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STATE COMPLEXES AND SPECIAL CUBE COMPLEXES

VALERIE J. PETERSON

Abstract. State complexes are cube complexes that record the
discrete motions of a reconfigurable system: a physical or abstract
setting in which local movements effect global changes in the shape
of the system. In addition to possessing interesting geometric and
topological features (e.g., they are non-positively curved, aspher-
ical spaces), state complexes are also examples of special cube
complexes and hence have linear fundamental groups. This paper
presents new insights into state complexes as a subclass of special
cube complexes, establishing clear contrasts between the two. Spe-
cific obstructions to realizing state complexes are presented and
examples are chosen to illustrate that, unlike special, the property
state is not necessarily inherited by subcomplexes or finite covers.

1. Introduction

A great many situations arise in the physical world in which some
dynamically changing system – one involving multiple moving parts, for
example – must be rearranged in a controlled manner. Motion-planning
problems in robotics are one such setting: one wishes to find a method
for (optimally) reconfiguring a collection of independent robotic agents
within a shared workspace. Another is found in manufacturing, in which
the success of an assembly task depends on executing a large number of
individual movements. Still others exist in biology and chemistry, as well
as in more abstract settings, such as group theory and computer science;
myriad examples appear in [20].
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A classical approach to modeling these types of systems is to build
a configuration space, whose points record the allowable states of the
system; points corresponding to illegal states (e.g., those representing
collisions between independent agents) are deleted. Studying the config-
uration space reveals information about the underlying system and how
to rearrange its components effectively. While the viewpoint we adopt
here is similarly topological in flavor, the version of a configuration space
we consider is a “discretized” one, capturing movements in systems which
themselves can be regarded as discrete. This is not as unnatural as it
might sound. Indeed, there are a wide variety of situations that can be
accurately described in terms of discrete motions; we will call such sys-
tems reconfigurable. Several examples of reconfigurable systems appear in
the next section, and others can be found in [20].

We wish to find a useful geometric representation of a reconfigurable
system, similar in spirit to the classical configuration space but of a more
combinatorial nature, reflecting the inherent structure of the underly-
ing discrete system. The intuitive starting point is to build a transition
graph whose vertices correspond to states of the system and whose edges
represent the elementary transitions (“moves”) between states. This is
analogous to the construction of a Cayley graph for a group presentation,
except for the fact that the transition graph may not be homogeneous –
not all “generators” may be applicable at a given state.

The notion of a transition graph is not new; it has been adapted for use
by the robotics community [12] and in various social sciences [10], among
others. In what follows, however, we extend the transition graph combi-
natorially by regarding it as the 1-skeleton of a higher dimensional cube
complex, wherein a k-dimensional cube is present for each collection of k
independent moves: this is the state complex. Each k-cube records the fact
that is possible to perform the given tasks concurrently, thereby encoding
information about optimizing reconfiguration. While increasing the di-
mension of the space and adding information in the form of cubical cells
may seem to increase its complexity, the presence of higher dimensional
cubes actually simplifies the space in important geometric, topological,
and group theoretic ways and allows us to exploit the piecewise-Euclidean
structure (using, e.g., Gromov’s combinatorial “link condition”). The first
property we find is non-positive curvature, detected with the use of ver-
satile tools from CAT(0) geometry. This will imply that the spaces are
aspherical, as they have CAT(0) (and hence contractible) universal cov-
ers. We also see that fundamental groups of such spaces are all subgroups
of right-angled Artin groups, objects which have attracted much interest
in the last several decades.
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A fair amount was known about this inherent geometry and topology
for a particular subset of state complexes, called discretized configuration
spaces, owing to Abrams in [1] and Ghrist in [19], but here we consider
the more general complexes, as developed in [2], [3], and [20]. In par-
ticular, we draw a number of connections between state complexes and
related objects called special cube complexes. Special cube complexes were
introduced by Haglund and Wise in [22] and, despite being produced by
far more abstract motivations than the manufacturing or robotics settings
mentioned above, are closely related to state complexes. This relationship
ties practically-motivated state complexes to more theoretical pursuits.

This article undertakes a comparative study of state complexes and
special cube complexes as an early step in classifying state complexes.
Though a complete classification is certainly desirable it seems unlikely:
we will see that any comprehensive description of state complexes must
combine local requirements (not hard to describe) with global ones (much
more difficult to characterize), and that current geometric, topological,
and group theoretic tools are insufficient to distinguish state complexes
from non-state complexes axiomatically. Hence, a large portion of the
following paper is dedicated to presenting the subtleties of state complexes
that have thus far obfuscated an entirely axiomatic description.

1.1. A motivating example.

Suppose you are a manufacturer wishing to coordinate robotic assem-
bly agents moving within your factory. The robots travel on a shared
track on the floor and must move between various workstations in order
to accomplish a given task. Before beginning assembly, you need to know:
Can the task can be accomplished without collisions? If so, how might it
be accomplished optimally? The collection of robots on the factory floor
is an example of a reconfigurable system: a system in which independent
agents make small “local” moves that affect global positions of the system.
The following canonical example nicely illustrates the premise underlying
a reconfigurable system; it parallels an example of Abrams [1].

Example 1.1. Robots on a track. Elaborating on the factory setting sug-
gested above, consider two robots moving on a track isomorphic toK4, the
complete connected graph on four vertices (Figure 1 (left)). Assume the
robots have limited sensory capabilities and are able only to slide along
an empty edge to an unoccupied vertex without stopping, backing up, or
communicating with one another before or during movement. (This is
often the case, as more sophisticated robots are cost-prohibitive.) In this
context, movement along an edge is a “black box” and we may think of
a robot hopping discretely from one vertex to an empty adjacent vertex.
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Restricting our attention to discrete movements is in fact a natural per-
spective; readers are referred to [20] for many settings that are effectively
described via this type of discrete motion.

As mentioned, a reasonable first step in recording the movements of
the system is to build a transition graph, whose vertices represent config-
urations of the system, called states, and whose edges denote the moves
between states. A robot moving from one vertex of K4 to another yields
two distinct states connected by an edge in the transition graph. This
reduces the question of linking distinct configurations to finding a path
between the appropriate vertices in the transition graph. Note that any
such path avoids collisions by virtue of how we allowed the robots to move;
points in the transition graph represent only legal configurations of robots
on distinct vertices of K4.

..
.

Figure 1. (left) Two robots move on the trackK4. (cen-
ter) A local view of the state complex with states super-
imposed over vertices. (right) The state complex for two
robots moving on K4.

To address the practical concern of optimality in reconfiguration, in-
dependent moves should be parallelized when possible. We therefore add
information to the transition graph in the form of higher dimensional cells
– in this case, squares – whenever both robots can move simultaneously
(i.e., along disjoint edges). The boundary of such a square denotes that
moving Robot A and then Robot B is equivalent to moving B and then
A; the diagonal of two-cell in the interior represents executing both moves
concurrently. The result is the state complex , a cube complex which co-
ordinates physically independent moves. A local picture of the state com-
plex for this system of two robots is shown in Figure 1 (center) next to
the entire state complex (right).

The next section formalizes these ideas.
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2. Reconfigurable Systems and State Complexes

2.1. Reconfigurable systems.

Example 1.1 provides a good starting point which we now generalize.
Begin by labeling two of the vertices of K4 by 1 and 2 to denote the
vertices on which the (distinct) robots sit, and label the empty vertices
by 0. Now, states of the system are simply labelings of the vertices of
K4 by {0, 1, 2} in which each of the labels 1 and 2 appears exactly once.
Moves, which we call generators, exchange either adjacent 0 and 1 labels
or adjacent 0 and 2 labels. This suggests the following definition.

Definition 2.1. (Reconfigurable system) A reconfigurable system con-
sists of a domain graph, G, a finite alphabet A of vertex labels, a collection
of generators {φi}i∈I , and a collection of states, which is closed under the
operation of applying generators. A state is a labeling of the vertices V (G)
by elements of A; alphabet labels may be repeated but each vertex in G
is assigned exactly one label in a given state. A generator φ is defined via
the following three objects:

(i) the support , sup(φ) ⊂ G, a subgraph of G;
(ii) the trace, tr(φ) ⊂ sup(φ), a subgraph of sup(φ);
(iii) an unordered pair of local states

uloc0 ,uloc1 : V (sup(φ))→ A,

which are labelings of the vertex set of sup(φ) by elements of A.
These local states must agree on sup(φ)− tr(φ); i.e.,

uloc0

∣∣
sup(φ)−tr(φ)

= uloc1

∣∣
sup(φ)−tr(φ)

.

All generators are assumed to be nontrivial in the sense that uloc0 6= uloc1 .

Intuitively speaking, the support of a generator is the amount of infor-
mation needed to determine the legality of the move, whereas the trace
is the precise subset of G on which φ changes vertex labels (i.e., where
the move occurs physically). The trace and support for a given genera-
tor may coincide, as in Example 1.1 where each is a single edge and its
vertices, but the support may also be a strictly larger subgraph of the
domain graph than the trace. This is precisely what makes the definition
of a reconfigurable system robust enough to capture the essence of a wide
variety of situations (examples to follow). A further generalization from
Example 1.1 is that generators in the system are allowed the flexibility
to change many vertex labels at once as the trace is not restricted to a
single vertex or two.
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Definition 2.2. (Admissibility) A generator φ is said to be admissible
at a state u if u|sup(φ) = uloc0 . For such a pair (u, φ), we say that the
action of φ on u is the new state given by

φ[u] =

{
u on G − sup(φ)
uloc1 on sup(φ).

A reconfigurable system is said to be locally finite if the number of gen-
erators admissible at any state is finite, independent of state.

Remark 2.3. Since the local states of each generator are unordered (the
local state labels ‘0’ and ‘1’ were assigned arbitrarily), it follows that any
generator φ that is admissible at the state u is also admissible at the state
φ[u]. This also implies that φ[φ[u]] = u.

2.2. The state complex.

We now construct the cube complex that captures all possible states
of a reconfigurable system and the generators connecting them, extending
the notion of a transition graph by regarding it as the one-dimensional
skeleton of a larger cell complex.

Definition 2.4. (Cube complex) Let I = [−1, 1] ⊂ R. A Euclidean cube
is the product space Ik for some 0 ≤ k, conferred with the product metric.
A cube complex , X, is a CW complex in which the k-cells are isometric
to Euclidean cubes, Ik, and the attaching maps on the boundaries of k-
cells restrict to isometries from each (k − 1)-face in ∂Ik into Xk−1. The
image of a k-cell of X is called a k-cube, though we will use the regular
terminology vertex, edge and square for k = 0, 1, 2. Note that each k-cube
in a cube complex is embedded.1

Definition 2.5. (Commutivity) A collection of generators {φαi
} is said

to commute if
tr(φαi

) ∩ sup(φαj
) = ∅ ∀i 6= j.

Disjoint traces and supports for a given collection of generators indi-
cates that these generators can be applied simultaneously without physical
interference: the portion of G that one must look at to determine the le-
gality of a move (the support) does not overlap with any of G on which the

1We distinguish here between the terms cube, cubed, and cubical complex, as these
are sometimes used interchangeably in the literature. Here, cubical complex will mean
the cubical equivalent of a simplicial complex, wherein any collection of 2n vertices
determines at most one cube. This is more stringent a requirement than for a cube
complex (state complexes do not satisfy it in general). In contrast, a cubed complex
is also a CW complex built from Euclidean cubes but without the requirement that
k-cubes be embedded; they need only be immersed.
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other moves actually occur (the remaining traces). We define the state
complex to be the cube complex with a k-cube for each occurrence of k
admissible commuting generators.

Definition 2.6. (State complex) The state complex , S, of a reconfig-
urable system is the following abstract cube complex. Each k-cube of S
is an equivalence class [u; (φαi

)ki=1] where
(i) (φαi

)ki=1 is a k-tuple of commuting generators;
(ii) u is some state for which all the generators (φαi

)ki=1 are admissi-
ble; and

(iii) [u0; (φαi
)ki=1] = [u1; (φβi

)ki=1] if and only if the list (βi) is a per-
mutation of (αi) and u0 = u1 on the set G −⋃i sup(φαi) .

A state complex S is said to be locally finite if the underlying reconfig-
urable system for S is locally finite.

Note that state complexes are indeed cube complexes by our definition:
the assumption that generators are nontrivial ensures that cubes in a state
complex are embedded.

2.3. Selected examples.

We return to Example 1.1 to illustrate the precise definitions in this
intuitive setting.

Example 2.7. Robots on a track, revisited. In the language above, the
two robots moving onK4 in Example 1.1 comprise a reconfigurable system
with underlying graph G = K4 and alphabet A = {0, 1, 2} (different
alphabet labels are denoted by vertices of different colors/shapes in Figure
1). There are two types of generators in the system, one for each robot,
φ1 and φ2. The local states of φi evaluate to 0 at one of the endpoints of
an edge and i at the other; thus, the support and trace for each generator
are both equal to a single closed edge.

At any of the 12 states of the system, there are precisely two unoccupied
vertices of K4 to which either robot can move; this yields four edges
incident to each of the 12 vertices in the state complex. In addition, on
any given edge the move φ1 commutes with exactly one occurrence of φ2
(either along a parallel edge or opposite diagonal); this is true regardless
of starting state, due to the symmetry of K4. Thus, four edges and two
squares meet at every vertex in S, as shown in Figure 1 (center). The full
complex S is shown on the right of the same figure.

If one repeats this example using K5 as the underlying track for the
two robots (see also [1, 20]), the state complex has a pleasing structure.
The generators and alphabet remain the same as above. At any state of
the system, there are precisely three unoccupied vertices of K5 to which
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either robot can move; this yields six edges incident to every vertex in
the state complex. In addition, on any given edge the move φ1 now
commutes with exactly two occurrences of φ2, regardless of state. Every
vertex in the state complex S therefore has a neighborhood with six 2-cells
patched cyclically around it (Figure 2 (center)), so S is a closed cubical
surface. One counts 20 vertices in S, 60 edges, and 30 faces, giving an
Euler characteristic for S of −10. A straightforward check reveals that
the surface can be oriented; thus, the state complex is a cubical surface
of genus six. The full complex S is shown in Figure 2 (right).

Figure 2. (left) Two robots move on the trackK5. (cen-
ter) A local view of the state complex with states super-
imposed over vertices. (right) The entire state complex.

Example 2.8. Molecular tilings. In a 2008 experiment by Blunt et al.
[7], scientists created a 2-dimensional network of p-terphenyl-3, 5, 3′, 5′-
tetracarboxylic acid (TPTC) molecules adsorbed on graphite that natu-
rally exhibited a random tiling of the plane by rhombi, also called a lozenge
tiling. The tiling they observed is non-periodic and non-homogeneous in
the sense that at each vertex of the tiling, either 3, 4, 5, or 6 rhombic tiles
can join together (Figure 3, center). Each rhombus in the tiling represents
a single TPTC molecule; the various arrangements of tiles correspond to
the different possible carboxylic–carboxylic hydrogen bonds that can form
between molecules.

In addition to molecular tiles, the tiling contains what the authors refer
to as “topological defects” in the form of empty triangular voids. The voids
were observed to migrate through the network over time, forcing local
rearrangements of tiles and giving rise to quasi-degenerate local minima
within an energy landscape [7]. Voids in a tiling are illustrated in Figures
3 and 4 as unshaded triangles.
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Figure 3. (left) A single TPTC molecule. (center)
Molecules join together in arrangements of 3, 4, 5, or
6 rhombi. (right) A random tiling of the plane by TPTC
molecules. Empty triangles allow molecules to move lo-
cally, transitioning the network between states of local
energy minima.

We describe a lozenge tiling as a reconfigurable system by setting G
equal to the triangular lattice dual to the tiling; we regard each rhombic
tile as being composed of two equilateral triangles, and empty triangular
voids are assigned vertices in this graph as well as rhombi. Vertices of G
are labeled with the alphabet {0, 1, 2, 3} according to empty or occupied
vertices; each non-zero number in the alphabet represents one of three
distinct tile orientations. The propagation of triangular defects is cap-
tured by generators that pivot a rhombic tile into an adjacent triangular
void. There are three generators associated to every void, one for each
free side of the triangle. Figure 4 shows the three directions in which tiles
can pivot.

Figure 4. The three generators associated to any trian-
gular void pivot rhombic tiles to fill the void from each
open direction.

The trace of a generator contains the vertices associated to the rhombic
tile it moves (two vertices) and the void it fills (one vertex). No two
generators associated with the same void can commute, so the support of
a generator must contain all vertices corresponding to neighbors of both
the moving tile and the empty triangle. Note this is distinctly different
than in the previous example; here, the support of each generator strictly
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contains the trace so as to accurately reflect the physical interdependence
of moves. Generators affiliated with different voids, however, all commute
(provided voids are sufficiently separated) so the upper bound on the
dimension of cubes in the state complex depends on the total number of
voids in the tiling.

This reconfigurable system is reminiscent of a metamorphic robotic sys-
tem pioneered by Chirikjian [12]. The system consists of a (finite) collec-
tion of planar hexagonal robotic linkages locked together in an aggregate,
forming a hexagonal lattice. Individual robotic agents may detach from
their neighbors in the lattice and pivot around a fixed corner, similar to
the movements of rhombic molecular tiles. Details for the reconfigurable
system describing the hex-lattice metamorphic robots appear in [20].

Example 2.9. Abstract cube complex. When possible, realizing a spe-
cific cube complex as a state complex almost always requires defining the
underlying reconfigurable system that generates it (though there do ex-
ist more general techniques, which appear in the next section). For the
complex X̂ pictured below, we define this system abstractly as follows.2

u1 u2 v2 u1v1

y1 y1w1 w2y2

φ2 ψ2 ψ2φ2

φ1 ψ1 ψ1φ1

Figure 5. Generators and states for a reconfigurable
system are superimposed on the complex, X̂.

We let

G =
• • • • •
a b c d e and A = Z2.

Generators for the system are defined in the table below. States and local
states are of the form ab c d e, where empty slots in local states denote
vertices of G that do not belong to the support of a given generator (and
hence do not change).

2We will see later on that X̂ is actually a two-sheeted cover of a complex, X, that
cannot be realized as a state complex for any reconfigurable system; this motivated
the naming.
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generator tr sup local states
φ1 a a, d, e 0 0 0 ↔ 1 0 0
φ2 b, c b, c, d, e 0 0 0 0 ↔ 1 1 0 0
ψ1 a a, b, e 0 1 0 ↔ 1 1 0
ψ2 c, d b, c, d, e 1 1 0 0 ↔ 1 0 1 0

φ1 a a, b, c 0 1 0 ↔ 1 1 0

φ2 d, e b, c, d, e 1 0 1 0 ↔ 1 0 0 1

ψ1 a a, c, d 0 0 0 ↔ 1 0 0

ψ2 b, e b, c, d, e 1 0 0 1 ↔ 0 0 0 0

States for the system are
u1 = 00000, v1 = 01100, u2 = 01010, v2 = 01001,
y1 = 10000, w1 = 11100, y2 = 11010, w2 = 11001.

The trace, support, and local states for each generator are chosen to
reflect exactly the commutativity and admissibility shown in Figure 5.
For example, φ1 is admissible only at local states of the form 0 0 0
and 1 0 0 and therefore can be applied precisely at states u1,v1,y1

and w1. Further, φ1 cannot commute with any generator whose sup-
port contains tr(φ1) = a, or any generator whose trace overlaps with
sup(φ1) = {a, d, e}, leaving only φ2. Readers are encouraged to ver-
ify the proper commutativity is achieved for the remaining generators.
Note as well that this choice of reconfigurable system generating X̂ is not
unique.

Readers are referred to [20] and [28] for a bevy of further examples,
including settings from biology (protein folding) [29], chemistry (digital
microfluidics) [18], psychology (media theory and learning spaces) [10],
robotics (metamorphic robotic systems) [3], combinatorics (permutohe-
dra), and yet other fields that all admit descriptions as reconfigurable
systems and thus give rise to state complexes.

3. Fundamental Properties and
Realization of State Complexes

One of the most fascinating qualities of state complexes is the fact
that they come equipped with an intrinsic metric that is non-positively
curved, despite being composed of flat Euclidean cubes. Additionally,
they are all examples of special cube complexes. With the intent of being
self-contained, a fair amount of relevant background on state complexes
is included here.
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3.1. Curvature for cube complexes.

Much of our contemporary understanding of curvature for general met-
ric spaces owes to fundamental work by A. D. Alexandrov [5], who defined
what it means for a metric space X to have curvature bounded above by
a real number κ by comparing triangles in X to those in a model space.3

Later, Gromov famously dubbed this formulation the “CAT(κ) inequal-
ity” in honor of Alexandrov, along with Cartan and Toponogov, who had
also made major contributions in the area [9]. In the case that X satisfies
the CAT(κ) inequality for κ = 0, we simply refer to X as a CAT(0) space.
A metric space is non-positively curved (NPC) if it satisfies the CAT(0)
inequality only locally (i.e., for sufficiently small comparison triangles).
Gromov is also responsible for reformulating these ideas in the context
of cube complexes, providing purely combinatorial means to detect non-
positive curvature in this setting [21].

Definition 3.1. (Link, flag complex) Let X be a simple4 cube complex
and let v be a vertex in X. The link of v, denoted Lk[v], is the abstract
simplicial complex with a k-cell for every (k + 1)-cube in X incident to
v. The boundary relations for k-simplices in the link are inherited from
the boundary relations among the corresponding (k + 1)-cubes in X. A
simplicial complex K is a flag complex if any collection of vertices in K
that are pairwise connected also span a simplex in K. Said another way,
K is maximal among all simplicial complexes with the same 1-skeleton.

The link of every vertex in a state complex is simplicial by virtue of
the following. First, all cubes are embedded, hence there can be no loops
in the link of a vertex. Second, no two distinct squares may be glued
along two adjacent edges, as these shared edges would represent generators
producing the same cubical equivalence class, ensuring the two squares
are in fact identified. Therefore, there can be no digons in the link (a
digon is a pair of vertices connected by two distinct edges). A theorem of
Gromov then asserts that global topological features of a cube complex
are in fact determined entirely by the local behavior at vertex links: a
finite dimensional Euclidean cube complex is non-positively curved if and
only if the link of each vertex is a flag complex [21].

3The model spaces are: real hyperbolic space H2 with the distance function scaled
by a factor of 1√

−κ for κ < 0, the Euclidean plane E2 for κ = 0, and the 2-sphere S2

with the distance function scaled by 1√
κ
for κ > 0.

4The term simple guarantees that links are in fact simplicial. In particular, this
prohibits two squares from being identified along two consecutive edges, as it would
imply a non-simplicial digon in the link of their shared vertex.
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As detailed above, links in a state complex are necessarily simplicial (so
state complexes are simple cube complexes). Moreover, links are flag by
virtue of Definition 2.5: whenever k generators commute pairwise at state
v, the entire collection must commute at v. Translating this definition to
vertex links, each pair of commuting generators gives rise to an edge in the
link of v, but the k-cube present at v (guaranteed by the commutativity of
the entire collection of generators) ensures that the corresponding (k−1)-
simplex in the link is filled in. Together with Gromov’s link condition this
shows the following.
Theorem 3.2. [20] The state complex for any reconfigurable system is
NPC.

Non-positive curvature has both theoretical and practical implications.
One useful and well-known property of (connected) CAT(0) spaces is that
any two points are joined by a unique geodesic, which implies these spaces
are contractible. Additionally, a complete geodesic metric space X is
CAT(0) if and only if it is NPC and simply connected. ([9], for exam-
ple, contains a thorough treatment of non-positively curved spaces.) The
local property of non-positive curvature is nearly as nice: the Hadamard-
Cartan Theorem implies that an NPC space X has a CAT(0) univer-
sal cover, so while X may itself allow multiple geodesics between two
points, there is exactly one (local) geodesic per homotopy class. Prac-
tically speaking, the existence of a unique shortest path per homotopy
class suggests how to address the motivating concern of optimality: given
a path avoiding fixed obstacles in the workspace, there is an optimal way
to reconfigure the factory robots. Additionally, if X is NPC, the con-
tractibility of X̃ ensures that all higher homotopy groups of X vanish (by
Whitehead’s Theorem), making X an Eilenberg-MacLane space of type
K(π1, 1), also known as an aspherical space. An aspherical space X is
determined up to homotopy entirely by its fundamental group, which is
torsion-free whenever X is finite-dimensional [24].

3.2. Realizing state complexes.

As a first step in the classification of state complexes, we present what
is currently known about recognizing arbitrary NPC cube complexes as
state. Readers are referred to [20] for a thorough treatment of these
results. Much of what follows makes use of the hyperplanes present in
cube complexes, as developed in [27].
Definition 3.3. (Hyperplane.) Let X be a cubical complex, so that
each cube in X is outfitted with coordinates {xi ∈ [−1, 1]}. A midplane
of a cube [−1, 1]k is a codimension-1 coordinate plane of the form {xi =
0} for some i. Said simply, a hyperplane is a union of midplanes glued
together according to (restrictions of) the gluing maps between cubes.
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More carefully, two midplanes M and N in X are hyperplane equivalent
if there is a sequence of midplanes M = M1,M2, . . . ,Mn = N in X such
thatMi∩Mi+1 is a midplane in some cube inX for every i = 1, 2, . . . , (n−
1). A hyperplane is an equivalence class of midplanes with respect to this
hyperplane equivalence; we generally denote a hyperplane by H. An edge
in a cube is dual to a midplane (and therefore a hyperplane) if it is
perpendicular to the midplane.

Every edge in a state complex S represents the action of some admissi-
ble generator; edges that are parallel across squares, cubes, etc., are dual
to equivalent midplanes and therefore a common hyperplane. It is then
unsurprising that each hyperplane H in a state complex S corresponds
to the action of a unique generator, as in [20], Lemma 5.4. Further, each
hyperplane belongs to a complex isomorphic to H× [−1, 1] (Lemma 5.5).
In particular, these combine to imply that the square complex shown in
Figure 6 is not realizable as a state complex for any reconfigurable sys-
tem, despite being non-positively curved. This provides us with a first
non-example of state complex, demonstrating that the class of state com-
plexes is a strict subset of the class of NPC cube complexes.

Figure 6. An NPC cube complex that is not a state complex.

On the other hand, cube complexes that can always be described as
state complexes include appropriate subcomplexes of well-behaved prod-
ucts of graphs. In the following, a simple graph is a graph with no single-
edge loops.

Theorem 3.4 ([20]). Any finite NPC subcomplex of a product of simple
graphs can be realized as a state complex for some reconfigurable system.

The proof defines a reconfigurable system that will generate the given
subcomplex, emulating the “robots on a graph” setting in Example 1.1.
In short, the underlying graph for the system consists of the disjoint
union of the graphs that appear as factors of the product, the alpha-
bet is {0, 1}, and generators correspond to sliding robots along the edges
of the individual graphs that appear in a given cube in the product,
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with traces and supports chosen to achieve the appropriate commuta-
tivity. The requirement “simple” ensures that no generators are trivial,
leaving and returning to the same state.

For additional examples, note that since graphs are themselves triv-
ially NPC and finite products of NPC spaces are again NPC [9], any
finite product of simple graphs is itself automatically a state complex.
Moreover, it is known that any finite CAT(0) cubical complex X can be
embedded as a subcomplex of a n-dimensional cube, n being the number
of hyperplanes in X [20], hence all finite CAT(0) cube complexes are also
realizable as state complexes.

Beyond the somewhat rigid confines of graph products, one may also
construct a number of examples of state complexes with homogeneous
cubical structure. Paralleling a result of Davis [13], given any finite sim-
plicial flag complex L one may construct a reconfigurable system whose
state complex S satisfies Lk[v] = L for all vertices v ∈ S [20]. It is
therefore possible to construct an n-manifold state complex somewhat
generically by choosing L to be a simplicial flag (n− 1)-sphere, implying
that a great many cubical surfaces and three-manifolds arise as state com-
plexes. As an example, by choosing L to be a simplicial cycle of length
four, the construction in [20] yields a two-torus state complex composed
of 16 squares.

The best possible converse to Theorem 3.4 would be that any state
complex embeds as a subcomplex of a product of graphs. This is unfor-
tunately not true: the following complex can be given a state structure
(the associated reconfigurable system has three generators) but cannot be
embedded in a product of graphs.

Figure 7. A state complex that does not embed in a
product of graphs.

3.3. Special cube complexes.

We now consider cube complexes known as A-special and the related
class of special cube complexes. Introduced by Haglund and Wise in [22],
A-special (and special) complexes were developed as an attempt to gener-
alize square complexes called clean VH-complexes [31], [32] that exhibited
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a convenient group theoretic property (canonical completion and retrac-
tion) which we invoke a bit later. Beyond the original intent, special cube
complexes quickly proved to be powerful tools in the study of finiteness
properties (subgroup separability, e.g., [23]) and infinite groups, as well
as fundamentally important in the topology of three-manifolds, featuring
prominently in Agol’s 2012 proof of the virtual Haken conjecture [4]. Spe-
cial cube complexes are defined in terms of their hyperplanes (Definition
3.3) and their walls, which are dual to hyperplanes.
Definition 3.5. (Wall) A wall in a cube complex X is the set of edges
dual to some fixed hyperplane, and is denoted W (H).

Figure 8. (left to right) Self-intersecting, one-sided,
self-osculating, and inter-osculating hyperplanes are for-
bidden in an A-special cube complex.

Definition 3.6. (Hyperplane pathologies) The following hyperplane be-
haviors are depicted in Figure 8, from left to right: a self-intersecting
hyperplane, a one-sided hyperplane, a self-osculating hyperplane, and a
pair of inter-osculating hyperplanes.

(1) A hyperplane H in X self-intersects if it contains more than one
midplane from the same cube. Equivalently, H self-intersects if
the map H → X is not injective, or if H has two dual edges that
are also consecutive in some square. A hyperplane is embedded if
it does not self-intersect.

(2) A hyperplane is one-sided if W (H) cannot be given a consistent
orientation. (By consistent we mean that whenever two edges
appear opposite sides of a square they have the same orientation.)
Equivalently, a hyperplane H is one-sided if its complement does
not disconnect a neighborhood of H. A hyperplane that is not
one-sided is called two-sided .

(3) A hyperplane self-osculates if there exist two edges dual to the
hyperplane, a, b ∈ W (H), that share a vertex v but are not con-
secutive edges of any square containing v.

(4) Finally, a pair of hyperplanes inter-osculates if they both intersect
and osculate.

Definition 3.7. (Special cube complex) Let X be a simple cube complex.
X is A-special if it avoids all hyperplane pathologies listed in Definition
3.6. X is special if it has some finite cover that is A-special.
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Clearly every A-special complex is also special. The same definitions
apply if we replace “cube” with “cubed.”

Example 3.8. Note that any graph is A-special. Further, any CAT(0)
cube complex X is A-special. This follows from several standard facts
about the hyperplanes of CAT(0) cube complexes [9], [27] that ensure
none of the pathologies described in Definition 3.6 can occur. Finally,
below we construct a cubed complex called the Artin complex that can
be associated to a group (or to a cube complex). When associated with
an appropriate group, this Artin complex is A-special.

Here is the motivation for introducing special cube complexes: all state
complexes avoid the hyperplane pathologies listed above.

Theorem 3.9 ([20]). State complexes are A-special cube complexes.

The reasoning is straightforward: Pathologies (1), (2), and (3) in
Definition 3.7 are all avoided in a state complex by virtue of Lemmas
5.4 and 5.5 of [20]. Pathology (4) is avoided due to the fact that commu-
tativity of generators in a state complex is independent of their location.
In particular, if two generators commute at a given state (indicated by
the intersection of their hyperplanes), they commute everywhere they are
admissible.

As readers may have discerned, the “A” in A-special refers to Artin,
and specifically to a right-angled Artin group. General Artin groups arose
as a generalization of braid groups and thus admit presentations similar
to classical braid groups. Introduced by Baudisch in [6] and developed
further over the next decade by Droms [15], [16], [17], Artin groups have
attracted much attention since then, in part because of their actions on
CAT(0) cube complexes. The focus here will be on right-angled Artin
groups; these are groups for which all relators are commutators in specified
pairs of generators. They are also referred to as graph groups as they may
be put into correspondence with simplicial graphs.

Definition 3.10. (Right-angled Artin group) Let Γ be a simplicial graph,
let V (Γ) denote the vertices of Γ, let E(Γ) denote the (geometric) edges
of Γ. The vertices of Γ will give rise to generators of the group and the
edges of Γ specify when generators commute. Specifically, the right-angled
Artin group or graph group associated to Γ is the group presented by

(3.1) A(Γ) = 〈 xi, i ∈ V (Γ) | [xi, xj ] = 1 for every (i, j) ∈ E(Γ) 〉.
From the definition, we see that free groups arise from graphs with

no edges, and free abelian groups arise from complete graphs. Much is
known about these groups (also known as RAAGs): most notably, right-
angled Artin groups are linear; this was proved by Hsu and Wise in [25].
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In addition, Davis and Januszkiewicz give a straightforward description
of how to realize any finitely generated right-angled Artin group as a
subgroup of a right-angled Coxeter group in [14], from which it follows
that it is a subgroup of SLn(Z) for some n. Thus, embedding a group as
a subgroup of a right-angled Artin group is one method for showing the
group is linear. Defining a local isometry from a state complex into an
Artin complex will induce such an embedding on the level of fundamental
groups. We first develop some necessary notions of combinatorial maps.
Definition 3.11. (Combinatorial map, local isometry) A combinatorial
map f : X → Y between CW complexes is one that sends open cells of X
homeomorphically onto open cells of Y . If X and Y are cube complexes,
a combinatorial map preserves k-cubes. A combinatorial embedding is a
combinatorial map that is also a homeomorphism onto its image. Now
assume that f : X → Y is a combinatorial map of simple cube complexes.
The map f is an immersion if the induced map Lk[v] → Lk[f(v)] is an
embedding for all v ∈ X(0). The map f is a local isometry if it is an
immersion and f(Lk[v]) is a full subcomplex of Lk[w]. A subcomplex
A ⊂ B of a simplicial complex is said to be full if any simplex of B whose
vertices lie in A is in fact entirely contained in A.
3.4. The Artin complex.
Definition 3.12. (Artin complex) Let A(Γ) be a right-angled Artin
group, as presented in Equation 3.1. Let X be the CW complex consist-
ing of one vertex, an (arbitrarily oriented) edge loop for every generator
xi of A(Γ), and a 2-cell for each commutator in the set of relations for
A(Γ). Each 2-cell is attached by labeling its boundary with the relator
xixjx

−1
i x−1j and then gluing this boundary to the appropriately labeled

loops. X is called the standard 2-complex for A(Γ). Note that X is a
cubed complex whose fundamental group is A(Γ).

We extend X to an NPC cubed complex by adding an n-cube in the
form of an n-torus for each distinct collection of n pairwise commut-
ing generators in A(Γ). The faces of such an n-torus are the 2-cells
whose boundaries are labeled by commuting pairs of generators. This
new complex is called the Artin complex associated to A(Γ) and is de-
noted Art(Γ), adopting the terminology and notation used in [22].5

By virtue of its construction, an Artin complex, Art(Γ), is an A-special
cubed complex; details appear in [22].

5Readers may know this complex as the Salvetti complex associated to A(Γ), though
this is somewhat of an abuse. The term Salvetti complex was originally used to denote
the universal cover of this complex, which is a CAT(0) cube complex. The analogue
of this complex in the case of spherical (i.e., finite type) Artin groups was introduced
by Salvetti in [30].
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Extrapolating, one may associate an Artin complex to any simple cube
complex, X. Suppose first that all hyperplanes of X are embedded. To
X we associate a simplicial graph ΓX whose vertices correspond to hyper-
planes H of X and whose edges connect pairs of intersecting hyperplanes;
ΓX is simplicial precisely because hyperplanes in X do not self-intersect.
Now, to the graph ΓX we associate an Artin complex. The procedure for
building this complex is identical to the procedure we followed in Defini-
tion 3.12, except we proceed directly from the graph. Begin with a single
vertex v, and attach a loop to v for every vertex in ΓX . Since vertices
of ΓX correspond to hyperplanes of X, each loop is labeled by some hy-
perplane Hi ⊂ X. To this 1-skeleton, attach a square for every edge in
ΓX . As each edge in ΓX corresponds to a pair of intersecting hyperplanes,
Hi ∩Hj , the boundary of this square is glued along loops HiHjH−1i H−1j .
Similarly, glue in the boundary of a k-torus to the appropriate (k−1)-cells
for every collection of k pairwise connected vertices in ΓX . The resulting
complex, Art(ΓX), is a non-positively curved cubed complex associated
to the cube complex X via the graph ΓX .

If, in addition to being embedded, the hyperplanes of X are all two-
sided, the walls in X are therefore orientable which implies there is a
combinatorial map τ sending X to Art(ΓX), as follows. τ sends all
vertices of X to the single vertex v ∈ Art(ΓX), and all edges in the
wall W (H) to the loop labeled by H, preserving orientation. Any k-cube
σ ∈ X is naturally mapped to the k-torus in Art(ΓX) arising from the k
intersecting hyperplanes in σ. When X is an A-special cube complex, X
and Art(ΓX) are nicely compatible; the following appears in [22].

Theorem 3.13 ([22]). If X is A-special, the map τ : X → Art(ΓX) is
a local isometry.6

As argued above, the fact that hyperplanes in X are 2-sided and em-
bedded guarantee the existence of the map τ , and the remaining two
features of A-special complexes show that the map is indeed a local isom-
etry. This is a crucial fact used in [22] to prove the following: If X is a
compact, connected, special cube complex then π1X embeds in a right-
angled Artin group, and is therefore linear. This also implies that π1X is
residually finite, since finitely generated linear groups are residually finite
[26].

In summary, we have thus far established the following facts about
state complexes:

6In fact, the converse to the above statement is also true: a cube complex X is
A-special if and only if there exists a graph ΓX and a map X → Art(ΓX) which is a
local isometry.
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• State complexes are NPC cube complexes and therefore aspheri-
cal.

• Finite NPC subcomplexes of graph products can be realized as
state complexes, but not all state complexes embed in graph prod-
ucts.

• All CAT(0) cube complexes are state complexes.
• State complexes are A-special, and hence special.
• Fundamental groups of state complexes are subgroups of right-

angled Artin groups, whose generators correspond to generators
of the associated reconfigurable system and whose relations cor-
respond to commuting generators. These groups are therefore
linear and residually finite.

Though we have collected a variety of realization facts and properties,
a complete axiomatic description of state complexes remains unrealized.
This is because the underlying structure of a state complex is based on
both local and global information: the individual interactions of com-
muting generators determine local states, but the overall connectivity of
states is shaped by repeated application of these local generators and
the resulting (global) hyperplane interactions, which is extremely hard
to characterize. We therefore turn to an examination of the behavior of
state complexes in relation to the larger set of special cube complexes in
an attempt to add to our classification results.

4. State Versus Special

We have seen that every state complex for a locally reconfigurable
system is actually an A-special cube complex. Here, we investigate ways
in which the converse to this statement fails, beginning with three specific
cases.

4.1. Special complexes that are not state.

At present, the only way to guarantee (abstractly) that an arbitrary
non-positively curved A-special cube complex is a state complex is to
embed it in a product of graphs, via Theorem 3.4 (though we have seen
that failure to embed in a graph product is not necessarily an obstruction
to being state). In general, recognizing a state complex requires defining
the underlying reconfigurable system that generates it, so demonstrating
that a complex cannot be state requires showing no such system can exist.

Theorem 4.1. The A-special cube complexes pictured in Figure 9 cannot
be realized as state complexes for any reconfigurable system.
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Figure 9. Non-positively curved A-special cube com-
plexes that are not state.

Remark 4.2. Each of these NPC square complexes fails to admit a de-
scription as a state complex in a slightly different way. As we will see,
the geometry of the complex X (Figure 9, left) prohibits generators from
commuting as they should. The complex Y (center) is incomplete in the
sense that edges (or squares) must be added to the complex in order to
impose a state structure. The last complex, Z (right) is simply inconsis-
tent with any possible system of state labels and generators one imposes.
We address each complex in turn.

Proof (X is not state): This portion of the proof has been reproduced
from [20] for completeness. We letX denote the space of “twisted squares”
formed by gluing the four vertices of a square to the vertices of another,
where a half-twist has been introduced in one square. That X is A-special
is apparent from the simplicity of its hyperplanes, which are all single
midplanes. SupposeX is the state complex for some reconfigurable system
with underlying graph G. Then there are four states in X, {u,v,w,y},
and four generators, {φ1, φ2, ψ1, ψ2}, one for each hyperplane of X (see
Figure 10). By virtue of the squares present in the complex, φ1 and φ2
must commute, as must ψ1 and ψ2, but no φi commutes with any ψj .

Examining the generators at state u reveals that φ2φ1[u] = ψ2[u] = w.
We will consider the set of vertices for which the labels at states u and
w are different; let ∆uw = {v ∈ V (G) | u(v) 6= w(v)}. Since ψ2(u) = w,
∆uw ⊂ tr(ψ2), because the trace is the set of vertex labels that change
upon applying ψ2. However, because φ2φ1[u] = ψ2[u] and the φi com-
mute, ∆uw is partitioned by tr(φ1) and tr(φ2) and intersects each set
nontrivially. This is because the two generators cannot change any of
the same vertex labels (as this would violate commutativity) yet both
generators must change some label (as we assumed no generators are
trivial). Since tr(φ1) = tr(ψ1), we therefore have ∆uw ∩ tr(ψ1) 6= ∅.
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Figure 10. Suppose X admits a state structure, with
states and generators as shown.

Together these statements imply that tr(ψ1)∩tr(ψ2) 6= ∅, which contra-
dicts the fact that the ψi commute. Thus, X cannot be a state complex.
(Y is not state): By observation it is clear that Y is A-special: hyperplanes
are simply midplanes and their interactions avoid all the pathologies in
Definition 3.6. Suppose, toward a contradiction, that Y admits a state
structure. Edges in Y must therefore correspond to generators, so we
identify the edges of the base square with generators φ1 and φ2 (Figure
11) and edges of the vertical square with ψ1 and ψ2.

φ2

φ1

ψ1 ψ2

u

Y

Figure 11. Suppose Y admits a state structure, with
states and generators as shown.

The presence of 2-cells in Y indicates that φ1 and φ2 commute, as do ψ1

and ψ2. In particular, this means

sup(φ1) ∩ tr(φ2) = ∅ and sup(ψ1) ∩ tr(ψ2) = ∅.
The fact that ψ2[u] = φ2φ1[u] implies that tr(ψ2) = tr(φ2φ1) = tr(φ2)∪
tr(φ1), by definition of the trace. Since tr(ψ2) ⊆ sup(ψ2) we have

sup(ψ1) ∩
(
tr(φ2) ∪ tr(φ1)

)
= ∅,

which implies that

sup(ψ1) ∩ tr(φ2) = ∅ and sup(ψ1) ∩ tr(φ1) = ∅.
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Thus, φ1 and φ2 change none of the labels on any vertices contained in
sup(ψ1). This means that at every state v where φ1 or φ2 is admissible
we have

v|sup(ψ1) = vlocψ1
= φi[v]|sup(ψ1), for i = 1, 2

implying that ψ1 must also be admissible at the states φ1[v] and φ2[v].
Specifically, since ψ1 is admissible at the particular state u (shown in
Figure 11), ψ1 must apply at states φ1[u] and φ2[u]. The complex, how-
ever, has no edges at these states representing the action of generator ψ1,
giving a contradiction. Thus, Y cannot be state.

Before proceeding with the last complex, Z, we present a definition and
technical lemma that ensure the alphabet for any reconfigurable system
can be reduced to a very simple one.

Definition 4.3. (Isomorphic systems) We say that two reconfigurable
systems are isomorphic if there exists a combinatorial isomorphism be-
tween their associated state complexes.

Lemma 4.4. Any reconfigurable system is isomorphic to a reconfigurable
system with A = {0, 1}.

Proof. Let R be a reconfigurable system with domain graph G, alphabet
A, generators {φi}, states {ut}, and state complex S. We may assume
without loss of generality that A = Zn. We will define a new reconfig-
urable system, R̄ that is isomorphic to R and has alphabet Z2.

We obtain the domain Ḡ for R̄ by replacing each vertex ai ∈ G with
a copy of Kn, the complete, connected graph on n vertices. We do so by
identifying ai with any vertex v ∈ Kn. The copy of Kn at vertex ai will
be denoted Kn(i) and its vertices denoted v0(i), v1(i), . . . , vn−1(i); these
vertex assignments may be made randomly. The vertex vj(i) ∈ Ḡ will be
used to record labelings of the original vertex ai by element j in A; in
this way we pass information from the old alphabet A to the new graph
Ḡ.

The states are relabeled as follows. Let u : V (G) → A be a state
in S. Each vertex ai ∈ G is assigned some label l ∈ A under u. The
corresponding state ū : Ḡ → {0, 1} in R̄ will assign labels to all vertices
in Kn(i): ū assigns a ‘1’ to vertex vl(i) and ‘0’ to all others. We redefine
generators as follows. For each φ ∈ R we define φ̄ satisfying

tr(φ̄) = tr(φ) ∪
∐

Kn(i) ∀i such that ai ⊆ tr(φ), and

sup(φ̄) = sup(φ) ∪
∐

Kn(i) ∀i such that ai ⊆ sup(φ).
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That is, we add Kn(i) to the trace (respectively, support) of φ̄ whenever
ai is in the trace (support) of φ. The local states for φ̄ are the local states
for φ having been relabeled as per the convention above.

From the definition we see that two generators φ̄ and ψ̄ commute if
and only if (

sup(φ) ∪
∐
i

Kn(i)
)
∩
(
tr(ψ) ∪

∐
j

Kn(j)
)

= ∅,

where ai ⊆ sup(φ) and aj ⊆ tr(ψ). This holds if and only if φ and
ψ themselves commute. A generator φ̄ is admissible anywhere its local
states appear, which is precisely at the relabeled versions of states where
φ is admissible. It is clear that the two systems produce isomorphic
sets of states; together with the previous commutativity and admissibil-
ity statements this implies that the corresponding state complexes are
isomorphic. �

Remark 4.5. In expanding the domain G to Ḡ the choice of Kn is some-
what arbitrary, as the connectivity of Kn is never used. The proof pro-
ceeds in exactly the same manner if we associate n disjoint vertices to G
in place of each original vertex. The graph Kn was chosen for the sake of
compact notation and ease of visualization. Indeed, in all abstract exam-
ples of reconfigurable systems (i.e., those not representing some physical
situation) the edges of G are inconsequential, as all relabelling actions
take place on the vertices.

We now return to the final complex in Theorem 4.1.

Figure 12. Despite uniformity of vertex links (unlike
Y ) and no twisting (unlike X), the complex Z cannot be
endowed with a state structure.

(Z is not state): Suppose, toward contradiction, that Z admits a state
structure. We proceed by ruling out, case by case, all possible collec-
tions of generators for the underlying reconfigurable system based on the
geometry of the complex.
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By Lemma 4.4 we may assume that the alphabet is Z2 and we let
G denote underlying graph associated to this alphabet. We make no
general assumptions about G other than it contains as many vertices as
necessitated by the generators we define along the way. By Lemma 5.4
of [20], each hyperplane H of Z is associated to a unique generator, φH.
Since φH is nontrivial, it must change the label on (at least) one vertex
in G when it crosses H in a square containing H (noting that midplanes
and hyperplanes in Z are actually equivalent). No single hyperplane H of
Z separates the space, however. Thus, it is not possible for exactly one
generator φH to change the label on a given vertex a in G, else Z would
end up with inconsistently labeled states. Hence, if a ∈ tr(φ) for some
generator φ, then a ∈ tr(ψ) for some generator ψ 6= φ as well.

Next, we assume that a ∈ V (G) belongs to tr(φ) ∩ tr(ψ) and show
that there must exist a third generator γ such that a belongs to tr(γ).
Ultimately, this will also lead us to inconsistent state labels. Owing to the
symmetry of Z and the fact that two generators with overlapping trace
must belong to different squares (since they cannot commute), there are
only five distinct ways to choose generators φ and ψ that will change the
labels of a vertex a. These cases are illustrated in Figure 13 on a copy of
Z that has been cut open at states u and v and laid flat.

A B C

D E

u u

v

v

Figure 13. In Z, there are five distinct ways to pick
generators φ and ψ if they have a shared trace element.

Consider case A. Beginning at the leftmost vertex of Z (representing
state u), we randomly assign the vertex label ‘0’ to the vertex a and
proceed to the right, relabeling a as dictated by the generators φ and ψ
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(Figure 14, left). If we suppose that no other generators in the complex
contain a in their trace, we are forced to continue labeling a as shown in
Figure 14 (center). Notice in particular the two circled labels; since a is
labeled with a ‘0’ and a ‘1’ at opposite ends of an edge, this edge must
correspond to another generator γ which changes a. This forced generator
γ is depicted in red in Figure 14 (right). (That γ must exist can also be
seen by the fact that, taken together, generators φ and ψ as chosen here
also fail to separate the space.) Because γ is admissible at vertices where
φ and ψ are each admissible yet leads to different states, we see that γ is
distinct from φ and ψ.

γφ φφ

ψ ψ ψ

0

0

0

0

1

1

1

0

0

0

0

1

1

1

1

0

0
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0

0

1

1

1

1

0

1=⇒ =⇒

Figure 14. Case A, in steps.

Cases B through F are argued similarly. Thus, whenever two generators
change the labels on some shared vertex, there must be a distinct third
generator that affects that vertex. We will now show that whenever three
generators change a shared vertex, the resulting complex Z cannot have
consistently labeled states. (Notice that this was true in Case A: the
leftmost and rightmost vertices in the complex are actually identified as
state u, and therefore must have the same labels for vertex a.)

Figure 15 shows the 8 possible ways (up to symmetry) that three gen-
erators, each changing the labels on some vertex a, can be chosen. Note
that we do not include the case where the three generators form a closed
loop of three edges, as it can be immediately ruled out: each generator
must switch the vertex label for a modulo 2, but it is impossible to apply
such a switch three times and return to the same labeling.

Consider case Ā, the result of investigating case A above. As we noted
at the end of case A, when a third generator γ changing the labels on
a ∈ V (G) is present, the resulting complex has labels on the two vertices
representing state u that do not match, at least on a. The presence
of other generators in the complex cannot remedy this. This choice of
three generators, therefore, is not possible in any state structure on Z.



STATE COMPLEXES AND SPECIAL CUBE COMPLEXES 99

The same is true of cases B̄ through F̄ ; the state u is labeled inconsistently
when we choose three generators in any of these ways.

In the case of Ḡ we arrive at different contradiction; we label the states
of Z as implied by the presence of generators in Figure 16. To achieve the
labeling that exists on the center square of the complex, we must have
another generator present in the center square that also changes labels
on a. This, however, is impossible, because two generators with a shared
trace element cannot commute as the center square indicates they do.

Finally, we consider H̄. Following the same process, we do not en-
counter the same contradictions as in earlier cases: the labeling on states
is legal (with respect to vertex a, at least) and no pairs of generators are

Ā B̄ C̄ D̄

Ē F̄ Ḡ H̄

Figure 15. Up to symmetry, there are eight ways to
select three generators, each of which changes the labels
on a fixed vertex a.
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Figure 16. Case Ḡ violates commutativity.
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forced to violate commutativity. We may assume that these three gen-
erators (i.e., those highlighted in Figure 17, left) are the only generators
present that are allowed to change the labels on vertex a. Otherwise, we
would have a subcomplex of Z whose generators fall into one of the cases
Ā through Ḡ. We therefore fill in the remaining labels on a as forced by
these three generators (also Figure 17, left). Now, as state v (the top and
bottom vertices) is distinct from state u, these states must have different
labels on some vertex b ∈ V (G), so without loss of generality we add these
labels to Z. Choices for b are written in red in the second component of
the label at states u and v; the empty second slots in Figure 17 indicate
that no choice for b has yet been forced.
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Figure 17. Case H̄ breaks down into further cases, each
of which result in inconsistent labels on Z.

In order to avoid falling into one of the illegal cases above, there is only
one allowable arrangement of three generators if each changes the labels
on vertex b: that of H̄. We may impose this arrangement on the already
chosen generators from Case H̄ in two ways, shown in Figure 17 (center).
In the upper figure, the generator and hyperplane shown in purple (in
the central square) represent the fact that there is now a generator in the
middle square of the complex that changes labels on both vertices a and
b. We fill in the implied labels for vertex b based on these new generators,
and in Figure 17 (right) circle the contradiction that arises in labels: two
states on opposite ends of a generator changing b cannot have the same
label for b.
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In summary: No single generator may relabel any vertex of G, and if
any two generators relabel a, then there exist at least three generators
relabeling a. Having three generators relabel the same vertex, however,
results in a set of states inconsistent with the cubical structure on Z.
Thus, Z cannot be a state complex, completing the proof of Theorem
4.1. �

Remark 4.6. Discovering that the complex Z was not a state complex
was somewhat surprising, as the complex was designed to avoid some of
the particular behaviors that had been observed to obstruct ‘statehood’
in other complexes. For example, there is no twisting, as in the complex
X; the link structure is homogeneous, as opposed to the complex Y ; and
the hyperplanes in the complex do not interact with each other except
in single squares, whereas pairs of hyperplanes intersecting in multiple
non-adjacent squares within a cube complex had prevented realization as
a state complex in a number of other examples considered.

With regards to resolving obstructions to being state, it is notable that
all of the non-state examples described above are virtually state. That
is, all three complexes have finite covers that are state (double covers,
in fact). It is also the case that one may make various other alterations
to each complex to realize it as a state complex (e.g., adding edges or a
square, identifying two states into one, identifying edges), but as the ob-
structions to being state differ in each example above, so do the corrective
changes. We will return to finite covers of state complexes in the next
section.

4.2. Operations on state and special cube complexes.

In [22], Haglund andWise use the notion of walls to prove the following
results concerning A-special complexes.

Proposition 4.7 ([22]). Let X and {Xi} be A-special cube complexes.
(1) Any arbitrary product

∏
iXi of A-special cube complexes is A-special.

(2) Any locally convex subcomplex of an A-special cube complex X is A-
special.
(3) Any covering space X̂ → X of an A-special cube complex is A-special.

Here, a subcomplex X ⊂ Y is locally convex if the natural embedding
X → Y is a local isometry. Note that since A-special implies special, all
of these results hold when “A-special” is replaced by “special.”

Proofs of the above statements are relatively straightforward verifica-
tions that pathologies in walls of the new spaces would imply pathologies
existed in the walls of the original spaces; see [22] for details.
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Property (3) results from the fact that combinatorial maps between cube
complexes preserve the special behavior of hyperplanes. Property (2)
can be relaxed to include all subcomplexes if one ignores inter-osculating
hyperplanes (i.e., every subcomplex of an A-special cube complex also
avoids self-intersecting, one-sided and self-osculating hyperplanes).

The “locally convex” requirement in Property (2) is a technical con-
dition that is satisfied automatically for the state complexes. For NPC
cube complexes X and Y , local convexity can be reduced to the following
sufficient condition: for two vertices a and b in Lk[v] ∈ X, if φ(a) and
φ(b) are adjacent in Lk[φ(v)], then a and b were adjacent in Lk[v] to begin
with [22].

An important step in the classification of state complexes relative to
special complexes is to discern in which ways state complexes behave
similarly to special complexes (or not). Hence, we now examine analogous
statements for state complexes.

4.2.1. Finite products. As is the case for special cube complexes,
the property “state” is preserved under finite products. When passing
to infinite products, although the presence of countably many factors in
itself does not prevent the product from being state, we lose some of
the underlying structure that was exploited earlier (e.g., the finite shapes
condition and a complete, geodesic metric) [9].

Theorem 4.8. A finite product of state complexes is a state complex.

Proof. By induction it suffices to show that the product of two state
complexes is state. Suppose X and Y are state complexes for reconfig-
urable systems with, respectively, domain graphs GX and GY , alphabets
AX and AY , generators {φi}i∈I and {ψj}j∈J , and states {xm}m∈M and
{yn}n∈N . We must define the reconfigurable system whose state complex
S is isomorphic to X × Y . Informally speaking, to define this system we
will essentially take the disjoint union of the underlying systems (though
adapting the generators of the individual systems appropriately requires
a bit of care).

The alphabet for the system is AX ∪AY and the domain graph is the
disjoint union GX qGY . States are ordered pairs of the form (xm,yn). It
is clear that vertices in X × Y correspond exactly to these states. Gener-
ators for the system are of the form φi = (φi, 1) and ψj = (1, ψj), where 1
denotes the identity in its factor. The supports and traces for generators
are defined as follows:

φi :

{
tr(φi) = tr(φi) ⊆ GX
sup(φi) = sup(φi) ⊆ GX

, ψj :

{
tr(ψj) = tr(ψj) ⊆ GY
sup(ψj) = sup(ψj) ⊆ GY .
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This implies that the generator φi is admissible at the states (xm,−),
where xm is some state at which φi is admissible. Similarly, ψj is admis-
sible at (−,yn), where ψj is admissible at yn. Hence, the action of φi on
state (xm,yn) is defined by

φi
[
(xm,yn)

]
= (φi, 1)

[
(xm,yn)

]
=
(
φi[xm],yn

)
which is a state in X × Y because φi[xm] = xm′ is a state in X. Analo-
gously, the action of ψj on (xm,yn) is defined by

ψj
[
(xm,yn)

]
= (1, ψj)

[
(xm,yn)

]
=
(
xm, ψj [yn]

)
.

Since an edge in X × Y is the product of an edge in X with a vertex
in Y (or vice versa), every edge in X × Y corresponds to the action of
a generator of the form φi or ψj at an admissible state. Further, since
admissibility and generator actions in the system are defined precisely as
they were inX and Y , two states (xm,yn) and (xm′ ,yn′) are adjacent in S
if and only if either (xm′ ,yn′) = (xm, ψj [yn]) or (xm′ ,yn′) = (φi[xm],yn).
That is, if and only if exactly one component of each state was adjacent
in X or Y originally. This gives an isomorphism between the 1-skeleton
of X × Y and the 1-skeleton of S.

To see that the isomorphism extends to higher dimensional cubes, note
that the domains GX and GY are disjoint, hence tr(φi) ∩ sup(ψj) = ∅
(and vice versa) for all i and j. This implies that φi commutes with ψj
whenever they are both admissible; this is precisely at the states (xm,yn)
which admit edges corresponding to the generators φi and ψj . We also
see from the definitions that φi commutes with φi′ if and only if φi and
φi′ commute, with a similar statement holding for generators ψj and ψj′ .
Combining these facts (and reindexing generators if necessary), we arrive
at the following:
l∏
i=1

φi×
k−l∏
j=1

ψj is a k-cube in X×Y ⇐⇒
l∏
i=1

φi×
k−l∏
j=1

ψj is a k-cube in S,

where l ∈ {0, 1, . . . , k}. This establishes the isomorphism between X × Y
and S. �

Remark 4.9. A similar result holds when “finite product” is replaced by
“finite wedge product.” In fact, the underlying reconfigurable system is
even easier to describe for a wedge of two state complexes than for the
product above: it is effectively a disjoint union of the two systems, with
appropriate adjustments made to ensure commutativity is maintained ex-
actly as in the original complexes. Details appear in [28].

We now demonstrate that, in terms of the properties in Proposition
4.7, the similarities between state and special complexes end here.
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4.2.2. Subcomplexes. Unlike the property “special,” which is preserved
when passing to (locally convex) subcomplexes, it is possible to remove
cells in a state complex in such a way as to destroy the interactions be-
tween generators, resulting in subcomplexes that are not themselves state.

Proposition 4.10. There exist NPC, locally convex subcomplexes of state
complexes that are not state.

Proof. Recall the non-state complex Y of Theorem 4.1, and let Y denote
the extended version of Y pictured in Figure 18. Readers may verify that
Y is a state complex. (One possible reconfigurable system generating Y
has an underlying graph with three vertices, and there are five distinct
generators for the system. Note that both pairs of vertical edges in the
complex Y must represent a single generator to resolve the obstruction
described in the proof of Theorem 4.1.) Checking vertex links confirms
that Y is NPC. We verify that Y is a locally convex subcomplex of Y by
looking at links of vertices of Y under the inclusion Y → Y . The only
vertices of Y that have different links in Y are the two vertices at which
the middle square and bottom square of Y meet. The link of either vertex
in Y is a single edge; in Y is two disjoint edges. Since the former is a full
subcomplex of the latter, the inclusion Y → Y is a local isometry. Thus,
we have found an NPC, locally convex subcomplex Y of a state complex
Y that is not state. �

Figure 18. Y is a state complex with a subcomplex that
does not inherit its state structure.

This example is not pathological; one may construct a number of other
examples by deleting subcomplexes of existing state complexes. State
complexes do, however, possess a number of natural subcomplexes that
are themselves state, including hyperplanes themselves and carriers of
hyperplanes [28].
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4.2.3. Finite covers. We now show that, unlike special complexes,
a state complex may possess finite covers that are not state. This is
somewhat surprising in light of the fact that all previously examined ob-
structions to realization can be resolved by taking a two-sheeted cover
of the illegal complex. That is, all previous non-state complexes were at
least virtually state. To see this, we return to our first example of an
A-special complex that is not state: the complex X of twisted squares
from Theorem 4.1.

It is important to note here that altering the combinatorial structure
of X (e.g., subdividing the edges and faces to regard a single square as
comprised of four smaller squares, etc.) does not resolve the issue of
commutativity; conflicts between generators simply propagate to these
subdivided generators. In addition, notice that no state complex may
contain a copy of X (or any subdivision thereof) as a subcomplex. The
presence of this complex in the state complex would imply that the par-
ticular generators and states giving rise to it are also present and related
in this manner, which we have seen violates the definition of a reconfig-
urable system. Moreover, the conflict between the supports and traces
of two particular generators is independent of their commutativity with
other generators, meaning that this obstruction to being state persists
even when the squares of X are faces of higher dimensional cubes. Put
simply, this relationship between generators cannot exist in any reconfig-
urable system. We therefore have the following.

Lemma 4.11. No state complex may contain the complex X of Theorem
4.1 as a subcomplex.

This fact may be combined with the following “canonical completion and
retraction” construction of Haglund and Wise in order to show that state
complexes may possess non-state covers.

Theorem 4.12 ([22]). Let B be an NPC special cube complex with sim-
plicial 1-skeleton and let X be any cube complex. If there exists a local
isometry f : X → B then there is a covering p : C → B, an embedding
j : X → C and a cellular map r : C → X so that f = pj and rj = 1X .
That is, there exist maps such that the following diagram commutes:

C

p

��r
xxppp

ppp
ppp

ppp
p

X

j

88ppppppppppppp

f
// B
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Theorem 4.13. There exists a state complex with a finite cover that is
not state.

Proof. Let X denote the complex of twisted squares (Figure 9, left). Let
ΓX denote the graph whose vertices are distinct hyperplanes H in X
and whose edges correspond to pairs of intersecting hyperplanes in X.
We construct the Artin complex associated to ΓX as in Definition 3.12; in
this case, it is possible to describe Art(ΓX) explicitly. Since X consists of
two squares which share no edges, X has two distinct pairs of intersecting
hyperplanes. Thus, Art(ΓX) contains one vertex, a loop for each of the
four hyperplanes of X, and two squares, disjoint except for their shared
vertex. Art(ΓX) is therefore a wedge of two 2-tori. Since X is special,
there is a local isometry from X to Art(ΓX), as per Theorem 3.13.

In order to apply the canonical completion and retraction of Theorem
4.12, we now subdivide Art(ΓX) to obtain a cube complex with simplicial
1-skeleton.7 Adding two vertices to each loop suffices; each loop is now a
simplicial cycle of length three. Extending this subdivision to squares in
the obvious way yields a complex with a refined cubical structure which
is topologically identical to the original complex. This subdivision on
Art(ΓX) naturally pulls back to X to give an associated subdivision of
edges and squares there. By a minor abuse, X and Art(ΓX) will now
refer to these subdivided complexes.

Note that Art(ΓX) is non-positively curved. Prior to subdivision, ex-
amining the single vertex v reveals that the link of v is a flag complex;
Lk[v] consists of two disjoint cycles with four edges each. Upon subdivid-
ing, the link of v remains the same, and it is easily verified that the new
vertices of Art(ΓX) have flag links as well. Therefore, by Theorem 3.4,
Art(ΓX) is a state complex: it is an NPC subcomplex of the product of
four copies of the (simplicial) graph S1. (This follows as well from Re-
mark 4.9, since each torus is itself state, being a subcomplex of a product
of simple graphs.) This implies in particular that Art(ΓX) is A-special.
Since both X and Art(ΓX) have simplicial 1-skeleta, Theorem 4.12 im-
plies that there exists a covering space C = C(Art(ΓX), X) → Art
into which X embeds as a subcomplex. That is, the following diagram
commutes:

7It is possible to avoid this subdivision by instead taking a finite cover of Art(ΓX)
that has simplicial 1-skeleton. This is because Art(ΓX) is a compact, A-special cube
complex and therefore has residually finite fundamental group. Such a complex has
a CAT(0) universal cover, which must be simplicial, but the residual finiteness yields
a finite cover through which the universal cover factors in a way that preserves the
simplicial structure (see [22] for details). Showing that a subdivided complex remains
a state complex, however, is easier than showing that a particular finite cover is state,
so we opt for the subdivision route here.
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C
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X

j
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f
// Art(ΓX)

Further, C is a finite cover of index ≤ k, where k is the number of
vertices of X [22]. This yields a finite cover of a state complex that
contains an embedded copy of the illegal subcomplex X and therefore
cannot be state. �

Certainly it is the case that many finite covers of state complexes are
again state complexes (in appropriately tidy settings, a “doubling” of the
underlying system, with adjustments made to avoid adding extra commu-
tativity, is a tractable solution), but the previous theorem suggests some
subtlety exists in any program attempting to classify complexes as virtu-
ally state. The hope of realizing some or all special complexes as virtually
state stems from the following. As mentioned earlier, special cube com-
plexes were constructed in an effort to generalize clean VH-complexes. A
result of Wise [32] shows that all such complexes have some finite cover
that embeds in a product of two graphs; hence, all clean VH-complexes
are virtually state by Theorem 3.4. Generalizing this directly – showing
that all special cube complexes have finite covers that embed in some
product of n graphs – seems overly optimistic, but there may be ways to
generalize Wise’s approach, possibly realizing a subset of state or special
complexes as having an inherent graph of spaces structure (as clean VH-
complexes have a natural graph of graphs structure, as was exploited in
[32]). In any case, it is clear there is much still to be investigated.
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