c]).
A continuum X is centroidal (C-centroidal, Q-centroidal, respectively) if
the corresponding road system is centroidal. Then, of course, [abc]Q ⊆
[abc]C ⊆ [abc]K = [abc] always holds where the subscripts have their
obvious meanings.

Proposition 3.1. Let X be a continuum, with a, b ∈ X. If [a, b] is con-
nected, then [abc] ̸= ∅ for any c ∈ X. If X is also hereditarily unicoherent,
then all centroid sets are subcontinua.

Proof. Let A = [a, c] ∩ [a, b] and B = [b, c] ∩ [a, b]. By disjunctivity,
[a, b] = A∪B. A and B are closed nonempty subsets of [a, b], and [a, b] is
connected; so A ∩B ̸= ∅. Any element of A ∩B is a centroid for ⟨a, b, c⟩.

If X is hereditarily unicoherent, then intervals are connected and each
centroid set is nonempty. Being the intersection of three subcontinua,
that centroid set is therefore a subcontinuum. �

It is natural to ask whether being centroidal is enough to imply hered-
itary unicoherence in a continuum, and the answer is still no.

Theorem 3.2. Every crooked annulus is centroidal.

Proof. Let X = M ∪N , where M and N are hereditarily indecomposable
subcontinua and M∩N is the union of disjoint nondegenerate subcontinua
A and B. As in the proof of Theorem 2.6, we use superscripts to indicate
intervals relative to a subcontinuum.

Let x, y, z ∈ X. We need to show that the centroid set [xyz] is never
empty, and, by Proposition 3.1, we may infer [xyz] ̸= ∅ whenever at
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least one of the three contributing intervals is connected. We are done,
therefore, once we show [xyz] to be nonempty under the assumption that
all three of [x, y], [x, z], and [y, z] are disconnected.

Suppose x, y ∈ M and [x, y] is disconnected. Then, by the Case 2
argument in the proof of Theorem 2.6, it follows that [x, y]M intersects
both A and B. If x ∈ A and y ∈ B, then [x, y] = A∪B, and if x ∈ A and
y ∈ M \N , then [y, b]M ⊇ B for b ∈ B. Hence, [x, y] ⊇ A∪[y, b]M ⊇ A∪B
here too.

If both x and y are in M \N , then we have [x, y] ⊇ ([x, a]M ∩ [x, b]M )∪
([y, a]M ∩ [y, b]M ), where a ∈ A and b ∈ B. Using distributivity, this
rewrites to ([x, a]M ∪ [y, a]M ) ∩ ([x, a]M ∪ [y, b]M ) ∩ ([x, b]M ∪ [y, a]M ) ∩
([x, b]M ∪ [y, b]M ). Since a, b ∈ [x, y]M , the first and last of the four unions
in the expression both equal [x, y]M , which contains both the other unions.
Thus, we have [x, y] ⊇ ([x, a]M ∪[y, b]M )∩([x, b]M ∪[y, a]M ). Since neither
x nor y is in A∪B, each of these unions contains A∪B. Hence, we conclude
that if both x and y are in either M or N and [x, y] is disconnected, then
[x, y] ⊇ A ∪B.

Now suppose x, y, z ∈ X are such that all intervals contributing to the
centroid are disconnected. We may assume that x, y ∈ M . If z ∈ M also,
then all three intervals contain A∪B and we are done. So we may further
assume z ∈ N \ M . We show that [x, z] ∩ [y, z] contains either A or B,
and this will prove the same for [xyz]. Assume first that both x and y are
in M \N , and pick a ∈ A and b ∈ B. Then the Case 1 argument from the
proof of Theorem 2.6 shows that [x, z] ⊇ ([x, a]M ∩ [x, b]M ) ∪ ([z, a]N ∩
[z, b]N ) and [y, z] ⊇ ([y, a]M ∩ [y, b]M ) ∪ ([z, a]N ∩ [z, b]N ).

Now since N is a hereditarily indecomposable continuum, we know
[z, a]N ∩ [z, b]N equals [z, a]N ⊇ A or it equals [z, b]N ⊇ B (because
z ̸∈ A ∪ B). Thus, [x, z] ∩ [y, z] contains A or B. The case where, say,
x ∈ M \ N and y ∈ A ∪ B, is handled similarly, but is even easier, and
the proof is complete. �

4. Strong Gap Freeness and Hereditary Unicoherence

In light of the results of sections 2 and 3, the following is a natural,
but as yet unanswered, question.

Question 4.1. Is there an Lt-sentence φ such that for any continuum X,
φ is true for ⟨X, [ , , ]⟩ if and only if X is hereditarily unicoherent?

Our objective in this section is to answer a variation on this question
by proving that strong gap freeness in a continuum is equivalent to that
continuum’s being both hereditarily unicoherent and hereditarily decom-
posable. And a major step in that direction lies in showing that strong gap
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freeness is equivalent to the property that every nondegenerate interval is
a decomposable continuum.

If [a, b] is an interval in continuum X, we call c ∈ [a, b] a decomposition
point of [a, b] if it happens that b ̸∈ [a, c] and a ̸∈ [c, b]. (So strong gap
freeness is the property that every nondegenerate interval has a decom-
position point.)

Proposition 4.2. Let X be a continuum. Then any interval in X that
is a decomposable subcontinuum must have a decomposition point. If X
is hereditarily unicoherent, then every interval with a decomposition point
must be a decomposable subcontinuum.

Proof. Assume [a, b] is a decomposable subcontinuum of X. Then it has
a decomposition ⟨M,N⟩ into proper subcontinua. It cannot be the case
that both a and b are contained in the same member of the decomposition;
if it were, [a, b] would be a proper subset of itself. So assume a ∈ M \N
and b ∈ N \M . Since [a, b] is connected, there is some c ∈ M ∩N . Since
a and c belong to M and b ̸∈ M , we have b ̸∈ [a, c]. Similarly, we infer
that a ̸∈ [c, b]; hence, c is a decomposition point for [a, b].

For the second half, suppose X is hereditarily unicoherent and c is a
decomposition point for [a, b]. Then, by disjunctivity in additive road
systems, [a, b] = [a, c] ∪ [c, b]. Since all intervals are continua, and both
[a, c] and [c, b] are proper subsets of [a, b], we conclude that [a, b] is a
decomposable subcontinuum of X. �

The following is a key step in the pursuit of our characterization theo-
rem.

Lemma 4.3. Let X be a continuum with A and B two disjoint nonempty
closed subsets. Then there is an interval [a0, b0], with a0 ∈ A and b0 ∈ B,
such that if [a, b] ⊆ [a0, b0] where a ∈ A and b ∈ B, then [a, b] = [a0, b0].

Proof. Let S = {[a, b] : a ∈ A, b ∈ B} be partially ordered by reverse
inclusion. What we are looking for is a maximal element relative to this
ordering, and, by Zorn’s Lemma, all we need show is that every nonempty
chain in S has an upper bound in S. Indeed, suppose L ⊆ S is a nonempty
chain. Then both {A} ∪ L and {B} ∪ L are nonempty families of closed
subsets of X, and both satisfy the finite intersection property. So we may
find a∗ ∈ A ∩

∩
L and b∗ ∈ B ∩

∩
L. Then [a∗, b∗] ∈ S. Moreover, if

[a, b] ∈ L, then we have {a∗, b∗} ⊆ [a, b]; hence, [a∗, b∗] ⊆ [a, b]. This shows
that [a∗, b∗] is our desired upper bound and completes the proof. �
Theorem 4.4. Let X be a continuum. The following are equivalent:

(i) Every nondegenerate interval in X is a decomposable continuum.
(ii) X is strongly gap free.
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Proof. Let [a, b] be a nondegenerate interval in X and suppose it is a
decomposable continuum. Then [a, b] has a decomposition point, by the
first half of Proposition 4.2.

For the converse, suppose X is strongly gap free. We first show X
is hereditarily unicoherent. Indeed, suppose not. Then there are sub-
continua M and N such that M ∩ N = A ∪ B, where A and B are
nonempty disjoint closed sets. Applying Lemma 4.3, let [a0, b0] be a max-
imal element of S (under reverse inclusion). Since a0 ̸= b0, there is a
decomposition point c ∈ [a0, b0] ⊆ M ∩ N , so either c ∈ A or c ∈ B. In
the first case, we have [c, b0] = [a0, b0]; in the second, [a0, c] = [a0, b0].
This is a contradiction.

Since X is hereditarily unicoherent, the second half of Proposition 4.2
shows that each nondegenerate interval is a decomposable continuum. �

Recall that a continuum Y is irreducible about a subset A if no proper
subcontinuum of Y contains A. Thus, in a hereditarily unicoherent con-
tinuum, each interval is (the unique subcontinuum that is) irreducible
about its set of bracket points. Y is irreducible if it is irreducible about a
two-point subset, i.e., if it equals one of its own nondegenerate intervals.

By [6, Corollary 11.20], a metrizable nondegenerate continuum is inde-
composable if and only if it contains three points such that it is irreducible
about any two of them. In the language of centroids, this is equivalent to
saying that [abc] = X for some a, b, c ∈ X. Metrizability is an important
assumption because, by results in [4], there are nonmetrizable indecom-
posable continua that are not irreducible at all. However, by results in
[3], every nondegenerate indecomposable continuum contains an indecom-
posable subcontinuum that is irreducible, and this is all we need for the
following.

Corollary 4.5. A continuum is strongly gap free if and only if it is hered-
itarily unicoherent and hereditarily decomposable.

Proof. If X is hereditarily unicoherent and hereditarily decomposable,
then every nondegenerate interval has a decomposition point, by Propo-
sition 4.2. Thus, X is strongly gap free.

Conversely, if X is strongly gap free, then, by Theorem 4.4, each of its
nondegenerate intervals is a decomposable continuum. Hence, the contin-
uum is hereditarily unicoherent. If it were not hereditarily decomposable,
it would have a nondegenerate indecomposable subcontinuum M which,
by [3], could be taken to be irreducible about, say, the points a and b.
But then [a, b] ⊆ M is a subcontinuum, and that means [a, b] = M . But
[a, b] is decomposable, a contradiction. �
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