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COMPLETELY ULTRAMETRIZABLE SPACES
AND CONTINUOUS BIJECTIONS

W. R. BRIAN

Abstract. We say that two topological spaces are similar when
each admits a continuous bijection onto the other. We will explore
the similarity relation for spaces that can be represented as ω-
length trees, namely the completely ultrametrizable spaces. We will
prove that the separable, perfect, completely ultrametrizable spaces
(i.e., the perfect zero-dimensional Polish spaces) come in exactly
three similarity classes. The non-separable, perfect, completely
ultrametrizable spaces are less tame, but we will show that, under
the assumption of the Continuum Hypothesis, those of size c come
in exactly four similarity classes.

1. Introduction

This paper began as a short note about zero-dimensional Polish spaces
and continuous bijections between them. The germ from which the paper
grew is given below as Theorem 3.2: if X is a zero-dimensional Polish
space and is not σ-compact, then there is a continuous bijection X → N
(here, as elsewhere, we use N to denote the Baire space ωω). This result,
while new, has the same flavor as several classical results. For instance, it
is known that every Polish space is the continuous image of N , and that
every perfect Polish space is the image of N under a continuous bijection.
Our result shows that these properties are not unique to N .

Every zero-dimensional Polish space can be represented as a tree, in
a sense to be made precise in Section 2. The aforementioned results
have proofs with a partly combinatorial flavor, with these trees playing
a prominent part. One aim of this paper is to determine how well these
proof techniques can be extended beyond the realm of zero-dimensional
Polish spaces.
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234 W. R. BRIAN

The class of spaces we study here is the class of completely ultrametriz-
able spaces, which are precisely the spaces representable as ω-length trees.
The zero-dimensional Polish spaces are simply the spaces corresponding
to countable trees.

It turns out that many of the techniques useful for the countable trees
of Polish spaces work just as well for uncountable trees (although not for
arbitrarily large trees: as we will see in Section 5, the situation is more
complicated for trees of size ℵω and larger). Certain aspects of these
proofs become more intricate in the non-separable case. Indeed, it is with
the uncountable trees that we begin to run into questions of consistency
and independence. Everything proved below about Polish spaces is proved
in ZFC, but we very quickly begin to require extra hypotheses for our
results about spaces arising from uncountable trees.

A condensation is a continuous bijection. If there is a condensation
X → Y , we also say that Y is a condensation of X and that X condenses
onto Y . Up to a relabeling of the underlying set, a topological space
Y is a condensation of X if and only if X can be obtained by refining
the topology of Y . We say that X and Y are similar or have the same
similarity type if and only if each is a condensation of the other. This
definition is essentially due to Sierpiński (see [19], pp. 151-152), although
he uses the term “γ-type” instead. The similarity relation is an equivalence
relation on topological spaces, and the equivalence classes are naturally
partially ordered by the relation

[X] ≤ [Y ] ⇔ there is a condensation Y → X.

Intuitively, this can be viewed as an ordering of topologies with respect
to their complexity. We will call this partial ordering of similarity classes
the condensation relation.

The theme of this paper is to study the similarity and condensation
relations in the class of completely ultrametrizable spaces. Because we
focus on bijective maps, we will restrict out attention to spaces of the
same size: we will mostly consider spaces of size c.

We will show in Section 3 that the perfect zero-dimensional Polish
spaces divide into exactly three similarity classes, and that these classes
are linearly ordered by the condensation relation. While only two theo-
rems of this section (Theorems 3.2 and 3.7) are new, this section serves
as a motivation, and in some sense a prototype, for what follows.

Section 5 is devoted to a combinatorial result about trees. Sections 4
and 6 explore the similarity and condensation relations for non-separable
completely ultrametrizable spaces. We will show in Section 4 that CH
implies that there are exactly four similarity types of perfect completely
ultrametrizable spaces, and that these four types are linearly ordered by
the condensation relation. Section 6 investigates what can be proved in
ZFC.
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2. Notation and Preliminaries

In what follows, we will use the Greek letters κ and λ for cardinal num-
bers, as is customary, but we will also use them for the discrete topological
spaces of size κ and λ, respectively. Which is intended should always be
clear from context. We will use the symbols ℵ0, ℵ1, etc., and c as cardi-
nals. The symbols ω, ω1, etc., and c will denote both the corresponding
ordinals and the discrete topological spaces of a given cardinality. An or-
dinal will always carry the discrete topology (except in one proof below,
where the exception is made explicit).

A space is σ-compact if it is a countable union of compact spaces.
A space is zero-dimensional if it has a basis consisting of clopen sets.
A space is perfect if it has no isolated points. A space is completely
ultrametrizable if there is a complete ultrametric that generates its
topology. In this paper we deal with completely ultrametrizable spaces,
rather than complete ultrametric spaces, as a way of emphasizing that
our results are topological and do not depend on a particular metric. A
space is Polish if it is separable and completely metrizable. The weight
of a topological space is the least size of a basis for that space.

In the context of this paper, a tree is a connected, nonempty, infinite
graph with no simple closed paths (an infinite tree in the sense of graph
theory), together with a distinguished node called the root. Any two
nodes of a given tree are connected by exactly one path. If T is a tree
and s, t ∈ T , we say that t extends s if the unique path from the root to
t goes through s. In any given tree, we denote the extension relation by
≤.

The extension relation allows us to think of trees as partial orders, and
it also allows us to think of certain partial orders as trees. For example,
the set 2<w of finite 0-1 sequences is a tree, where the empty sequence is
the root and s ≤ t if and only if t extends s as a sequence. In what follows,
κ<ω denotes the set of finite sequences in κ with its natural structure as
a tree.

Two nodes of a tree T are incomparable if neither one extends the
other. A tree is pruned if each of its elements has a proper extension, and
is perfect if each of its elements has two incomparable proper extensions.
In what follows, a “tree” will always mean a pruned, nonempty tree.

A subtree of a tree T is any subset S of T such that s ∈ S whenever
t ∈ S and t extends s; equivalently, a subtree of T is a subset of T that is
also a tree (with the same root).

If T is a tree and s is a node of T , then

Ts = {t ∈ T : t ≤ s or s ≤ t}
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is the set of all nodes of T that compare with s under the extension
relation. If s � t and there is no r such that s � r � t, then t is a child
of s. Notice that if t ∈ T then t is an extension of s if and only if there
is some sequence 〈si : i ≤ n〉 of nodes such that s = s0, t = sn, and each
si+1 is a child of si.

In every tree T , there is a unique path from the root to a given node.
This naturally divides T into levels. We say that a node s is at level
n, denoted lev(s) = n, if the unique path from the root to s has n + 1
elements. Thus the root is the unique node at level 0, the children of the
root are all at level 1, etc. We write Levn(T ) for {s ∈ T : lev(s) = n}.

A branch of a tree T is an infinite sequence x of nodes in T such that
x(0) is the root and x(n + 1) is a child of x(n) for every n. [[T ]] is the
set of all branches of T . [[T ]] has a natural topology defined by taking
{[[Ts]] : s ∈ T} to be a basis. In other words, each node of T represents a
basic open subset of [[T ]], namely the set of all branches in [[T ]] that pass
through that node. Clearly [[Tt]] ⊆ [[Ts]] if and only if t extends s, and
[[Ts]] ∩ [[Tt]] = ∅ if and only if s and t are incomparable. From this it is
not hard to see that [[T ]] is Hausdorff, and also that each [[Ts]] is a clopen
subset of T , making [[T ]] zero-dimensional.

Proposition 2.1. If T is a (perfect) tree, then [[T ]] is a (perfect) com-
pletely ultrametrizable space. If X is a (perfect) completely ultrametrizable
space, then there is a (perfect) tree T such that [[T ]] ∼= X.

Proof. A thorough treatment of this well-known result can be found in
[8]. We sketch a proof here for completeness.

If T is a tree and x, y ∈ [[T ]], define d(x, y) = inf
{

1
2n : x(n) = y(n)

}
.

One can check that this is a complete ultrametric that generates the
topology of [[T ]]. Conversely, if d is a fixed ultrametric on X, then{
B 1

2n
(x) : x ∈ X

}
is, for every n, a partition of X into clopen sets. Tak-

ing T =
{
B 1

2n
(x) : x ∈ X and n < ω

}
, ordered by inclusion, one obtains

a partial order that gives rise to a tree T . If d is also complete, it is
straightforward to check that [[T ]] ∼= X. �

In fact, many equivalent characterizations beyond Proposition 2.1 can
be given for this class of spaces. Completely ultrametrizable spaces are
precisely the completely metrizable spaces with large inductive dimen-
sion 0 (see [5]); they are precisely the metrizable, zero-dimensional, Čech-
complete spaces (see [12], Corollary 5); they are precisely the inverse limits
over ω of discrete topological spaces (this is implicit in the tree represen-
tation; also see [11]). A characterization in terms of domain theory is
given in [20].
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We will say that a space X is represented by a tree T whenever
X ∼= [[T ]]. Thus Proposition 2.1 can be rephrased by saying that the (per-
fect) completely ultrametrizable spaces are precisely those representable
by (perfect) trees. It is worth pointing out that the countable trees cor-
respond exactly to the separable spaces, and the spaces representable by
(perfect) countable trees are precisely the (perfect) zero-dimensional Pol-
ish spaces. For a proof of this and countless examples of how trees can
be used to prove interesting results about Polish spaces, see [9].

The following proposition outlines some basic facts about trees. Here
and throughout, we use N to denote the Baire space ωω and we use C to
denote the Cantor space 2ω. The three spaces C, ω × C, and N will play
a special role in the analysis of Section 3.

Proposition 2.2.
(1) For all cardinals κ, [[κ<ω]] ∼= κω. In particular, [[2<ω]] ∼= C and

[[ω<ω]] ∼= N .
(2) The map T 7→ [[T ]] is a bijection between possibly empty (perfect)

subtrees of κ<ω and closed (perfect) subsets of κω. Its inverse
map is given by

F 7→ TF = {x�n : x ∈ F, n ∈ ω} .

(3) If S is a subtree of T , then [[S]] is a closed subset of [[T ]]. Con-
versely, if C is a closed subset of [[T ]] then there is a subtree S of
T such that C = [[S]].

Proof. A version of this lemma for countable trees is found in Chapter 2
of [9]. The extension to uncountable trees is straightforward. �

The space κω, which can be viewed as a generalization of the Baire
space and is sometimes denoted B(κ), is well studied. For example, a
non-separable version of the theory of Borel and analytic sets has been
developed in which κω plays the role of N ; see [6] for details.

The following definitions and lemmas are an adaptation of material
from [9], pp. 36-37.

Let T be a tree and let X be a topological space. A T -scheme on X
is a family (Bs)s∈T of subsets of X such that

• Bt ⊆ Bs whenever t is an extension of s.
• Bs ∩Bt = ∅ whenever s and t are incompatible.

If d is a metric on X then (Bs)s∈T has vanishing diameter (with
respect to d) if limn→∞ diam(Bx(n)) = 0 whenever x ∈ [[T ]]. If X
is a metric space and (Bs)s∈T is a T -scheme with vanishing diameter,
then let D =

{
x ∈ [[T ]] :

⋂
n∈ω Ax(n) 6= ∅

}
and define f : D → X by

{f(x)} =
⋂
n<ω Bx(n). We call f the associated map.
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Lemma 2.3. Let (Bs)s∈T be a T -scheme with vanishing diameter on a
metric space (X, d). If f : D → X is the associated map, then

(1) f is injective and continuous.
(2) if Bs =

⋃
{Bt : t is a child of s} for all s ∈ T , then f is surjec-

tive.

Proof. Part (1) is straightforward. For part (2), pick any x ∈ X. By the
definition of a T -scheme, there is, for every n, at most one s ∈ T with
lev(s) = n such that x ∈ Bs. By the hypothesis of (2), together with a
simple induction, there is, for every n, exactly one s ∈ T with lev(s) = n
such that x ∈ Bs. Moreover, it is clear that the sequence enumerateing
these nodes forms a branch y of T . But then

⋂
n∈ω By(n) = {x}, i.e.,

f(y) = x. �

3. Motivation: Polish spaces

In this section we will see precisely how the similarity relation behaves
for perfect zero-dimensional Polish spaces. We will prove that these spaces
come in exactly three similarity types: the non-σ-compact spaces, the σ-
compact but not compact spaces, and the (unique) compact space C. To
avoid trivialities, we assume throughout this section that all our spaces
are infinite. The following facts about Polish spaces will be useful:

Proposition 3.1.
(1) N is, up to homeomorphism, the unique zero-dimensional Polish

space in which no nonempty open set is compact.
(2) N is not σ-compact. In fact, a Polish space fails to be σ-compact

if and only if it contains a closed set homeomorphic to N .
(3) A nonempty Polish space is perfect if and only if it is a conden-

sation of N .
(4) C is the unique compact, zero-dimensional, perfect Polish space.

Every compact Polish space is a continuous image of C.
(5) Every open subset of C is homeomorphic either to C or to ω × C.

Proof. (1)-(4) can be found in [9]: they are, respectively, Theorem 7.7,
Theorem 7.10, Exercise 7.15, and Theorems 4.18 and 7.4. (5) could be
considered an exercise, but we will give a proof here.

Let X be an open subset of [[2<ω]] ∼= C. Let

A =
{
s ∈ 2<ω : [[2<ωs ]] ⊆ X and if t � s then [[2<ωt ]] 6⊆ X

}
.

Clearly [[2<ωs ]] ∼= C for every s ∈ T . Furthermore, it is easily checked that
X =

⋃
{[[2<ωs ]] : s ∈ A}, and that this is a disjoint union. If A is finite

then X is a copy of C, and if not then X is a copy of ω × C. �
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Theorem 3.2. If X is a non-σ-compact, zero-dimensional Polish space,
then N is a condensation of X.

Proof. This theorem is a special case of Theorem 6.8, whose proof will be
postponed until Section 6. �

Given Lemma 3.1(3), the previous theorem implies that all non-σ-
compact perfect zero-dimensional Polish spaces have the same similarity
type. We will now look at the σ-compact spaces and prove that these too
are all equivalent up to similarity.

Lemma 3.3. Let X be any perfect Polish space, and let K ⊆ X be zero-
dimensional and compact. Then there is a C ⊆ X such that C ⊇ K and
C ∼= C.
Proof. If K has no isolated points then there is nothing to prove. By
Proposition 3.1(4). Let {xn : n ∈ ω} be the set of isolated points of K
(replace ω with N if K has finitely many isolated points). Let

εn = min

{
1

2n
,
1

2
· d(xn,K \ {xn})

}
for each n ∈ ω. Since X is perfect, we can find for each n a copy Cn of
the Cantor set such that xn ∈ Cn ⊆ B(xn, εn). It is straightforward to
check that C = K ∪

⋃
n∈ω Cn is compact (use the fact that compactness

is equivalent to sequential compactness for metric spaces). Since C is also
perfect and metrizable, C ∼= C by Proposition 3.1(4). �

Proposition 3.4. Every zero-dimensional, σ-comapct, perfect Polish
space is a condensation of ω × C.
Proof. Because C is a compact Hausdorff space, the only condensation of
C onto a Hausdorff space is the identity map. A condensation of ω×C can
be viewed as a countable union of such maps, so a Hausdorff space X is a
condensation of ω × C if and only if it can be partitioned into countably
many copies of C.

Let X be zero-dimensional, σ-compact, perfect, and Polish. If X is also
compact then X ∼= C. By Proposition 3.1(4), C ∼= (ω+1)×C, where ω+1
is given its usual order topology, so C can be partitioned into countably
many copies of C.

Assume that X is not compact. Let X =
⋃
n∈ω Cn, with each Cn

compact. By Lemma 3.3, we may assume that each Cn is a Cantor set.
Replacing Cn with

⋃
m≤n Cm if necessary, we may also assume that C0 ⊆

C1 ⊆ C2 ⊆ . . . . By deleting any Cn with Cn = Cn−1, we may also assume
that all the Cn are distinct. Since X is not compact, this deletion still
leaves infinitely many sets. In summary, we may write X as a strictly
increasing union of infinitely many Cantor sets.
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Let D0 = C0 and let Dn = Cn \ Cn−1 for all n > 0. By Proposi-
tion 3.1(5), every Dn is either a copy of C or a copy of ω × C. Thus we
have found a way to partition X into countably many copies of C, and
this finishes the proof. �

Proposition 3.5. If X is a perfect, zero-dimensional Polish space, then
C is a condensation of X.
Proof. See [11] or [16]. Also, a more general version of this result is proved
as Theorem 4.1 below. �

Corollary 3.6. If X is a perfect, zero-dimensional, non-compact Polish
space, then ω × C is a condensation of X.
Proof. If X is not compact then one may partition X into countably
many disjoint clopen subsets. For example, if T representsX then T is not
finitely branching, so Levn(T ) is infinite for some n, and {[[Ts]]: s∈Levn(T )}
gives the required partition. Applying Proposition 3.5 to each partition
element individually finishes the proof. �

Proposition 3.4 and Corollary 3.6 together show that all σ-compact
perfect zero-dimensional Polish spaces other than C are similar. We can
summarize the results of this section, together with the well known classi-
cal results listed in Proposition 3.1, in the following diagram. Solid arrows
indicate the existence of a condensation, and dotted arrows indicate the
existence of a continuous surjection. All spaces referred to in the diagram
are nonempty and Polish.

zero-dimensional,
not σ-compact

N zero-dimensional,
perfect, not σ-compact

all

zero-dimensional, perfect,
σ-compact, non-compactω × C

σ-compact

C

compact



COMPLETELY ULTRAMETRIZABLE SPACES 241

Neither of the downward pointing solid arrows can be reversed. For the
bottom arrow, this is because ω×C is not compact, but a continuous image
of C is. Similarly, the top arrow cannot be reversed because every contin-
uous image of ω × C is σ-compact, and N is not by Proposition 3.1(2).
We have now proved the following theorem:

Theorem 3.7. There are precisely three similarity classes of perfect zero-
dimensional Polish spaces. They are the class of non-σ-compact spaces,
the class of σ-compact spaces other than C, and the class containing only
the space C. Furthermore, these classes are naturally totally ordered by
the condensation relation.

In other words, if we consider only the perfect zero-dimensional spaces
then the above diagram collapses down to the following rather simple
diagram:

not
σ-compact

σ-compact,
not compact C

We will show in Section 4 that, if the Continuum Hypothesis is as-
sumed, then this diagram extends in the simplest possible way to the
analogous class of non-separable spaces.

4. The picture under CH

In this section we will extend the results of Section 3 to non-separable
spaces using the Continuum Hypothesis. Since we are studying (con-
tinuous) bijections, it is convenient to fix the cardinality of our spaces.
Henceforth, a tree space will be a completely ultrametrizable space of
size c. The name is justified by Proposition 2.1, which we use frequently
below.

Under CH, the simplest imaginable picture emerges: there are exactly
four similarity types of perfect completely ultrametrizable spaces, and
these are ordered by the condensation relation. Not every result of this
section uses CH, and we will explicitly label all those that do.

First, we note that Proposition 3.5 admits a generalization to uncount-
able trees:

Theorem 4.1. Suppose C can be partitioned into κ homeomorphic copies
of C for every κ ≤ λ. If T is a perfect tree with λ nodes, then C is a
condensation of [[T ]].

Proof. If C can be partitioned into κ homeomorphic copies of C (with κ
infinite), then it can be partitioned into κ copies of C all with diameter
less than any prescribed ε > 0. This is because we can first partition C
into finitely many copies of C, each smaller than ε, and then each of these
(or one of these) can be further partitioned into κ copies of C.
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Let T be a perfect tree with λ nodes. By Lemma 5.2 below, we may
assume that, for every s ∈ T , either [[Ts]] is compact or s has infinitely
many children.

We will prove the existence of a condensation [[T ]] → C by finding an
appropriate T -scheme (Bs)s∈T in C. The T -scheme will be defined by
recursion for those s ∈ T with [[Ts]] non-compact, and directly when [[Ts]]
is compact. Moreover, each Bs will be homeomorphic to C.

Fix a metric d for C. To begin, let B∅ = C (where ∅ represents the
root of T ). Assume now that Bs has been defined for some s ∈ T , that
Bs ∼= C, and that Bt has not yet been defined for any child t of s.

If [[Ts]] is compact, then, because T is a perfect tree, [[Ts]] ∼= C ∼= Bs.
Fix a homeomorphism g : [[Ts]]→ Bs, and, for every t ∈ T that propertly
extends s, set Bt = g([[Tt]]).

If [[Ts]] is not compact, it follows from our choice of T that s has infin-
itely many children. Label these {s_α : α < κ}, where κ ≤ λ. There is a
partition {Cα : α < κ} of Bs such that Cα ∼= C and diam(Cα) <

1
lev(s)+1

for each α. Set Bs_α = Cα for all α.
This defines, by recursion, a T -scheme in C. It is easily checked that

(Bs)s∈T has vanishing diameter. It is obvious from our construction that
B∅ = C and Bs =

⋃
{Bt : t is a child of s} for every s ∈ T . Furthermore,⋂

n∈ω Bx(n) 6= ∅ for every x ∈ [[T ]] because this is a nested intersection of
Cantor sets. It now follows from Lemma 2.3 that the associated map of
(Bs)s∈T is a continuous bijection. �

Corollary 4.2. Assuming CH: If X is a perfect tree space then C is a
condensation of X.

Proof. C can be partitioned into ℵ0 copies of C (because C ∼= (ω+1)×C)
and into c copies of C (because C ∼= C × C). Thus the result follows from
the previous theorem. �

Arnie Miller has proved it consistent with ZFC that there is a partition
of C into ℵ2 closed sets when c = ℵ3 (see [13], Theorem 4). On the other
hand, Miller also proved it consistent with c = ℵ3 to have no partitions of
C into ℵ2 closed sets (see [14], Theorem 3.7). Actually, Miller proves this
for Borel sets, and the special case of closed sets follows from the earlier
Shelah-Fremlin Theorem (see [3]). Noting a space X is a condensation of
κ×C if and only if it can be partitioned into κ copies of C, it is consistent
that C is not a condenstaion of every perfect completely ultrametrizable
space. In other words, Proposition 3.5 becomes a consistency result when
we leave the realm of separable spaces.
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Theorem 4.3. Assuming CH: If X is a non-separable tree space, then
ωω1 is a condensation of X. If, in addition, X is perfect, then X is a
condensation of ωω1 .

Proof. Let X be a non-separable tree space, and let T be a tree repre-
senting X. To prove the first assertion of the theorem, we will show that
ω1 × C is a condensation of X and that ωω1 is a condensation of ω1 × C.
Since a composition of condensations is a condensation, this is enough.

Note that |T | = ℵ1 because X is non-separable. Therefore there is
some n such that |Levn(T )| = ℵ1. By Corollary 4.2, there is for every
s ∈ Levn(T ) a condensation fs : [[Ts]] → {s} × C. Then

⋃
s∈Levn(T ) fs

is a condensation from [[T ]] to Levn(T ) × C, where Levn(T ) is given the
discrete topology. Thus ω1 × C is a condensation of X.

By Exercise 7.2.G in [2], ωω1 ∼= ωω1 ×C. Since |ωω1 | = ℵ1 under CH, this
shows that ωω1 can be partitioned into ℵ1 copies of C. This is the same as
saying that ωω1 is a condensation of ω1 × C. This completes the proof of
the first assertion.

For the second assertion, first note that every perfect Polish space is
a condensation of ωω1 . This follows from Proposition 3.1(3) and Proposi-
tion 4.6 below. Using this fact, we will now prove the second assertion of
the theorem using a scheme argument.

Let X be a perfect, non-separable, completely ultrametrizable space
and let T be a tree that represents X. By Lemma 5.2, we may assume
that every node s of T has exactly |Ts| children. We will build a ω<ω1 -
scheme (Bs)s∈ω<ω1

in [[T ]] by recursion.
Set B∅ = [[T ]]. Assume now that Bs has been defined and is equal to

[[Tt]] for some node t ∈ T . If [[Tt]] is Polish, then [[Tt]] is a condensation
of ωω1 ∼= [[(ω<ω1 )s]] (as above, every perfect Polish space is a condensation
of ωω1 ). Let g : [[(ω<ω1 )s]] → [[Tt]] be a condensation, and define Br =
g([[(ω<ω1 )r]]) for every extension r of s. If [[Tt]] is not Polish, then t has ℵ1
children in t by our choice of T . Enumerating these as {tα : α < ω1}, we
let Bs_α = [[Ttα ]]. This recursion defines a ω<ω1 -scheme (Bs)s∈ω<ω1

.
Let x ∈ [[ω<ω1 ]]. If there is some n such that Bx(n) is Polish, then Bx(m)

is defined by some embedding g : Bx(n) → X for all m ≥ n. Because
g is an embedding, limm→∞ diam(Bx(m)) = 0 and

⋂
n∈ω Bx(n) = g(x).

If Bx(n) is never Polish, then (by an easy induction) Bx(n) = [[Ty(n)]] for
some y ∈ [[T ]] and every n. Since

{
[[Ty(n)]] : n < ω

}
is a local basis for y,

limn→∞ diam(Bx(n)) = 0 in this case too; also, clearly,
⋂
n∈ω Bx(n) = y.

Thus (Bs)s∈ω<ω1
has vanishing diameter, and

⋂
n∈ω Bx(n) 6= ∅ for every

x ∈ [[ω<ω1 ]]. Furthermore, it is clear from our construction that Bs =⋃
{Bt : t is a child of s} for every s ∈ ω<ω1 . It follows from Lemma 2.3

that the associated map of (Bs)s∈ω<ω1
is a condensation. �
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Corollary 4.4. Assuming CH: Any two perfect, non-separable tree spaces
are similar.

Proof. By the previous theorem, there are condensations f : ωω1 → Y and
g : X → ωω1 ; but then f ◦ g is a condensation X → Y . Similarly, there is
a condensation Y → X. �

We now see that there are, under CH, at most four similarity types of
perfect completely metrizable spaces. The next two propositions show,
respectively, that there are exactly four types, and that these types are
linearly ordered by the condensation relation. Each proposition actually
proves a stronger statement that does not depend on CH.

Proposition 4.5. If |S| < |T |, then there is no condensation [[S]]→ [[T ]].
In particular, there is no condensation N → ωω1 .

Proof. It is obvious that a condensation can never increase the cellularity
of a space, so it suffices to show that [[T ]] has cellularity greater than
[[S]]. Suppose |S| < |T |. |S|+ = κ is a regular uncountable cardinal. As
κ ≤ |T |, there is some n < ω with |Levn(T )| ≥ κ. Thus the cellularity of
[[T ]] is greater than the weight (hence the cellularity) of [[S]]. �

Proposition 4.6. If 2 ≤ κ ≤ c, then κω is a condensation of cω.

Proof. If 2 ≤ κ ≤ c then |κω| = c. Viewing c as a discrete topological
space, any bijection f : c → κω is also a condensation. Then fω : cω →
(κω)ω is also a condensation (here fω denotes the map (α0, α1, . . . ) 7→
(f(α0), f(α1), . . . )). Since (κω)ω ∼= κω, this finishes the proof. �

The following theorem and diagram summarize the results of this sec-
tion together with the results of Section 3.

Theorem 4.7. Assuming the Continuum Hypothesis, there are precisely
four similarity classes of perfect tree spaces. They are the class of non-
separable spaces, the class of separable non-σ-compact spaces, the class of
σ-compact spaces other than C, and the class containing only the space C.
Furthermore, these classes are naturally totally ordered by the condensa-
tion relation.

not
separable

separable but
not σ-compact

σ-compact but
not compact C

Given this theorem, one naturally asks whether it is always the case
that the similarity types of perfect completely ultrametrizable spaces are
totally ordered by the condensation relation. This is not so, and in fact a
consistent counterexample is easy to find:
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Proposition 4.8. If cov(meager) 6= ℵ1 (for example, if MA+¬CH holds),
then N and ω1 × C are incomparable under the condensation relation.

Proof. There is no condensation N → ω1×C by Proposition 4.5. If there
were a condensation ω1 × C → N , then N would be partitioned into ω1

homeomorphic copies of C. Since any compact subset of N is nowhere
dense by Proposition 3.1(1), this means that N is covered by ℵ1 meager
sets. This contradicts cov(meager) 6= ℵ1. �

Question 4.9. In general, what is the maximum (minimum) number of
similarity types of perfect completely ultrametrizable spaces for a given
value of c? For c = ℵ2?

The condensation relation on similarity types is not a well order in
general. It was shown by Sierpiński in [18] that there are uncountable
increasing and decreasing transfinite sequences of similarity types, even if
we restrict our attention just to countable metric spaces. However, it is
not clear how to generalize Sierpiński’s arguments to a consistency result
for perfect spaces. This consideration, together with Theorem 4.7, leads
to the following question.

Question 4.10. Is the condensation relation always (in every model of
ZFC) well-founded on the similarity classes of perfect completely ultra-
metrizable spaces? Is it consistent with large values of c that these simi-
larity classes are well ordered by the condensation relation?

5. Well-behaved tree representations

The main result of this section is a representation lemma for com-
pletely ultrametrizable spaces arising from trees of cardinality less than
ℵω. Roughly speaking, it states that every such space arises from a par-
ticularly nice-looking tree.

Let X be a completely ultrametrizable space of weight κ. For x ∈ X,
we say x ∈ Ker(X) if and only if every neighborhood of x contains a closed
copy of κω. If T is a tree representing X and s ∈ T , we say s ∈ Ker(T ) if
and only if [[Ts]] ∩Ker(X) 6= ∅.

The kernel of a tree T can be defined directly without reference to the
topology of [[T ]]. We leave the details of this to the interested reader. For
an example of this in the special case that T is countable, see [4] or [10].

Lemma 5.1. If T is a tree and ε > 0, then every open subset of [[T ]] can
be written as a disjoint union of clopen sets of diameter at most ε (with
respect to any fixed metric on [[T ]]).
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Proof. Fix a metric on [[T ]] and an open U ⊆ [[T ]]. Let us say that s ∈ T
is “nice” if [[Ts]] ⊆ U and diam([[Ts]]) ≤ ε. Let A be the set of all s ∈ T
such that s is nice but does not properly extend any other nice node. It is
straightforward to verify that {[[Ts]] : s ∈ A} is the required set of clopen
sets. �

Theorem 5.2. Let X be a completely ultrametrizable space with weight
κ < ℵω. There is a tree T representing X such that

(1) for all s ∈ T with infinitely many children, if t is an extension of
s then s has at least as many children as t.

(2) if s ∈ Ker(T ) then s has κ children.

Proof. Let S be any tree representing X, and let B denote the correspond-
ing basis for X; i.e., B = {[[Ss]] : s ∈ S}.

For each non-compact open subset U of X, let W (U) be the size of
the largest partition of U into clopen subsets. Every open set has such a
partition by Lemma 5.1, and it has a largest such because the weight of
X is less than ℵω. If ε > 0, then U has a partition into W (U) elements
of B of diameter less than ε. This is possible because, if U is partitioned
into W (U) open sets, then each of these can be further partitioned into
elements of B that are smaller than ε by Lemma 5.1.

To establish the first claim, we build a tree T by recursion. Let X be
the root of T . Assume U ∈ T has been defined as some clopen subset of
X. If U is compact, let U be a partition of U into finitely many clopen
sets, each at most half the diameter of U . If U is not compact, fix some
partition U of U into W (U) clopen sets, each at most half the diameter
of U . Then let U be the set of children of U in T . This defines a tree
T by recursion, and it is easy to see that the map x 7→

⋂
n∈ω x(n) is a

homeomorphism [[T ]]→ X.
If U, V ∈ T with U ⊆ V , then clearlyW (U) ≤W (V ) (if U is a partition

of U , then U ∪ {V \ U} is a partition of V that is at least as large). This
proves (1).

If U ∈ T , clearly U ∼= [[TU ]]. Using (1), the weight of U is W (U)
whenever U is not compact. If U ∈ Ker(T ) then U contains a closed copy
of κω. Thus the weight W (U) of U must be at least κ, which means it
must be exactly κ. This proves (2). �

Note: the phrase “with infinitely many children” can be removed from
(1) without making the above theorem false. Doing so complicates the
proof without adding to the usefulness of the theorem, so we leave this
improvement as an exercise. The following example shows that the car-
dinality restriction in the statement of Theorem 5.2 is necessary:
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Example 5.3. For each n, let Xn denote the ultrametric space ωωn , and
let ∞ be a point not in any Xn. Let X = {∞} ∪

⋃
n∈ωXn, and let

the basic open neighborhoods of ∞ be of the form {∞} ∪
⋃
n≥N Xn. It

is easy to show that X is a completely ultrametrizable space of weight
ℵω. It is also easy to see that any open cover of X has a subcover that
is strictly smaller than ℵω. If T is any tree representing X, it follows
from this fact that the root of T cannot have ℵω children (otherwise we
could get an open cover of X of size ℵω with no proper subcover). Let
|Lev1(T )| = κ < ℵω. Assuming the conclusion (1) of Theorem 5.2, every
node of T has at most κ children, in which case |T | = κ. This contradicts
the fact that the weight of X is ℵω.

6. Condensations to and from κω

Most of Section 4 was concerned with what can be proved from CH.
This section will attempt the more difficult question of what can be proved
in ZFC. The two main results are (1) N is a condensation of ωω1 (2) if
|T | = κ and Ker(T ) 6= ∅, then κω is a condensation of [[T ]].

If P is a partition of X such that every element of P is Borel, we
say that P is an element-Borel partition of X. This is not to be
confused with the well studied notion of a Borel partition. A partition
P is a Borel partition whenever the equivalence relation induced by P is
Borel in X2. In general, every Borel partition is element-Borel but not
every element-Borel partition is Borel. Silver shows in [17] that every
Borel equivalence relation in N 2 produces a partition on N that is either
countable or of size c. On the other hand, Hausdorff shows in [7] that
N always admits an element-Borel partition of size ℵ1. Thus there are
element-Borel partitions that fail to be Borel.

Lemma 6.1. Let κ be any cardinal. There is an element-Borel partition
of N of size κ if and only if N is a condensation of κ×N .

Proof. Suppose f : κ × N → N is a condensation. For each α ∈ κ, the
image of {α} × N is Borel in N . This follows from a theorem of Lusin
and Souslin, stating that the image of a Borel subset of a Polish space
under an injective Borel function is always Borel (see [9], Theorem 15.1).
Thus {f({α} × N ) : α ∈ κ} is an element-Borel partition of N of size κ.

Now suppose there is an element-Borel partition A of N of size κ. For
any Borel set A, there is a continuous bijection fA : FA → A, where FA is
some closed subset ofN (this too is a theorem of Lusin and Souslin; see [9],
Theorem 13.7). ThenA′ = {A×N : A ∈ A} is an element-Borel partition
of N ×N ∼= N . Furthermore, fA× id : FA×N → A×N is a continuous
bijection, and FA×N ∼= N by an application of Proposition 3.1(1). Taken
together, these maps give a condensation κ×N → N . �
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Theorem 6.2. Suppose N admits an element-Borel partition of size κ,
where κ is an infinite cardinal. Then N is a condensation of κω.

The author would like to thank Arnie Miller for the following simple
proof of this theorem.

Proof of Theorem 6.2. Suppose N admits an element-Borel partition of
size κ. By Lemma 6.1, there is a continuous bijection f : κ×N → N . Let
fω : (κ × N )ω → Nω denote the map (x0, x1, . . . ) 7→ (f(x0), f(x1), . . . ).
This function is continuous because it is coordinate-wise continuous.
Moreover, Nω ∼= N and (κ×N )ω ∼= κω by Exercise 7.2.G in [2]. �

Corollary 6.3. N is a condensation of ωω1 .

Proof. In [7], Hausdorff shows how to write R as the increasing union⋃
α<ω1

Xα of Gδ sets. This gives rise to an element-Borel partition of R
(and its co-countable subset N ) of size ℵ1. �

Recalling that N is homeomorphic to a co-countable subset of C, N can
be partitioned into κ Borel sets if and only if C can. Thus the results of
Miller discussed in Section 4 show that for ℵ1 < κ < c, it is not determined
by ZFC whether there is a κ-sized element-Borel partition of N . By a
result of Burgess, any such partition fails to be analytic in N 2 (see [1]
or Chapter 32 of [15]). Miller’s consistency results and Theorem 6.2 still
leave the following open:

Question 6.4. If κ < λ < c, is it always true that κω is a condensation
of λω?

The second result of this section, Theorem 6.8, states that, among all
weight-κ completely ultrametrizable spaces with nonempty kernel, κω is
minimal with respect to the condensation relation.

Let S and T be trees. A map φ : S → T is called monotone if s ≤ t
implies φ(s) ≤ φ(t). If φ : S → T is a monotone map, then φ induces an
S-scheme in [[T ]], namely ([[Tφ(s)]])s∈T . If f : [[S]] → [[T ]] is the associated
map of this S-scheme, we also say that f is the associated map of φ. The
following lemma is straightforward:

Lemma 6.5. If φ : S → T is an embedding of S into T that fixes the
root, then the associated map of φ is an embedding of [[S]] into [[T ]].

Lemma 6.6. If T is a tree and κ ≥ |T |, then there is an embedding
g : [[T ]]→ κω such that κω \ g([[T ]]) ∼= κω.

Proof. Let T be a tree and let κ ≥ |T |. Since κ is infinite, we may
partition κ into two sets A and B, each of which has size κ. Clearly, T is
isomorphic to a subtree T ′ of A<ω. By Lemma 6.5, there is an embedding
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g : [[T ]]→ κω that takes [[T ]] to [[T ′]]. In particular, κω \g([[T ]]) = κω \ [[T ′]]
is open in κω. Furthermore, κω \ g([[T ]]) is nonempty because it contains
[[B<ω]].

To complete the proof, we note that every open subset of κω is home-
omorphic to κω (see Exercise 7.G.2 in [2]). �

Lemma 6.7. Let κ be an infinite cardinal and let d be any metric on
κω compatible with its topology. If ε > 0, then there is a partition
{Bα : α < κ} of κω into κ clopen sets such that Bα ∼= κω and diam(Bα) <
ε for every α < κ.
Proof. This follows from Lemma 5.1 and the observation that every clopen
subset of κω is homeomorphic to κω (by Exercise 7.G.2 in [2]). �

Note that the following theorem does not assume T to be perfect.
Theorem 6.8. Let T be a tree with Ker(T ) 6= ∅ and let κ = |T |. Then
κω is a condensation of [[T ]].
Proof. Let T be a tree with Ker(T ) 6= ∅ and let κ = |T |. By Theorem 5.2,
we may assume that if s ∈ Ker(T ) then s has κ children also in Ker(T ).

We will prove thatX condenses onto κω by constructing an appropriate
T -scheme (Bs)s∈T in κω. More explicitly, we will construct a T -scheme
(Bs)s∈T such that:

(1) (Bs)s∈T has vanishing diameter.
(2) B∅ = κω and, for every s ∈ T , Bs =

⋃
{Bt : t is a child of s}.

(3) for every x ∈ [[T ]],
⋂
n∈ω Bx(n) 6= ∅.

It is clear from Lemma 2.3 that any such T -scheme induces a continuous
bijection f : [[T ]]→ κω, namely its associated map.

We will define Bs by recursion for s ∈ Ker(T ) and by a slightly more
direct method for s /∈ Ker(T ). Moreover, we will do so in such a way that
Bs is homeomorphic to κω if and only if s ∈ Ker(T ). Simultaneously,
we will define a family (ds)s∈Ker(T ) of metrics such that ds is a complete
metric compatible with the topology of Bs.

We view the elements of T as sequences, with ∅ (the empty sequence)
as the root. To begin, take B∅ = κω. Note that ∅ ∈ Ker(T ) because
Ker(T ) is a nonempty subtree of T . Let d∅ be any compatible complete
metric on κω.

Assume now that Bs and ds have been defined for some s ∈ Ker(T ),
and assume that Bs ∼= κω.

First, consider R = {r : r is a child of s and r /∈ Ker(T )}. For r ∈ R,
we will now define simultaneously not only Br, but also Bt for every
extension t of r. Note that K = [[

⋃
r∈R Tr]] is represented by a tree of

size at most κ (namely
⋃
r∈R Tr). By Lemma 6.6, there is an embedding

g : K → Bs such that Bs \ g(K) ∼= κω. For all nodes t extending an
element of R (i.e., all t such that [[Tt]] ⊆ K), we set Bt = g([[Tt]]).
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Next, consider S={t : t is a child of s and t ∈ Ker(T )}. As s ∈ Ker(T ),
our choice of T implies |S| = κ. As we have seen, B̃s = Bs \

⋃
t∈RBt =

Bs \ g(K) is homeomorphic to κω. By hypothesis, ds is a complete met-
ric on Bs compatible with its topology. We may assume without loss
of generality that dr ≤ ds for all r ⊆ s because, given any such metric
ds, d′s =

∑
r≤s dr is also a complete metric compatible with Bs. The

restriction of ds to B̃s is a (not necessarily complete) metric for Bs. By
Lemma 6.7 there is a family {Bt : t ∈ S} of pairwise disjoint clopen (in
B̃s) subsets of B̃s such that

⋃
t∈S Bt = B̃s, Bt ∼= κω for each t ∈ S, and

diamds(Bt) <
1

lev(t) for every t ∈ S.
This defines a T -scheme in κω. If f : D → κω is the associated map

then, by Lemma 2.3, f is a continuous bijection provided (Bs)s∈T satisfies
the three conditions listed above.

First we check (1): that (Bs)s∈T has vanishing diameter. Let x ∈ [[T ]].
If x /∈ [[Ker(T )]] then there is some n such that x(n) /∈ Ker(T ); let n be
minimal such that this is the case. In our construction we defined Bx(n)
by an explicit embedding g : [[Tx(n)]] → Bx(n−1). Because g is an em-
bedding, we may find for every ε > 0 some basic open [[Tx(m)]], m ≥ n,
such that g(x) ∈ g([[Tx(m)]]) = Bx(m) ⊆ Ball

dx(n−1)
ε (g(x)) ⊆ Balld∅ε (g(x)).

Thus limm→∞ diamd∅(Bx(m)) = 0 when x /∈ Ker(T ). Suppose next
that x ∈ Ker(T ). At every stage of our construction, we ensured that
diamd∅(Bx(n+1)) < diamdx(n)

(Bx(n+1)) <
1

n+1 , so in this case we still
have limn→∞ diamd∅(Bx(n)) = 0.

Condition (2), that B∅ = κω and that, for every s ∈ T , Bs =
⋃
{Bt : t

is a child of s}, is clear from our construction.
Finally, we check (3): that

⋂
n∈ω Bx(n) 6= ∅ for every x ∈ [[T ]]. Sup-

pose that x(n) /∈ Ker(T ) for some n, and consider the minimal such
n. Then Bx(m), m ≥ n, is defined by means of an explicit embed-
ding g : [[Tx(n)]] → κω, and in this case it is clear that

⋂
m∈ω Bx(m) =⋂

m≥nBx(m) =
⋂
n∈ω g([[Tx(m)]]) = {g(x)} 6= ∅. Suppose instead that

x(n) ∈ Ker([[T ]]) for all n. For each n, let xn ∈ Bx(n). Since d∅ is a
complete metric on κω and limn→∞ diamd∅(Bx(n)) = 0, there is a unique
z ∈ κω such that xn → z. However, the same argument works in any
particular Bx(m). That is, note that dx(m) is a complete metric on Bx(m),
and, by construction, limn→∞ diamdx(m)

(Bx(n)) = 0. Thus there is a
unique z ∈ Bx(m) such that xn → z. Clearly this is the same z as before,
since 〈xn : n < ω〉 cannot converge to more than one point. This shows
z ∈ Bx(m). As m was arbitrary, z ∈

⋂
n∈ω Bx(n) and

⋂
n∈ω Bx(n) 6= ∅. �

Ideally, one would like to reverse Theorem 6.8 and show that [[T ]] is
a condensation of |T |ω whenever Ker(T ) 6= ∅. However, this could be
difficult. Consider, for example, the space X = κω ⊕ N . This space
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is representable by a size-κ tree with a nonempty kernel. However, if
f : κω → X were a condensation, then f−1(N ) would be a clopen subset of
κω and hence homeomorphic to κω. Thus, in this case, f �f−1(N ) would
be a condensation κω → N . This does not show that it is impossible to
reverse Theorem 6.8 in ZFC, but it does show that doing so is at least as
difficult as answering Question 6.4.
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