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mathematician and educator,

on the occasion of his 80th birthday.

Abstract. A topological group G = (G, T ) has the small sub-
group generating property (briefly, SSGP property, or is an SSGP
group) if, for each neighborhood U of 1G, there is a family H =
{Hi : i ∈ I} ⊆ P(U) of subgroups of G such that ⟨

∪
i∈I Hi⟩ is

dense in G. It is shown by explicit construction that there exist
group topologies with this property for the group Zω .

1. Introduction

This paper resolves an issue which I had been unable to settle in my
doctoral dissertation [2] written at Wesleyan University under the guid-
ance of W. W. Comfort. That dissertation gives the following definition.

Definition 1.1. A topological group G = (G, T ) has the small subgroup
generating property (briefly: has the SSGP property, or is an SSGP group)
if for each neighborhood U of 1G there is a family H = {Hi : i ∈ I} ⊆
P(U) of subgroups of G such that ⟨

∪
i∈I Hi⟩ is dense in G.

My study of SSGP groups was motivated by the easily demonstrated
fact that every SSGP group is a minimally almost periodic group (as
defined in [4]). In a forthcoming joint paper, some of the themes developed
in [2] are elaborated on and pursued more deeply.
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2. Main Results

We construct a Hausdorff SSGP topology for the product group Zω
by defining an appropriate 2-parameter set of basic neighborhoods of 0,
Un(ε). This will be facilitated by a sequence of subgroups and quotient
groups. Let p1, p2, p3, . . . be the primes 2, 3, 5, . . . , respectively. We define
H1 := 2Zω andHn+1 := pn+1Hn where, by nH, we mean {x ∈ H : x = ny
for some y ∈ H}. For each of these subgroups, we let Gn := Zω/Hn be
the corresponding quotient group. This leads to the following commuta-
tive diagram with exact rows.

0 −−−−→ Hn+1
ρn+1−−−−→ Zω πn+1−−−−→ Gn+1 −−−−→ 0yϕn+1

∥∥∥ yψn+1

0 −−−−→ Hn
ρn−−−−→ Zω πn−−−−→ Gn −−−−→ 0

Note that ϕn+1 is an injection and ψn+1 is a surjection. We fix ε and we
define Un(ε) = π−1

n [Vn(ε)] where Vn(ε) ⊆ Gn will be defined inductively,
starting with V1(ε) ⊆ G1. Since G1 = Zω/(2Zω) is a vector space over Z2,
we can select a basis of c-many vectors, which we reorganize into c sets of
ω basis vectors, {u(1)i,k : 1 ≤ i < c; 1 ≤ k < ω}. Then every x ∈ G1 can be
expressed uniquely as a linear combination of a finite number of these basis
vectors. Now we assign a norm N (1)(x) to each x ∈ G1 by first assigning
a value Ni(x) to the set of components {xi,k : 1 ≤ i < c; 1 ≤ k < ω} for
each fixed i as follows:

(1) We choose a bijection η : N → D where D is the set of rational
numbers between 0 and 1.

(2) With each i and k, we associate the function φi,k : I → Z2 from
the unit interval to Z2 where φi,k(r) = 0 for 0 ≤ r < η(k) and
φi,k(r) = xi,k for η(k) ≤ r ≤ 1.

(3) We let fi =
∑Mi

k=1 φi,k where Mi is the maximum value of k for
which xi,k is non-zero and the functions are summed pointwise.

(4) We define Ni(x) to be the Lebesgue measure of the support of fi.

One easily checks that (1), (2), and (3) together establish an isomorphism
between G1 and step functions on the disjoint union of c-many unit in-
tervals where the steps are between rational points within an interval,
where each function has a finite number of steps in an interval, and where
the total support of each function has finite Lebesgue measure, which we
label N (1)(x), the sum of the finite number of Ni(x) which are non-zero.
Finally, V1(ε) := {x ∈ G1 : N (1)(x) < ε}.
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For the induction step, suppose that we have already defined N (n)(x)
for each x ∈ Gn giving us Vn(ε) := {x ∈ Gn : N (n)(x) < ε}. Since a tor-
sion group is the direct sum of its p-groups with the summands uniquely
determined, Gn+1 can be expressed uniquely as Gn+1 = A⊕ B where A
is a group all of whose non-zero elements have order pn+1 and where B is
isomorphic to Gn. Again, the group A is a vector space over Zpn+1 and
we can choose a basis {u(n+1)

i,k : 1 ≤ i < c; 1 ≤ k < ω}, as before. Now we
repeat steps (1) through (4), above, for the group A in place of G1, obtain-
ing a measure N (n+1)

A (xA) for xA ∈ A. For the measure N (n+1)(x) of an
element x ∈ Gn+1, we define N (n+1)(x) = N

(n+1)
A (xA) + N (n)(ψn+1(x))

where x = xA + xB with xA ∈ A and xB ∈ B. This gives us Vn+1(ε) :=
{x ∈ Gn+1 : N (n+1)(x) < ε}.

It follows that the Un(ε)’s generate a Hausdorff group topology on Zω
once we establish the following facts.

(1) Un(ε1) ⊆ Un(ε2) for ε1 < ε2.
(2) Un+1(ε) ⊆ Un(ε).
(3) Un(ε/2) + Un(ε/2) ⊆ Un(ε).
(4) If x ∈ Un(ε), then nx ∈ Un(ε) for n ∈ Z.
(5)

∩
n

∩
ε>0

Un(ε) = {0}.

The first fact is an immediate consequence of the definition of Vn(ε) and
the preservation of subset containment under an inverse map. For the sec-
ond fact, suppose x ∈ Un+1(ε). By definition, we have N (n+1)(πn+1(x)) <
ε. Then clearly, N (n)(ψn+1◦πn+1(x)) < ε, as well, because the pn+1 com-
ponent of πn+1(x) can only add to the measure. But ψn+1 ◦ πn+1 = πn,
so x ∈ Un(ε). Fact (4) follows from the obvious fact that N (n)(mx) ≤
N (n)(x) for x ∈ Gn and m ∈ Z. This guarantees that the neighborhoods
Un(ε) are symmetric about 0.

For (3), suppose that x, y ∈ Gn. The measures N (n)(x) and N (n)(y)
are each given by the sum of the Lebesgue measures of the support of
functions on a finite number of unit intervals. N (n)(x+ y) cannot exceed
the sum of the two separate measures because anywhere that a function
representing x overlaps with a function representing y, the sum of the two
functions cannot have any greater support than the union of the support
of the two functions separately. It follows that if N (n)(x) and N (n)(y) are
each less than ε/2, then N (n)(x+ y) < ε.

To demonstrate (5) and the Hausdorff property, let x ∈ Zω and let xi
represent the ith coordinate of x in the canonical representation. Suppose
that xm is the smallest non-zero coordinate and that pn0 is the smallest
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prime which does not divide xm. Then N (n0)(πn0(x)) will have a non-
zero contribution, ε0, from the pn0-component of πn0(x). We can conclude
that x /∈ Un(ε) for n ≥ n0 and ε < ε0.

Finally, we need to show that the topology defined by the neighbor-
hoods Un(ε) is an SSGP topology. We already know from (4) that every
element in Un(ε) is a member of an entire subgroup contained in Un(ε).
It remains only to show that the subgroup generated by Un(ε) is dense
in Zω. In fact, we will show than any x ∈ Zω is a finite combination of
elements from Un(ε). We know that πn(x) is a linear combination of a
finite number of basis elements for Gn from a list of length n×c×ω. This
corresponds to a function which has support on a finite number of unit
intervals. The range within each interval is one of the groups Zpm with
m ≤ n. Let fm,i : I → Zpm be a component of the function on one such
interval. It should be clear that fm,i can be decomposed into a finite sum
of step functions, each of which has support only on one small interval,
of measure less than ε, where fm,i has a constant value. Let k, k′ < ω
be such that 0 < η(k′) − η(k) < ε and such that fm,i(r) = z ∈ Zpm for
η(k) ≤ r < η(k′). Then the function on I which agrees with fm,i on
the interval [η(k), η(k′) ) and is zero elsewhere in I corresponds to an
element g ∈ Vn(ε) ⊆ Gn whose only non-zero components are given by
gm,i,k = z and gm,i,k′ = −z. Since πn(x) is a finite sum of such g ∈ Vn(ε)
and πn is a quotient map, it follows that for each such g there is a mem-
ber of the coset π−1

n (g) ⊆ Un(ε) such that their sum is x, and we are done.
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