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ABsTRACT. A topological group G = (G, T) has the small sub-
group generating property (briefly, SSGP property, or is an SSGP
group) if, for each neighborhood U of 1¢, there is a family H =
{H; : i € I} C P(U) of subgroups of G such that (;c; H:) is
dense in G. It is shown by explicit construction that there exist
group topologies with this property for the group Z«.

1. INTRODUCTION

This paper resolves an issue which I had been unable to settle in my
doctoral dissertation [2] written at Wesleyan University under the guid-
ance of W. W. Comfort. That dissertation gives the following definition.

Definition 1.1. A topological group G = (G, T) has the small subgroup
generating property (briefly: has the SSGP property, or is an SSGP group)
if for each neighborhood U of 1¢ there is a family H = {H; : i € I} C
P(U) of subgroups of G such that ({J,;.; H;) is dense in G.

My study of SSGP groups was motivated by the easily demonstrated
fact that every SSGP group is a minimally almost periodic group (as
defined in [4]). In a forthcoming joint paper, some of the themes developed
in [2] are elaborated on and pursued more deeply.
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2. MAIN RESULTS

We construct a Hausdorff SSGP topology for the product group Z*
by defining an appropriate 2-parameter set of basic neighborhoods of 0,
U, (). This will be facilitated by a sequence of subgroups and quotient
groups. Let p1,p2,ps,... be the primes 2,3, 5, ..., respectively. We define
Hy :=27% and H,, 11 := pp41H, where, by nH, wemean {x € H : x = ny
for some y € H}. For each of these subgroups, we let G,, := Z“/H,, be
the corresponding quotient group. This leads to the following commuta-
tive diagram with exact rows.

Pn Tn
0 — Hpq 22 70 0 Gy ——— 0

[

0O—— H, —2yzv ™y G, —>0

Note that ¢,,41 is an injection and ,,11 is a surjection. We fix € and we
define U, (g) = m,; [V, ()] where V,,(¢) C G, will be defined inductively,
starting with V3 () C G. Since Gy = Z¢ /(2Z*) is a vector space over Za,
we can select a basis of c-many vectors, which we reorganize into c sets of
w basis vectors, {uglk) :1<i<e¢l<k<w} Then every z € Gy can be
expressed uniquely as a linear combination of a finite number of these basis
vectors. Now we assign a norm N (z) to each z € G by first assigning
a value N;(z) to the set of components {z; : 1 <1i < ¢;1 <k <w} for
each fixed 7 as follows:

(1) We choose a bijection 1 : N — D where D is the set of rational
numbers between 0 and 1.

(2) With each ¢ and k&, we associate the function ¢;  : I — Zo from
the unit interval to Zy where ¢; ,(r) = 0 for 0 < r < n(k) and
pik(r) =z for n(k) <r < 1.

(3) We let f; = Z,iw:l ¢i.r where M; is the maximum value of k for
which z; j is non-zero and the functions are summed pointwise.

(4) We define N;(z) to be the Lebesgue measure of the support of f;.

One easily checks that (1), (2), and (3) together establish an isomorphism
between (7 and step functions on the disjoint union of c-many unit in-
tervals where the steps are between rational points within an interval,
where each function has a finite number of steps in an interval, and where
the total support of each function has finite Lebesgue measure, which we
label N (z), the sum of the finite number of N;(z) which are non-zero.
Finally, Vi () := {x € G; : NV (2) < &}.
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For the induction step, suppose that we have already defined N (”)(:c)
for each = € G,, giving us V,(¢) := {z € G,, : N (2) < ¢}. Since a tor-
sion group is the direct sum of its p-groups with the summands uniquely
determined, G,, 41 can be expressed uniquely as G,,+1 = A @ B where A
is a group all of whose non-zero elements have order p,, 1 and where B is

isomorphic to G,. Again, the group A is a vector space over Zj, ,, and
we can choose a basis {uﬁ:—l) 11 <i< ¢l <k<uw}, as before. Now we

repeat steps (1) through (4), above, for the group A in place of G1, obtain-
ing a measure NE‘”H)(J:A) for x4 € A. For the measure Nt (z) of an
element = € G,y 1, we define N1 (z) = NXH'I)(xA) + N (4,41 ()
where © = x4 + zp with 4 € A and xp € B. This gives us V,,41(¢) :=
{z € Gpyr : N (2) < e}

It follows that the U, (¢)’s generate a Hausdorff group topology on Z*
once we establish the following facts.

1)
(2) .
(3) Un(e/2) + Un(g/2) C Uy(e).
(4) If z € Uy, (e), then nx € U,(¢) for n € Z.
(5) () Unle) = {0}
n >0

The first fact is an immediate consequence of the definition of V;,(¢) and
the preservation of subset containment under an inverse map. For the sec-
ond fact, suppose & € Uy, 41 (). By definition, we have N+ (7, ;1 (x)) <
e. Then clearly, N (1,41 0m,11(x)) < €, as well, because the p,, 1 com-
ponent of m,11(z) can only add to the measure. But ¥,,11 0 741 = mp,
so x € Uy,(¢). Fact (4) follows from the obvious fact that N (mz) <
N®(z) for v € G,, and m € Z. This guarantees that the neighborhoods
U, (g) are symmetric about 0.

For (3), suppose that @,y € G,,. The measures N(™ (z) and N (y)
are each given by the sum of the Lebesgue measures of the support of
functions on a finite number of unit intervals. N (z 4 y) cannot exceed
the sum of the two separate measures because anywhere that a function
representing x overlaps with a function representing y, the sum of the two
functions cannot have any greater support than the union of the support
of the two functions separately. It follows that if N (z) and N (y) are
each less than £/2, then N (z 4 9) < e.

To demonstrate (5) and the Hausdorff property, let z € Z* and let x;
represent the i*” coordinate of  in the canonical representation. Suppose
that x,, is the smallest non-zero coordinate and that p,, is the smallest
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prime which does not divide 2,,,. Then N()(r, (x)) will have a non-
zero contribution, €¢, from the py,,-component of m,,(x). We can conclude
that « ¢ U,(g) for n > ng and ¢ < .

Finally, we need to show that the topology defined by the neighbor-
hoods U, (¢) is an SSGP topology. We already know from (4) that every
element in U, (¢) is a member of an entire subgroup contained in U, (¢).
It remains only to show that the subgroup generated by U,(¢) is dense
in Z¥. In fact, we will show than any x € Z“ is a finite combination of
elements from U, (). We know that m,(x) is a linear combination of a
finite number of basis elements for G, from a list of length n x ¢ X w. This
corresponds to a function which has support on a finite number of unit
intervals. The range within each interval is one of the groups Z,, , with
m < n. Let fy,;:1 — Zp, be a component of the function on one such
interval. It should be clear that f,, ; can be decomposed into a finite sum
of step functions, each of which has support only on one small interval,
of measure less than e, where f,,; has a constant value. Let k, k' < w
be such that 0 < n(k’) —n(k) < € and such that f,,;(r) = z € Z,,, for
n(k) < r < n(k’). Then the function on I which agrees with f,,; on
the interval [n(k), n(k’) ) and is zero elsewhere in I corresponds to an
element g € V,,(¢) C G,, whose only non-zero components are given by
Gm.ik =z and g ik = —2. Since m,(z) is a finite sum of such g € V,,(¢)
and 7, is a quotient map, it follows that for each such g there is a mem-
ber of the coset m,, *(g) C Uy, (g) such that their sum is z, and we are done.
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