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GEOGRAPHY OF SYMPLECTIC 4- AND 6-MANIFOLDS

RAFAEL TORRES AND JONATHAN YAZINSKI

Abstract. The geography of minimal symplectic 4-manifolds with
arbitrary fundamental group and symplectic 6-manifolds with abelian
fundamental group of small rank, and with arbitrary fundamental
group are addressed.

1. Introduction

The geography problem for simply connected irreducible symplectic
4-manifolds with negative signature has been settled in its entirety [20],
[16], [36], [37], [1], [15], [8], [9], [3], [4]. Much less is known about the non
simply connected realm. It has been observed that the new construction
techniques [20], [32], [5] prove to be rather effective when one wishes
to study the symplectic geography problem for a variety of choices of
fundamental groups [20], [9], [3], [4], [46], [45]. Concerning symplectic 4-
manifolds with prescribed fundamental group, we obtained the following
theorem.

Theorem 1.1. Let G be a group with a presentation consisting of g gen-
erators and r relations. Let e and σ be integers that satisfy 2e + 3σ ≥
0, e + σ ≡ 0 mod 4, and e + σ ≥ 8, and assume σ ≤ −1. Then there
exists a minimal symplectic 4-manifold M(G) with fundamental group
π1(M(G)) ∼= G, with characteristic numbers

(c21(M(G)), χh(M(G))) = (2e+ 3σ + 4(g + r), 1
4 (e+ σ) + (g + r)),

and with odd intersection form over Z. If G is finite, then M(G) admits
exotic smooth structures.
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Assume s ≥ 1 and n ∈ N. For each of the following pairs of integers
(c, χ) = (8n− 8 + 8(g + r), 2s+ n− 1 + (g + r)),

there exists a spin symplectic 4-manifold X(G) with π1(X(G)) ∼= G and
characteristic numbers

(c21(X(G)), χh(X(G))) = (c, χ).
Moreover, there is an infinite set {Xm(G)) : m ∈ N} of pairwise non-
diffeomorphic symplectic and nonsymplectic manifolds homeomorphic to
X(G).

If G is a residually finite group, the work of M. J. D. Hamilton and
D. Kotschick [24] implies that the manifolds constructed are irreducible.
Theorem 1.1 extends earlier results [20], [7], [38], [9]; we give a brief
account of them in order to make clear the contribution of the previ-
ous theorem. Robert E. Gompf proved the well-known result that any
finitely presented group can be the fundamental group of a symplectic
2n-manifold for n ≥ 2 [20, §6]. Scott Baldridge and Paul Kirk took on
the endeavor of minimizing the Euler characteristic with respect to the
generators and relations of a presentation of the fundamental group in
[7], using the elliptic surface E(1) and the manifold described in §2.2 as
building blocks. They constructed a minimal symplectic manifold with
Euler characteristic 12 + 12(g + r), and signature −8 − 8(g + r). Jongil
Park systematically studied the geography in [38, Theorem 1] using the
construction in [7] as a building block. Moreover, his result also addresses
the existence of a myriad of exotic smooth structures by establishing a
homeomorphism on the manifolds he constructed, using the results of
Steven Boyer [11] on homeomorphisms of simply connected 4-manifolds
with a given boundary.

Using a minimal symplectic manifold homeomorphic to 3CP2#5CP2 as
a building block instead of E(1), Baldridge and Kirk constructed a smaller
minimal symplectic example with Euler characteristic 10 + 6(g + r), and
signature −2− 2(g + r) in [9, Theorem 24] ((c21, χh) = (14 + 6(g + r), 2 +
(g+ r)) under the coordinates used in the statement of Theorem 1.1). In
[48], the second author of the present paper improved the known bounds
by producing a minimal symplectic example with Euler characteristic 10+
4(g + r), and signature −2 ((c21, χh) = (14 + 8(g + r), 2 + (g + r))). His
construction uses as a building block the symplectic manifold sharing
the homology of S2 × S2 built by Ronald Fintushel, B. Doug Park, and
Ronald J. Stern in [15, §4]; see §2.2. Theorem 1.1 offers an improvement
and extends the results in [7], [38], [9], [48].

For known fundamental-group-dependent bounds on the geographical
regions that can be populated by minimal symplectic manifolds with
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prescribed fundamental group and comparisons to fundamental-group-
dependent results on the existence of smooth manifolds in dimension
four, the reader is directed to the work of Clifford Henry Taubes [43],
of Baldridge and Kirk [7], of Kotschick [29], and of Kirk and Charles
Livingston [27], [28].

We now direct our attention to high dimensional manifolds. The
geography of simply connected symplectic 6-manifolds was settled by
Mihai Halic in [22] (see also [26], [35]), where he proved that any triple
(a, b, c) ∈ Z⊕Z⊕Z that satisfies a ≡ c ≡ 0 mod 2, and b ≡ 0 mod 24 can
be realized by a simply connected symplectic 6-manifold with Chern num-
bers (c31, c1c2, c3) = (a, b, c). Although there is no established definition
of minimality in dimension six yet (see [31, Definition 5.2]), the existence
result of Halic relies heavily on blow ups along points and along surfaces
[22, Lemma 4.1]. This scenario motivates interest for constructions of
examples that do not involve blow ups. In this direction, we obtained the
following two results.

Theorem 1.2. Let G be a group among the choices {Zp,Zp ⊕ Zq,Zp ⊕
Z,Z, π1(Σg), Fn}, where Σg is a closed oriented surface of genus g and
Fn is the free group of rank n. Let ei, σi, i = 1, 2 be integers that satisfy
2ei + 3σi ≥ 0, ei + σi ≡ 0 mod 4, and ei + σi ≥ 8. There exist symplectic
6-manifolds W0(G),W1(G),W2(G) with fundamental group π1(Wi(G)) ∼=
G, for i = 0, 1, 2, and the following Chern numbers:

(1) c31(W0(G)) = 18 · (σ1 + σ2) + 12 · (e1 + e2)
c1c2(W0(G)) = 6 · (e1 + σ1 + e2 + σ2), and
c3(W0(G)) = 2 · (e1 + e2);

(2) c31(W1(G)) = 0,
c1c2(W1(G)) = 0, and
c3(W1(G)) = 0;

(3) c31(W2(G)) = −18 · (σ1 + σ2)− 12 · (e1 + e2)− 48,
c1c2(W2(G)) = −6 · (e1 + σ1 + e2 + σ2)− 24, and
c3(W2(G)) = −2 · (e1 + e2)− 8.

Assume s1, s2 ≥ 1 and n1, n2 ∈ N. There exist spin symplectic 6-
manifolds Yi(G) for i = 0, 1, 2 with fundamental group π1(Yi(G)) ∼= G
and whose Chern numbers are

(1) c31(Y0(G)) = 48 · (n1 + n2 − 2),
c1c2(Y0(G)) = 48 · (s1 + s2) + 24 · (n1 + n2 − 2), and
c3(Y0(G)) = 48 · (s1 + s2) + 8 · (n1 + n2 − 2);



90 R. TORRES AND J. YAZINSKI

(2) c31(Y1(G)) = 0,
c1c2(Y1(G)) = 0, and
c3(Y1(G)) = 0;

(3) c31(Y2(G)) = −48 · (n1 + n2 − 1),
c1c2(Y2(G)) = −48 · (s1 + s2)− 24 · (n1 + n2 − 1), and
c3(Y2(G)) = −48 · (s1 + s2)− 8(n1 + n2 − 1).

Theorem 1.2 is obtained by building upon the aforementioned work
on the geography of simply connected 4-manifolds. Next, the current
understanding on the geography of minimal symplectic 4-manifolds with
arbitrary fundamental group ([20], [7], [38], [48], Theorem 1.1) is used to
study the existence of symplectic 6-manifolds with prescribed fundamen-
tal group. Such enterprise had been pursued previously by Gompf in his
seminal paper [20, Theorem 7.1].

Theorem 1.3. Let G be a group with a presentation that consists of g
generators and r relations. Let ei, σi, for i = 1, 2, be integers that satisfy
2ei+3σi ≥ 0, ei+σi ≡ 0 mod 4, and ei+σi ≥ 8. There exist symplectic 6-
manifolds W0(G),W1(G),W2(G) with fundamental group π1(Wi(G)) ∼= G
for i = 0, 1, 2, and the following Chern numbers:

(1) c31(W0(G)) = 18 · (σ1 + σ2) + 12 · (e1 + e2) + 48 · (g + r),
c1c2(W0(G)) = 6 · (e1 + σ1 + e2 + σ2) + 24 · (g + r), and
c3(W0(G)) = 2 · (e1 + e2) + 8 · (g + r);

(2) c31(W1(G)) = 0,
c1c2(W1(G)) = 0, and
c3(W1(G)) = 0;

(3) c31(W2(G)) = −18 · (σ1 + σ2)− 12 · (e1 + e2)− 48 · (g + r)− 48,
c1c2(W2(G)) = −6 · (e1 + σ1 + e2 + σ2)− 24 · (g + r)− 24, and
c3(W2(G)) = −2 · (e1 + e2)− 8 · (g + r).

Assume s1, s2 ≥ 1 and n1, n2 ∈ N. There exist spin symplectic 6-
manifolds Yi(G) for i = 0, 1, 2 with fundamental group π1(Yi(G)) ∼= G
and whose Chern numbers are

(1) c31(Y0(G)) = 48 · (n1 + n2 − 2) + 48(g + r),
c1c2(Y0(G)) = 48 · (s1 + s2) + 24 · (n1 + n2 − 2) + 24 · (g+ r), and
c3(Y0(G)) = 48 · (s1 + s2) + 8 · (n1 + n2 − 2) + 8 · (g + r);

(2) c31(Y1(G)) = 0,
c1c2(Y1(G)) = 0, and
c3(Y1(G)) = 0;
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(3) c31(Y2(G)) = −48 · (n1 + n2 − 2)− 48 · (g + r)− 48,
c1c2(Y2(G)) = −24 · (n1 +n2−2)−48 · (s1 +s2)−24 · (g+ r)−24,
and
c3(Y2(G)) = −48 · (s1 + s2)− 8 · (n1 + n2 − 2)− 8 · (g + r)− 8.

Recent constructions of symplectic manifolds with canonical class c1 =
0 are related to our geographical studies (see [40], [12], [13], [10], [2],
[14]). There are manifolds of Theorem 1.2 and Theorem 1.3(2) that satisfy
c1 = 0. The first examples of manifolds Y1({1}) and Y1(Z), in Theorem
1.3(2) with c1 = 0 appeared in [2]. These manifolds have large third Betti
number. In [14, Theorem 3], Joel Fine and Dmitri Panov constructed
such symplectic manifolds with arbitrary fundamental group and b3 = 0
[14, Theorem 3].

Finally, we recover and extend the main result in [22] to the geography
of symplectic 6-manifolds for various choices of fundamental groups. The
case of arbitrary fundamental group was studied previously by Gompf in
[20, §7], and by Federica Benedetta Pasquotto in [39, Proposition 4.31].
The statement is the following.

Corollary 1.4. Let X(G) be a symplectic 6-manifold. Then
c31(X(G)) ≡ c3(X(G)) ≡ 0 mod 2,

c1c2(X(G)) ≡ 0 mod 24, and π1(X(G)) ∼= G.
Conversely, any triple (a, b, c) of integers satisfying a ≡ c ≡ 0 mod 2
and b ≡ 0 mod 24 occurs as a triple (c31, c1c2, c3) of Chern numbers of a
symplectic 6-manifold X(G) with π1(X(G)) ∼= G, where G is a finitely
presented group.

Unlike the manifolds of Theorem 1.2 and Theorem 1.3, the construc-
tion of the manifolds of Corollary 1.4 involve blow ups along points and
along surfaces. The fundamental tools of construction used to obtain all
these results are Gompf’s symplectic sum [20] and Luttinger surgery [32]
(see also [5]).

The paper is organized as follows. The second section contains a de-
scription of our 4-dimensional building blocks. In §2.1, we present the
building blocks that allow us to produce manifolds for several choices of
fundamental groups. The building block used to construct manifolds with
arbitrary fundamental group is described in §2.2. A useful explanation on
the fundamental group computations of Theorem 1.1 is given in §2.3. The
fundamental group computations are located in §5. Sections 2.4 and 2.5
contain the building blocks we use to populate geographic regions. The
geography of symplectic 4-manifolds with prescribed fundamental group
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is studied in §3. The proof of Theorem 1.1 is given in sections 3.1 and
3.2. We then use these results to study 6-manifolds in §4. The formulae
needed to compute Chern numbers are given in §4.1. In §4.2, we build
symplectic sums that are fundamental for our purposes. The tool that
allows us to prove Corollary 1.4 is presented in §4.3, where we work out an
example to demonstrate the utility of these techniques for several funda-
mental groups. Section 5.1 provides a detailed description on our choices
of gluing maps used in the 6-dimensional symplectic sums. The funda-
mental group computations involved in the statements of several of our
results, including Theorem 1.2 and Theorem 1.3, are presented in §5.2.
Finally, §5.3 contains the proofs of Theorem 1.3 and Corollary 1.4.

2. Building Blocks

2.1. Symplectic 4-manifolds used to obtain several
of our choices for π1.

The following building block in our symplectic sums will allow us
to vary our choices of fundamental groups without contributing any-
thing to the characteristic numbers. Take the product of a torus and
a genus two surface T 2 × Σ2. The characteristic numbers are given by
c2(T 2 × Σ2) = 0 = σ(T 2 × Σ2). Endow T 2 × Σ2 with the symplectic
product form. The torus T 2 × {x} and the genus two surface {x} × Σ2

are symplectic submanifolds of T 2 × Σ2, which are geometrically dual to
each other. Let F denote a parallel copy of the surface of genus two.
Furthermore, T 2 × Σ2 contains 4 pairs of geometrically dual Lagrangian
tori available to perform Luttinger surgery [32], [5] on them; see also [25,
§2]. These tori are of the form S1 × S1 ⊂ T 2 × Σ2.

Regarding the very relevant fundamental group computations, we have
the following result. Let {x, y} be the generators of π1(T 2) and let
{a1, b1, a2, b2} be the standard set of generators of π1(Σ2).

Proposition 2.1 (Baldridge and Kirk [9, Proposition 7]). The funda-
mental group

π1(T 2 × Σ2 − (T1 ∪ T2 ∪ T3 ∪ T4 ∪ F ))

is generated by the loops x, y, a1, b1, a2, and b2. Moreover, with respect
to certain paths to the boundary of the tubular neighborhoods of the Ti and
F , the meridians and two Lagrangian push offs of the surfaces are given
by

• T1 : m1 = x, l1 = a1, µ1 = [b−1, y−1],
• T2 : m2 = y, l2 = b1a1b

−1, µ2 = [x−1, b1],
• T3 : m3 = x, l3 = a2, µ3 = [b−1

2 , y−1],
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• T4 : m4 = y, l4 = b2a2b
−1
2 , µ4 = [x−1, b2],

• µF = [x, y].
The loops a1, b1, a2, and b2 lie on the genus 2 surface and form a standard
set of generators; the relation [a1, b1][a2, b2] = 1 holds.

The reader is referred to the lovely paper [9] for details on construc-
tions of symplectic 4-manifolds using Luttinger surgery. We finish this
section by pointing out that the description above yields the building
blocks needed to produce the manifolds of Theorem 1.1, Theorem 1.2,
and Corollary 1.4 with surface fundamental groups π1(Σg). Take the
product symplectic manifold T 2 × Σg of the 2-torus with a surface of
genus g ≥ 3. Endowed with the product symplectic form, the subman-
ifold T 2 × {x} ⊂ T 2 × Σg is symplectic. Given that {x} × Σg is geo-
metrically dual to it, it is straightforward to see that the meridian µT 2

in T 2 × Σg − T 2 × {x} can be expressed in terms of the generators and
relations of π1({x} × Σg) see [8] and [9] for details.

2.2. 4-dimensional building block with prescribed
fundamental group.

In [48, Theorem 1.1], the second author proved the following result.

Theorem 2.2. Let G be a group with a presentation with g generators
and r relations. There exists a minimal symplectic 4-manifold X with
fundamental group π1(X(G)) ∼= G and characteristic numbers

c21(X(G)) = 14 + 8(g + r), c2(X(G)) = 10 + 4(g + r), and
σ(X(G)) = −2, χh(X(G)) = 2 + (g + r).

The manifold X(G) contains a homologically essential Lagrangian torus
T , and a symplectic surface of genus two F with trivial normal bundle,
and

π1(X(G)− T ) ∼= π1(X(G)− F ) ∼= π1(X(G)) ∼= G .

Let us describe the materials used to prove this result. The fundamen-
tal building block for these constructions is a symplectic manifold built
in [7], which allows the manipulation on the number of generators and
relations on fundamental groups. We proceed to describe it.

Baldridge and Kirk take a 3-manifold Y that fibers over the circle, and
build the 4-manifold N := Y × S1. It admits a symplectic structure ([7,
p. 856]). Its Euler characteristic and its signature are both zero. The
fundamental group π1(Y × S1) has classes s, t, γ1, . . . , γg+r so that

G ∼= π1(Y × S1)/N(s, t, γ1, . . . , γg+r),
where N(s, t, γ1, . . . , γg+r) is the normal subgroup generated by the afore-
mentioned classes.
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A result of W. P. Thurston [44] implies that the manifold N is symplec-
tic. There are g+r+1 symplectically imbedded tori T0, T1, . . . , Tg+r ⊂ N ,
which have the following crucial traits for our purposes concerning fun-
damental group computations.

• The generators of π1(T0) represent s and t.
• The generators of π1(Ti) represent s and γi for i ≥ 1.

The curve s has the form {y} × S1 ⊂ Y × S1, with y ∈ Y , and γi has
the form γi × {x} ⊂ Y × {x}, x ∈ S1. We point out that the role of the
curves γi is to provide the r relations in a presentation of G [7, §4].

The details of the construction depend on the presentation of our group;
we give a description of the construction with the purpose of making the
paper a bit more self-contained. Let G be a finitely presented group:
G = 〈x1, . . . , xg|w1, . . . , wr〉 with g generators x1, . . . , xg and r relations
w1, . . . , wr. Let ni denote the length of the relation wi, and set

n = 1 +

r∑
i=1

ni .

Let Σgn denote a surface of genus gn. We will define an automorphism
R on Σgn, and so we consider the following description of Σgn to aid
with specifying R. Consider a round 2-sphere S2 ⊆ R3 centered at the
origin, and let R̄ denote a rotation of S2 by an angle of 2π

ng through the
axis passing through the points (0, 0,±1) . The orbit of (1, 0, 0) under〈
R̄
〉
⊆ SO (3) gives ng distinct points on S2, and performing a connected

sum of a torus with S2 at each point in
〈
R̄
〉
{(1, 0, 0)} in an equivariant

way gives a surface Σgn so that the action of R̄ on S2 naturally gives an
action R of Z/ (gn) on Σgn.

Let Y be a surface bundle over S1 given by the monodromy Rg. That
is, let

Y =
F × I

(x, 0) ∼ (Rg (x) , 1)
.

Let p = (0, 0, 1) , and let τ denote the loop in Y that is the image in Y of
{p} × I under ∼ . This is a loop since Rg (p) = p. Let s, t ∈ π1

(
Y × S1

)
be given as follows: t is represented by a parametrization of τ × {1} and
s is a generator of {1} × Z ⊆ π1 (Y )× π1

(
S1
)
.

We now use the presentation of G given previously to get a new pre-
sentation of G. We add g generators y1, . . . , yg; we replace the relations
w1, . . . , wr with new relations w̃1, . . . , w̃r; and we add g more relations
x1y1, . . . , xgyg. Hence, we have a new presentation of the same group G :

(2.1) G = 〈x1, . . . , xg, y1, . . . , yg|w̃1, . . . , w̃r, x1y1, . . . , xgyg〉 .
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The relation w̃i is obtained from the relation wi by replacing each occur-
rence of x−1

k with yk. Hence, each relation is expressed as a product of
positive powers of the generators.

Each relation in the presentation of G given in (2.1) gives an immersed
curve γi on the surface Σgn. Identify Σgn with a fiber of Y, and then take
the product of these curve with a circle to obtain tori Ti := γi × S1 ⊆
Y ×S1. Figure 1 below is taken from [7], and here we see examples of how
occurrences of xi and yi give us curves on this surface.

y2,1

y1,1
x1,1

xg,nA

Figure 1

In order to make the construction work, the tori Ti need to be disjoint
but immersed and the curves γi need to be mapped to different parts of
the surface. The details are provided in [7]; here we only briefly mention
that, by expressing the r + g relations as only positive powers of the 2g
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generators, we ensure that we can perturb the tori Ti so that they are
symplectic. A final torus that we consider is T0, which is the product of
the circle corresponding to s, t ∈ π1

(
Y × S1

)
.

The presentation for π1

(
Y × S1

)
is

(2.2)
〈
π1Σgn, t|Rg∗ (x) = txt−1 for x ∈ π1Σgn

〉
× 〈s〉 ,

where π1Σgn has the presentation

(2.3) π1Σgn =〈
x1,1, y1,1, . . . , xg,1, yg,1, x1,2, y1,2, . . . , xg,2, yg,2, . . . ,

x1,n, y1,n, . . . , xg,n, yg,n

∣∣∣∣∣
n∏
l=1

g∏
k=1

[xk,l, yk,l]

〉
We symplectic sum along the tori T0, . . . , Tr+g with other symplectic

manifolds to kill the push offs of the curves that generate π1 (Ti) while
not introducing additional generators to the fundamental group of our
manifold. For example, if we symplectic sum in such a manner along
T0, then we will kill the generators s and t, and the presentation of (2.2)
reduces to

〈π1Σgn|Rg∗ (x) = x for x ∈ π1Σgn〉 .
Notice that in the notation of (2.2), Rg∗ (xk,l) = xk,l+1 and Rg∗ (yk.l) =
yk.l+1, where the addition on the second subscript is taken modulo n (with
n + 1 = 1), and so setting xk = xk,l and yk = yk,l, the presentation of
(2.2) actually reduces further to

(2.4)

〈
x1, y1, . . . , xg, yg

∣∣∣∣∣
n∏
l=1

g∏
k=1

[xk, yk]

〉
.

Summing along the tori Tr+1, . . . , Tr+g introduced the relations xkyk = 1,
and so the commutators [xk, yk] are trivial, so that the surface relation

n∏
l=1

g∏
k=1

[xk, yk]

of (2.4) is trivial. Finally, performing a symplectic sum along the tori
T1, . . . , Tr introduces the relations w̃1, . . . , w̃r, and the presentation of
(2.4) is now

〈x1, y1, . . . , xg, yg|x1y1, . . . , xgyg, w̃1, . . . , w̃r〉
which is just the presentation of G in (2.1). Hence, we have shown that
fiber summing Y × S1 with the appropriate symplectic manifolds along
the tori T0, . . . , Tr+g is a symplectic manifold with fundamental group G.

For a proof of Theorem 2.2, the second author used a spin symplectic
4-manifold V with c2(V ) = 4, σ = 0 that shares the cohomology ring of
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2(S2×S2)#S3×S1 and contains a symplectic torus TV of self-intersection
zero carrying a generator ofH1(V ;Z) ∼= Z. This manifold was constructed
in [15, §4]; its construction consists of applying seven Luttinger surgeries
([32], [5]) to the product of two copies of a genus two surface Σ2 × Σ2.
There exists a symplectic surface of genus two and self-intersection zero
F ↪→ V .

A careful analysis of fundamental groups computations under cut-and-
paste constructions was done by the second author in [48, §3 and §4].
The main ingredient that yields an improvement of [9, Theorem 24] is the
symplectic sum [20, Theorem 1.3] of N and g + r copies of V along the
symplectic tori Ti and TVi

for 1 ≤ i ≤ g+r; see [48] for details. Denote this
building block by BK. Its characteristic numbers are computed using the
well-known formulae in [20, p. 535] to be c2(BK) = 4(g+ r), σ(BK) = 0.

2.3. Computations of π1 in Theorem 1.1.

Suppose there is a minimal symplectic 4-manifold X which contains a
symplectic torus T ↪→ X of self-intersection zero such that π1(X − T ) ∼=
{1} [48, §4]. Build the symplectic sum along tori

Z := BKT0=TX.
In [48, §3 and §4], it is proven that there exists an isomorphism

π1(Z) ∼= 〈g1, . . . , gg|r1, . . . , rr〉 ∼= G.
The 4-manifold X used in the proof of Theorem 2.2 is a minimal sym-

plectic manifold homeomorphic to 3CP2#5CP2 constructed in [9, Theo-
rem 18]. To prove Theorem 1.1, we will vary the choice of X used in the
construction described previously, where the choices come from Proposi-
tion 2.3 and Proposition 2.7 in §2.4. The fundamental group computations
follow verbatim from the work of the second author in [48].

2.4. 4-dimensional building blocks used to populate
geographic regions I.

We proceed to describe the building blocks that have been successfully
used by topologists to understand the geography and botany problems of
symplectic 4-manifolds (see for example [20], [3], [9], [4], [46], and the
references there).

Proposition 2.3. Let b− ∈ {4, 5, . . . , 17, 18, 19}. There exists a minimal
symplectic simply connected 4-manifold X3,b− with second Betti number
given by b+2 (X3,b−) = 3 and b−2 (X3,b−) = b−, which contains two homo-
logically essential Lagrangian tori T1 and T2 such that

π1(X3,b− − (T1 ∪ T2)) = {1}.
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The characteristic numbers are c2(X3,b−) = 5 + b−2 , σ = 3 − b−, and
c21(X3,b−) = 10 + 2b− + 9− 3b−2 = 19− b−.

Table 1 provides a blueprint on the construction of the manifolds in
the statement of Proposition 2.3, modulo the number of Luttinger surg-
eries to be performed and the sources of the building blocks [46]. The
notation used is similar to that of Proposition 2.3; the manifolds X1,n

are homeomorphic to CP2#nCP2. The elliptic surface is denoted by
E(1) = CP2#9CP2. The symplectic sum of X and Y along Z is denoted
by X#ZY .

Table 1. Minimal symplectic 4-manifolds with b+2 = 3.

b−2 Symplectic sum/manifold. Reference.
4 X1,2#Σ2T

2 × Σ2 [4, Section 9]
5 X3,5 [9, Theorem 18]
6 X1,2#Σ2

(T 4#2CP2) [4, Section 9]
7 X3,7 [9, Corollary 15]
8 X1,5#Σ2

(T 4#CP2) [4, Sections 3 and 4].
9 X1,5#Σ2

(T 4#2CP2) [9, Corollary 16].
10 X1,6#Σ2(T 4#2CP2) [4, Lemma 15]
11 E(1)#T 2S [3, Lemma 16]
12 E(1)#T 2A Theorem 2.6
13 E(1)#T 2B Theorem 2.6
14 CP2#12CP2#Σ2T

2 × Σ2 [20, Building Block 5.6]
15 CP2#13CP2#Σ2

T 2 × Σ2 [20, Building Block 5.6]
16 CP2#12CP2#Σ2(T 4#2CP2) [20, Building Blocks 5.6 and 5.6]
17 CP2#13CP2#Σ2

(T 4#2CP2) [20, Building Blocks 5.6 and 5.7]
18 S1,1 [20, Example 5.4]
19 E(1)#T 2T 4#T 2E(1) [41]

The following building block was used in [3] to fill in vast regions of
the geography.

Definition 2.4 ([3, Definition 2]). An ordered triple (X,T1, T2) consisting
of a symplectic 4-manifoldX and two disjointly embedded Lagrangian tori
T1 and T2 is called a telescoping triple if

(1) the tori T1 and T2 span a 2-dimensional subspace of H2(X;R);
(2) the fundamental group is given by π1(X) ∼= Z2 and the inclusion

induces an isomorphism π1(X−(T1∪T2))→ π1(X). In particular,
the meridians of the tori are trivial in π1(X − (T1 ∪ T2));
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(3) the image of the homomorphism induced by the corresponding
inclusion π1(T1)→ π1(X) is a summand Z ⊂ π1(X);

(4) the homomorphism induced by inclusion π1(T2) → π1(X) is an
isomorphism.

A smooth 4-manifold is minimal if it does not contain any sphere of
self-intersection −1. If X is minimal, then the telescoping triple is said to
be minimal. The meridians µT1

and µT2
in π1(X − (T1 ∪ T2)) are trivial

and the relevant fundamental groups are abelian. The push off of an
oriented loop γ ⊂ Ti into X − (T1 ∪ T2) with respect to any (Lagrangian)
framing of the normal bundle of Ti represents a well-defined element of
π1(X − (T1 ∪ T2)) which is independent of the choices of framing and
base-point. The first condition allows for the symplectic form on X to
be slightly perturbed so that one of the tori Ti remains Lagrangian while
the other becomes symplectic [20, Lemma 1.6]. For our purposes, we will
require for T1 to be symplectic.

Proposition 2.5 (see [3, Proposition 3]). Let (X,T1, T2) and (X ′, T ′1, T
′
2)

be two telescoping triples. Then for an appropriate gluing map the triple
(X#T2,T ′1

X ′, T1, T
′
2)

is again a telescoping triple. If X and X ′ are minimal symplectic 4-
manifolds, then the resulting telescoping triple is minimal. The Euler
characteristic and the signature of X#T2,T ′1

X ′ are given by c2(X)+c2(X ′)
and σ(X) + σ(X ′).

The proof of Proposition 2.5 follows from [20], [3], and [4], and the claim
about minimality follows from [47, Theorem 1.1]. The results concerning
the existence of telescoping triples are gathered in the following theorem,
which was proven in [3, §5] and [45, Lemma 6 and Lemma 7].

Theorem 2.6. Existence of telescoping triples.
• There exists a minimal telescoping triple (A, T1, T2) satisfying
c2(A) = 5, σ(A) = −1.
• For each g ≥ 0, there exists a minimal telescoping triple (Bg, T1, T2)
satisfying c2(Bg) = 6 + 4g, σ(Bg) = −2.
• There exists a minimal telescoping triple (C, T1, T2) satisfying
c2(C) = 7, σ(C) = −3.
• There exists a minimal telescoping triple (D,T1, T2) satisfying
c2(D) = 8, σ(D) = −4.

• There exists a minimal telescoping triple (F, T1, T2) satisfying
c2(F ) = 10, σ(F ) = −6.
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2.5. 4-dimensional building blocks used to populate
geographic regions II.

The building blocks of the previous sections are used to produce the
manifolds involved in the proofs of our main results. The following result
is due to [3].

Proposition 2.7 (see [3, Theorem A] and [4, Theorem 1]). Let e and σ
be integers that satisfy 2e+ 3σ ≥ 0, e+ σ ≡ 0 mod 4, and e+ σ ≥ 8, and
assume σ ≤ −1. Then there exist simply connected minimal symplectic
4-manifolds Z1,1 and Z1,2, both with Euler characteristic e, signature σ,
and with odd intersection form over Z. Moreover, the 4-manifold Z1,1

contains two homologically essential Lagrangian tori T1 and T2 such that
π1(Z1,1 − (T1 ∪ T2)) ∼= {1}.

The 4-manifold Z1,2 contains a homologically essential Lagrangian torus
T1 and a symplectic surface of genus two F such that

π1(Z1,2 − (T1 ∪ F )) ∼= {1}.

Remark 2.8. At this point we emphasize that Proposition 2.3 and Propo-
sition 2.7 are fruits of the efforts of several topologists (see [8], [9], [3], [4],
[46], and the references provided there). The observation regarding the
existence of the submanifolds is crucial for our purposes, and it has not
appeared in the literature previously.

Proof. The construction of the 4-manifold Z1,1 is obtained by an iterated
use of the telescoping triples of Theorem 2.6, Proposition 2.3, Proposition
2.1 (which cover most of the geographic points), and the results of [9], [3],
[4], and [15, §4]. The details are left to the reader (see [46] for details).

The construction of the 4-manifold Z1,2 goes as follows. Build the
symplectic sum Z := Z1,1#T1=T 2T 2×Σ2. Apply four Luttinger surgeries
to obtain a simply connected symplectic 4-manifold Z1,2; see Proposition
2.1 for the fundamental group computations. The torus T2 is contained in
Z1,2 and so is a parallel copy of the genus two surface {x}×Σ2 ⊂ T 2×Σ2

that we now call F [20, Corollary 1.7]. The meridian µF is trivial in the
complement by Proposition 2.1. �

3. Geography of Symplectic 4-Manifolds with
Prescribed Fundamental Group

In this section we give a proof of Theorem 1.1. The proof is split into
two parts.
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3.1. Manifolds with odd intersection form and
negative signature.

The first part of Theorem 1.1 is proven in this section. We build
greatly upon the progress on the geography problem for nonspin simply
connected symplectic 4-manifolds with negative signature ([20], [38], [8],
[9], [15], [3], [4]), and the study of minimal symplectic 4-manifolds with
arbitrary fundamental group ([7], [48]).

Theorem 3.1. Let G be a group with a presentation consisting of g
generators and r relations. Let e and σ be integers that satisfy 2e+3σ ≥ 0,
e + σ ≡ 0 mod 4, and e + σ ≥ 8, and assume σ ≤ −1. Then there
exists a minimal symplectic 4-manifold M(G) with fundamental group
π1(M(G)) ∼= G and characteristic numbers

c2(M(G)) = e+ 4(g + r), and σ(M(G)) = σ.
The intersection form over Z of M(G) is odd. If the group G is residually
finite, then M(G) is irreducible. If the group G is finite, then M(G)
admits exotic smooth structures.

Proof. The proof of the existence claim is verbatim to the proof of [48,
Theorem 1]. It consists of building the symplectic sum [20, Theorem
1.3] M(G) := Z1,1#TBK along a symplectic torus of the manifold BK
described in §2.2 and a manifold Z1,1 from Proposition 2.7. If the group
G is residually finite, then M(G) is irreducible by [24].

The claim concerning the existence of exotic smooth structures on 4-
manifolds follows from a pigeonhole argument (see [48, Remark 1.2]). An
infinite family of pairwise nondiffeomorphic manifolds sharing the same
fundamental group and characteristic numbers is constructed using the
techniques in [16], [17], and [15] and keeping track of the Seiberg-Witten
invariants using [42] and [34]; see [9, p. 343: Remark]. It is proven in [23,
Corollary 1.5] that there are only finitely many homeomorphism types of
closed oriented 4-manifolds with finite fundamental group, and a given
Euler characteristic. Thus, there exist exotic smooth structures as it was
claimed. �

3.2. Spin manifolds with negative signature.

We now prove the second part of Theorem 1.1. B. D. Park and
Zoltán Szabó settled the geography of simply connected spin symplectic
4-manifolds in [36] (see [37] as well). We extend their results to finitely
presented fundamental group. We then follow J. Park’s work [38] to build
exotic smooth structures on the manifolds constructed by using Fintushel
and Stern’s knot surgery [16] and using Boyer’s work [11] on homeomor-
phisms of simply connected 4-manifolds with a given boundary.
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We recall Boyer’s [11] results on homeomorphisms of simply connected
4-manifolds with a given boundary following the exposition in [38]. Let
V1 and V2 be compact connected simply connected 4-manifolds with con-
nected boundary ∂V1

∼= ∂V2, and let f : ∂V1 → ∂V2 be an orientation-
preserving homeomorphism. There are two obstructions that need be
overcome in order to extend f to a homeomorphism F : V1 → V2. First,
an isometry Λ : (H2(V1;Z), QV1)→ (H2(V2;Z), QV2) for which the follow-
ing diagram commutes
0 −−−−−−→ H2(∂V1) −−−−−−→ H2(V1) −−−−−−→ H2(V1, ∂V1) −−−−−−→ H1(∂V1) −−−−−−→ 0yf∗

yΛ

xΛ∗
yf∗

0 −−−−−−→ H2(∂V2) −−−−−−→ H2(V2) −−−−−−→ H2(V2, ∂V2) −−−−−−→ H1(∂V2) −−−−−−→ 0

must exist. In this context, an isometry is an isomorphism Λ : H2(V1;Z)→
H2(V2;Z) that preserves intersection forms QVi . The morphism Λ∗ in the
diagram is the adjoint of Λ with respect to the identification ofH2(Vi, ∂Vi)
withHom(H2(Vi);Z) that arises from Lefschetz duality. This information
is encoded in the pair (f,Λ), which is called a morphism and is denoted
symbolically by (f,Λ) : V1 → V2.

Second, one must find a homeomorphism F : V1 → V2 such that the
morphism satisfies (f,Λ) = (F |∂V1

, F∗). A morphism (f,Λ) is geometri-
cally realized if this condition is satisfied. In [11], Boyer studied conditions
under which a given morphism can be geometrically realized.

Theorem 3.2 ([11, Theorem 0.7, Proposition 0.8]). If (f,Λ) : V1 → V2

is a morphism between two simply connected compact smooth 4-manifolds
V1 and V2 with boundary ∂V1

∼= ∂V2, there is an obstruction θ(F,Λ) ∈
I1(∂V1) such that (f,Λ) is realized geometrically if and only if θ(f,Λ) = 0.
Moreover, if H1(∂V1;Q) = 0, then θ(f,Λ) = 0.

Particularly useful is the following corollary which appears in J. Park’s
work [38].

Corollary 3.3 ([38, Corollary 2.3]). Assume ∂V1
∼= ∂V2 is a homology

3-sphere. For any morphism (f,Λ) : V1 → V2 between simply connected
smooth 4-manifolds V1 and V2, there is a homeomorphism F : V1 → V2

such that (f,Λ) = (F |∂V1
, F∗).

We are now ready to prove our first result. The precise statement of
Theorem 1.1 reads as follows.

Theorem 3.4. Let s ≥ 1, n ∈ N and let G be a finitely presented group.
For each of the following pairs of integers

(c, χ) = (8n− 8 + 8(g + r), 2s+ n− 1 + (g + r)),
there exists a symplectic spin 4-manifold X(G) with
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π1(X(G)) = G and (c21(X(G)), χh(X(G))) = (c, χ).
If the group G is residually finite, then X(G) is irreducible. Moreover,
there is an infinite set {Xm(G)) : m ∈ N} of pairwise nondiffeomorphic
symplectic and nonsymplectic manifolds homeomorphic to X(G) for every
m ∈ N.

The characteristic numbers of the examples of Theorem 3.4 can be
stated as c2(X(G)) = 4(n− 4 + 6s+ (g + r)) and σ(X(G)) = −16s. The
following proof is a modification of J. Park’s work done in [38].

Proof. Let Z be an irreducible simply connected symplectic spin 4-mani-
fold of [36] (see also [37].) B. D. Park and Szabó constructed Z using
simply connected minimal elliptic surfaces without multiple fibers E(n),
which are known to contain Gompf nuclei Cn ⊂ E(n) [19]. In particular,
there exists a symplectic torus T ↪→ Z of self-intersection zero, with
π1(Z − T ) ∼= {1}. Build the symplectic sum [20, Theorem 1.3]

X(G) := Z#TBK,

where BK is the manifold described in §2.2. By [20, Proposition 1.2], the
manifolds X(G) are spin manifolds. The computations of the characteris-
tic numbers are straightforward, since c1(T 2) = 0, c2(BK) = 4(g+r), and
σ(BK) = 0. The claim π1(X(G)) ∼= G follows from the computations in
§2.3. If the group G is residually finite, then M(G) is irreducible by [24].
The existence claim follows from a variation of the choice of symplectic
manifold Z one takes from [36] in the construction of the symplectic sum
X(G).

From the existence of Gompf nuclei inside the building block Z, one
concludes that there exists a symplectic torus T ′ ↪→ X(G) such that the
inclusion induces the trivial map π1(T ′) → π1(X(G) − T ′) ∼= G. The
infinite set of pairwise nondiffeomorphic symplectic and nonsymplectic 4-
manifolds {Xm(G) : m ∈ N} is constructed using Fintushel and Stern’s
knot surgery [16], varying the choice of knot.

To prove the claim on the homeomorphism type of the manifolds con-
structed, we use an argument due to J. Park [38, Proposition 2.2]. Let
the 4-manifold with arbitrary fundamental group Xi(G) := ZKi#TBK ∈
{Xm(G) : m ∈ N} be the result of applying knot surgery with knot
Ki. We claim that there exists a homeomorphism between the manifolds
Xi(G) = ZKi

#TBK and Xj(G) = ZKj
#TBK for any i, j ∈ N. In this

notation, we are specifying that the surgery occurs in the Z block of the
construction and calling ZKi the homeomorphic simply connected mani-
folds produced using knot surgery with knot Ki. The spin manifold ZKi

contains a Gompf nucleus as a codimensional zero submanifold, indepen-
dent of the knot Ki. Let Cn be the Gompf nucleus, let Σ be a homology
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3-sphere, and set Z◦Ki
:= ZKi − Cn. The symplectic sum ZKi#TBK can

be decomposed as

Z◦Ki
∪Σ (BK#TCn).

The endeavor at hand is to construct a morphism (f,Λ) and then
use Boyer’s results to show that it is geometrically realized. The choice
of homeomorphism f is canonical by setting g := id : BK#TCn →
BK#TCn, so that its restriction yields g|∂(BK#TCn) = f : Σ→ Σ. Take
an isomorphism Λ : H2(Z◦Ki

;Z) → H2(Z◦Kj
;Z). Note that the intersec-

tion forms QZ◦Ki
and QZ◦Ki

are unimodular, indefinite forms over Z that
have the same rank, same signature, and same type. By the classifica-
tion of unimodular indefinite integral forms, QZ◦Ki

∼= QZ◦Ki
. We have

that Λ : (H2(Z◦Ki
;Z), QZ◦Ki

) → (H2(Z◦Kj
;Z), QZ◦Kj

) is an isomorphism
that preserves intersection form, i.e., an isometry. Therefore, we have a
required morphism (f,Λ) : Z◦Ki

→ Z◦Kj
.

Since H1(∂(Z◦Ki
);Q) = H1(∂(Z◦Ki

);Q) = H1(Σ;Q) = 0, then θ(f,Λ) =
0 by Theorem 3.2. It follows from Corollary 3.3 that there exists a homeo-
morphism F : Z◦Ki

→ Z◦Kj
such that (f,Λ) = (F |Σ, F∗). Thus, for i, j ∈ N,

any two manifolds Xi(G) = ZKi
#TBK and Xj(G) = ZKj

#TBK are
homeomorphic. �

4. Geography of Symplectic 6-Manifolds

4.1. Computing Chern numbers.

Concerning the 6-manifolds arising as products of 4- and 2-manifolds,
we have the following lemma.

Lemma 4.1. Let Y be a symplectic 4-manifold and Σg a symplectic sur-
face of genus g. Let e := e(Y ) be the Euler characteristic and σ := σ(Y )
the signature. The Chern numbers of the product symplectic 6-manifold
X := Y × Σg are given as follows:

• c31(X) = (2e+ 3σ) · (6− 6g),
• c1c2(X) = (e+ σ) · (6− 6g), and
• c3(X) = e · (2− 2g).

Proof. We need to identify the Chern classes. For such a purpose, consider
the projections

π1 : X = Y × Σg → Y , π2 : X = Y × Σg → Σg.

The total Chern class can be written as c(X) = π∗1(c(Y )) · π∗2(c(Σg)).
The lemma follows by integrating over X = Y × Σg. �
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The change on the Chern numbers of 6-manifolds after blowups at
points and along surfaces is given by the following formulas.

Lemma 4.2. Let X be a symplectic 6-manifold. Let X ′ be the symplectic
6-manifold obtained by blowing up a point in X. The Chern numbers of
X ′ are as follows:

• c31(X ′) = c31(X)− 8,
• c1c2(X ′) = c1c2(X),
• c3(X ′) = c3(X) + 2.

Let Σg ↪→ X be a symplectic surface of genus g and denote by N(Σg) its
normal bundle. Let X ′g be the symplectic 6-manifold obtained by blowing
up X along Σg. The Chern numbers of X ′g are as follows:

• c31(X ′g) = c31(X) + 6(g − 1)− 2 〈c1(N(Σg)), [Σg]〉,
• c1c2(X ′g) = c1c2(X),
• c3(X ′g) = c3(X)− 2(g − 1).

See [22, Lemma 2.1] for a proof. Regarding the 6-manifolds obtained
as symplectic sums, we have the following lemma.

Lemma 4.3. Let X1 and X2 be symplectic 6-manifolds that contain 4-
dimensional symplectic submanifolds Yi ⊂ Xi for i = 1, 2 with trivial
normal bundle such that Y1

∼= Y2. Set Y := Yi. The Chern numbers of
the symplectic sum X := X1#YX2 are

c31(X) = c31(X1) + c31(X2)− 6c21(Y ),
c1c2(X) = c1c2(X1) + c1c2(X2)− 2(c21(Y ) + c2(Y )), and

c3(X) = c3(X1) + c3(X2)− 2c2(Y ).

See [22, Proposition 1.3] for a proof (see also. [39, Lemma 3.23]). The
existence of a symplectic structure induces an almost-complex structure
on the underlying manifold. The possible restrictions on the Chern num-
bers of almost-complex 6-manifolds are computed in [35, Proposition 9]
and [18]; see [30] for interesting 6-dimensional phenomena.

4.2. 6-dimensional symplectic sums.

We proceed to prove Theorem 1.2. The fundamental group computa-
tions are carried out in §5.

Proof. Let us construct the manifoldsWi(G) for i = 0, 1, 2; the method of
construction of the manifolds Yi(G) is similar. Let X1 and X2 be minimal
symplectic 4-manifolds of Proposition 2.7. Moreover, using the procedure
described in §5.2 on X1, we can produce a minimal symplectic 4-manifold
X1(G) such that π1(X1(G)) ∼= G. The manifold X1(G) contains a homo-
logically essential Lagrangian torus T := T1 such that π1(X1(G)−T ) ∼= G.
Perturb the symplectic sum on X1(G) so that T becomes symplectic [20,
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Lemma 1.6]. We make use of the following prototypes of symplectic sums
according to the item in the statement of the theorem:

(1): W0(G) := X1(G)× S2#T 2×S2X2 × S2

(2): W1(G) := X1(G)× T 2#T 2×T 2X2 × T 2

(3): W2(G) := X1(G)× Σ2#Σ2×Σ2
X2 × Σ2.

The reader should notice that the manifoldsX1 andX2 are to be chosen
from the manifolds Z1,1 and Z1,2 of Proposition 2.7 appropriately, so that
they contain the necessary symplectic submanifolds for the symplectic
sums performed.

A description of the choices of gluing maps for the symplectic sums is
given in §5.1. The computations of Chern numbers are straightforward
and follow from Lemma 4.1 and Lemma 4.3. Concerning the claim about
fundamental groups, we refer the reader to §5. The manifolds Yi(G) are
constructed in a similar way by taking the manifolds X1 and X2 in the
procedure described above from [36]. The details are left to the reader. �

4.3. Realization of all possible combinations
of Chern numbers.

The geography of simply connected symplectic 6-manifolds was settled
by Halic in [22]. The examples given by him rely heavily on the blow-
ups of some basic building blocks. His main tool to realize all possible
combinations of Chern numbers with a symplectic 6-manifold is stated in
the following result.

Lemma 4.4 ([22, Lemma 4.1]). Let X be a symplectic 6-manifold whose
Chern numbers are given by (c31, c1c2, c3) = (2a, 24b, 2c) and which has
the following properties. We denote by N(EX) the normal bundle of a
projective line E ⊂ X.

• The manifold X contains a symplectically embedded product U ×
D, where U is an open subset of a symplectic 4-manifold and D
is a disc. Assume that U contains a projective line E having the
property that

−α := 〈c1(N(EX)), [E]〉 ≤ −1.
• There is a symplectic genus two surface Σ2 ⊂ X, which is disjoint
from the exceptional sphere E, and [Σ2]2 = 0.

Then, by blowing up p points, r distinct copies of E, and z distinct
copies of Σ2, one obtains all triples of Chern numbers of the form
(2a′, 24b, 2c′), where a′ and c′ are arbitrary integers.

Example 4.5. Let X(G) be a symplectic 6-manifold. Then
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c31(X(G)) ≡ c3(X(G)) ≡ 0 mod 2 and
c1c2(X(G)) ≡ 0 mod 24.

Conversely, let G ∈ {Zp,Zp⊕Zq,Z⊕Zq,Z, π1(Σg), Fn}. Any triple (a, b, c)
of integers satisfying a ≡ c ≡ 0 mod 2 and b ≡ 0 mod 24 occurs as a triple
(c31, c1c2, c3) of Chern numbers of a symplectic 6-manifold X(G) with
π1(X(G)) ∼= G.

Proof. Let X be a symplectic 6-manifold. Then X admits an almost-
complex structure, and [35, Proposition 9] implies that the Chern numbers
of X satisfy c31(X) = c3(X) ≡ 0 mod 2 and c1c2(X) ≡ 0 mod 24.

Now, let X1(G) be the manifold as in the proof of Theorem 1.2. There
are two things to be checked in order to establish the converse. First,
one needs to see that the result of blowing up at a point the manifolds
constructed in Theorem 1.2 satisfies the hypothesis of Lemma 4.4. As a
consequence, we are then able to conclude that all the possible values of c31
and c3 are realized by a symplectic 6-manifold with the given fundamental
group. Second, it needs to be seen that such manifolds fulfill all the
possible values of c1c2 (values of b in the statement of Lemma 4.4). Notice
that by Lemma 4.2, the value c1c2 is invariant under blowups of points
and under blowups along surfaces.

By Proposition 2.7, there exists a symplectic surface of genus two F
inside the submanifold X1(G) × {x} ⊂ X1(G) × Σg for every 6-manifold
obtained as a symplectic sum in Theorem 1.2. By [20], every manifold of
Theorem 1.2 contains a symplectic surface of genus two. The manifold
obtained by blowing up a point that is disjoint from the surface of genus
two satisfies the hypothesis of Lemma 4.4.

We now consider the possible values of c1c2. The claim is that all
possible values are obtained by the manifolds constructed in Theorem 1.2.
The case c1c2 = 0 is clear. The claim is equivalent to finding ei, σi, e′i, σ′i,
i = 1, 2 that produce integers k+ and k− that satisfy

6 · (e1 + σ1 + e2 + σ2) = 24k+ and −6 · (e′1 + σ′1 + e′2 + σ′2) = 24k−.

The numbers ei, σi, e′i, σ′i, i = 1, 2 are as in the statement of the the-
orem, and they correspond to the Euler characteristic and signatures of
minimal 4-manifolds of Proposition 2.7, from which X1(G) is constructed.
The corresponding manifolds to these integer numbers can be chosen so
that the equalities (e1 +σ1 +e2 +σ2) = 4k+ and (e′1 +σ′1 +e′2 +σ′2) = 4k−
are satisfied. Thus, all possible values of c1c2 are realized by manifolds
from Theorem 1.2. The corollary now follows from Lemma 4.4. �
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5. Fundamental Group Computations

5.1. Choices of gluing maps for symplectic sums in §4.2.

An important piece of data in the 6-dimensional symplectic sum con-
structions of §4.2 are the gluing maps. Here we proceed to describe
them in detail in order to conclude the fundamental group computations
claimed in the statements of Theorem 1.2, Corollary 1.4, and Theorem
1.3. The setting is as follows. Let X and Z be symplectic 4-manifolds
containing symplectic tori T ⊂ X and T ′ ⊂ Z or symplectic surfaces of
genus two F ⊂ X and F ′ ⊂ Z (see Proposition 2.7); notice that, accord-
ing to Proposition 2.7 or Theorem 2.2, one might need to perturb the
symplectic form of the ambient 4-manifold using [20, Lemma 1.6] for the
homologically essential Lagrangian tori to be assumed symplectic.

Regarding the homotopy computations, we assume
π1(X − T ) ∼= π1(X) and π1(Z − T ′) ∼= π1(Z) ∼= {1},
π1(X − F ) ∼= π1(X) and π1(Z − F ′) ∼= π1(Z) ∼= {1}.

Take a symplectic surface of genus g, and build the 6-manifolds X×Σg
and Z × Σg equipped with the product symplectic form. For g = 0, 1,
these symplectic 6-manifolds contain a symplectic submanifold T 2 × Σg:
T×Σg ⊂ X×Σg and T ′×Σg ⊂ Z×Σg. Similarly, we have the symplectic
submanifolds (case g = 2) F × Σ2 ⊂ X × Σ2 and F ′ × Σ2 ⊂ Z × Σ2. In
all our constructions, Σg is either a 2-sphere S2 (g = 0), a 2-torus T 2

(g = 1), or a surface of genus two Σ2 (g = 2); surfaces of higher genus
can be used with a small modification to our arguments.

For surfaces of genus g = 0, 1, the 6-manifolds are symplectic sums of
the form

Wg := X × Σg#T×Σg=T ′×Σg
Z × Σg,

where the gluing map is a diffeomorphism
φg : ∂(T × Σg ×D2)→ ∂(T ′ × Σg ×D2) ∼= T 2 × Σg × S1.

Similarly, for surfaces of genus two, we built
W2 := X × Σ2#F×Σ2=F ′×Σ2Z × Σ2,

where the gluing map given by a diffeomorphism
φ2 : ∂(F × Σ2 ×D2)→ ∂(F ′ × Σ2 ×D2) ∼= Σ2 × Σ2 × S1.

Lemma 5.1. π1(Wg) ∼= π1(X) for g = 0, 1, 2.

Proof. We use the Seifert–van Kampen Theorem to compute the funda-
mental group of Wg for g = 0, 1, 2. In order to obtain π1(Wg) ∼= π1(X),
we choose a diffeomorphism φg that maps the generators of the funda-
mental groups involved as follows; remember we can assume π1(Z−T ′) ∼=
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π1(Z) ∼= {1} (see Proposition 2.7). The case g = 0 is clear, since there are
isomorphisms π1(X×S2−T×S2) ∼= π1(X) and π1(Z×S2−T ′×S2) ∼= {1}.

We work out the case g = 1; the case g = 2 follows verbatim from our
argument. In this case, the symplectic 4-manifold, along which the gluing
in the symplectic sum [20] is performed, is the 4-torus

T × T 2 ∼= T 4 ∼= T ′ × T 2.

Let the groups π1(X×T 2−T ×T 2) ∼= π1(X)⊕Z⊕Z and π1(Z×T 2−
T ′ × T 2) ∼= Z⊕ Z be generated by {x1, x2, . . . , xn, x = 1, y = 1, w, z} and
{x′ = 1, y′ = 1, w′, z′}, respectively, where {x1, x2, . . . , xn} are generators
of π1(X), {x, y} are push offs of generators of π1(T ), and each element
{w′, z′} generates a Z. Let µ and µ′ be the respective (based) meridians of
the submanifolds. Notice that in both cases the meridians µ = 1 = µ′ are
trivial; we assume µ gets identified with µ′−1 during the gluing employed
to construct W1. Choose φ1 to be the diffeomorphism that identifies the
generators of the fundamental groups as follows:

x 7→ w′, y 7→ z′, w 7→ x′, z 7→ y′.

This choice of diffeomorphism allows us to conclude that the extra
generators w, z, w′, z′ are killed during the gluing. An application of the
Seifert–van Kampen Theorem implies π1(W1) ∼= π1(X), as desired. �

5.2. Computations of π1 for Theorem 1.2, Theorem 1.3,
and Corollary 1.4.

Concerning the geography of symplectic 6-manifolds, the desired fun-
damental groups are obtained as follows. A minimal 4-manifold Z1,1 of
Proposition 2.7 contains two homologically essential Lagrangian tori with
trivial meridians; in particular, there is an isomorphism π1(Z1,1 − (T1 ∪
T2))→ π1(Z1,1) ∼= {1} (a similar argument works for Z1,2).

The idea is to build the symplectic sum of Z1,1 along T1 and a chosen
manifold in order to obtain a manifold P with the desired fundamental
group G. The homologically essential Lagrangian torus T2 ⊂ P satisfies
that the homomorphism induced by inclusion T2 ↪→ P is an isomorphism
π1(P−T2)→ π1(P ) ∼= G. This is then used in our 6-dimensional symplec-
tic sums in §4.2 to obtain the prescribed fundamental group. We proceed
to prove the fundamental group claims on the four-dimensional building
blocks employed.

Proof. Case: Abelian group of small rank.
To be precise, we construct manifolds with fundamental group among

{{1},Zp,Zp⊕Zq,Z,Z⊕Zq,Z⊕Z}. Consider the 4-torus T 2×T 2 endowed
with the product symplectic form. The 2-torus {x} × T 2 ⊂ T 2 × T 2 is
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a symplectic submanifold of self-intersection zero. Start by building the
symplectic sum

Z(Z⊕ Z) := Z1,1T1=T 2T 2 × T 2.

Since π1(Z1,1) ∼= π1(Z1,1 − T1) ∼= {1}, it follows from the Seifert–van
Kampen Theorem that π1(Z(Z ⊕ Z)) ∼= Z ⊕ Z. There are two pairs
of geometrically dual Lagrangian tori inside Z(Z ⊕ Z) on which one can
perform Luttinger surgeries [32], [5]. These tori come from the Lagrangian
tori inside the 4-torus used in the symplectic sum construction. Applying
the appropriate surgery yields the desired fundamental groups; see [8, §2]
and [9, Theorem 1] for the fundamental group computations and [46] for
details.

Case: Surface groups.
Manifolds with fundamental group {1} and Z⊕Z were constructed

in the previous item. To construct a manifold S with π1(S) ∼= π1(Σg) for
g ≥ 2, we proceed as follows. Consider the product T 2 × Σg of a 2-torus
and a genus g ≥ 2 surface endowed with the product symplectic form. The
submanifold T 2 × {x} ⊂ T 2 × Σg is symplectic and its self-intersection
number is zero. One builds the symplectic sum

S := Z1,1T1=T 2T 2 × Σg.

Since π1(Z1,1) ∼= π1(Z1,1 − T1) ∼= {1}, it follows from the Seifert–van
Kampen Theorem that π1(S) ∼= π1(Σg) as desired.

Case: Free groups of rank n ∈ N, Fn.
The case n = 1 was proven previously. Let Σn be a surface of genus

n, and denote the standard generators of π1(Σn) by x1, y1, . . . , xn, yn. Let
φ : Σn → Σn be a diffeomorphism consisting of the composition of n− 1
Dehn twists along the loops xi; denote by Y the mapping torus of φ that
fibers over the circle.

Build the product Y × S1 which admits a symplectic structure [44].
This manifold contains a symplectic torus T ′ given by T ′ = S×S1, where
S is a section of Y → S1. The fundamental group π1(Y ×S1) is calculated
by expressing π1(Y ) as an HNN extension which yields

π1(Y × S1) =
〈
xi, yi, t : txit

−1 = xi, tyit
−1 = yixi

〉
⊕ Zs.

Build the symplectic sum

F (n) := Z1,1T1=T ′Y × S
1.

Since π1(Z1,1) ∼= π1(Z1,1 − T1) ∼= {1}, it follows from the Seifert–
van Kampen Theorem that the generators t and s are killed during the
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gluing. The relations t = 1 = s imply that xi = 1 for all i. The Seifert–
van Kampen Theorem implies that the group π1(F (n)) is generated by
the yi’s with no relations among them in the group presentation. That
is, π1(F (n)) is a free group on n generators. �

5.3. Proofs of Theorem 1.3 and Corollary 1.4.

The paper finishes with the proofs of the results promised in the in-
troduction.

Proof of Theorem 1.3. The argument is verbatim to the one employed in
the proof of Theorem 1.2, modulo one of the building blocks. This new
piece is going to be taken from the construction of Theorem 2.2. The
changes go as follows. Take a minimal symplectic 4-manifold X1 from
Proposition 2.7 and perturb the symplectic form so that the torus T1

becomes symplectic [20, Lemma 1.6]. Build the 4-dimensional symplectic
sum [20]

X1(G) := BK#T=T1X1,
where BK is the minimal symplectic 4-manifold with Euler characteristic
given by c2(BK) = 4(g + r), signature σ(BK) = 0, and fundamental
group π1(BK) ∼= 〈g1, . . . , gg|r1, . . . , rr〉 ∼= G described in §2.2. A straight-
forward computation yields c2(X1(G)) = c2(X1) + 4(g + r), σ(X1(G)) =
σ(X1). The discussion in §2.3 implies π1(X1(G)) ∼= G, which explains our
choice of notation.

We proceed to build the 6-dimensional examples. Let X2 be a minimal
symplectic 4-manifold of Proposition 2.7. We make use of the following
prototypes of symplectic sums according to the item in the statement of
the theorem:

(1): W0(G) := X1(G)× S2#T 2×S2X2 × S2

(2): W1(G) := X1(G)× T 2#T 2×T 2X2 × T 2

(3): W2(G) := X1(G)× Σ2#Σ2×Σ2
X2 × Σ2.

A detailed description of the gluing maps chosen for the symplectic
sums is given in §5.1. Varying our choices of manifolds X1 and X2 results
in the realization of the Chern numbers claimed; under our notation,
c2(Xi) = ei, σ(Xi) = σi for i = 1, 2. The computations of the Chern
numbers are straightforward and follow from Lemma 4.1 and Lemma 4.3.

The construction of the manifolds Yi(G) for i = 0, 1, 2 follows the same
mechanism described above, using as building blocks the manifolds of
Theorem 3.4 and [36]. �

We now prove Corollary 1.4 (see Proof of Example 4.5).

Proof of Corollary 1.4. Let X(G) := X1(G) be as in the proof of Theorem
1.3. There are two things to be checked. First, we need to see that the
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result of blowing up at a point the manifolds constructed in Theorem 1.2
satisfies the hypothesis of Lemma 4.4. As a consequence, we are then
able to conclude that all the possible values of c31 and c3 are realized by
a symplectic 6-manifold with the given fundamental group. Second, it is
needed to be seen that such manifolds fulfill all the possible values of c1c2
(values of b in the statement of Lemma 4.4). Notice that by Lemma 4.2,
the value c1c2 is invariant under blowups of points and under blowups
along surfaces.

By Proposition 2.7, there exists a symplectic surface of genus two F
inside the submanifold X(G) × {x} ⊂ X(G) × Σg for every 6-manifold
obtained as a symplectic sum in Theorem 1.2. Every manifold of Theorem
1.2 contains a symplectic surface of genus two [20]. The manifold obtained
by blowing up a point that is disjoint from the surface of genus two satisfies
the hypothesis of Lemma 4.4.

We now consider the possible values of c1c2. The claim is that all
possible values are obtained by the manifolds constructed in Theorem 1.2.
The case c1c2 = 0 is clear. The claim is equivalent to finding ei, σi, e′i, σ′i,
i = 1, 2, that produce integers k+ and k− that satisfy

6 · ((e1 + 4(g + r)) + σ1 + e2 + σ2) = 24k+ and
−6 · ((e′1 + 4(g + r)) + σ′1 + e′2 + σ′2) = 24k−.

The numbers ei, σi, e′i, σ′i, i = 1, 2, are as in the statement of Theorem
1.2 and they correspond to the Euler characteristic and signatures of
minimal 4-manifolds of Proposition 2.7 used to construct X(G). Such
manifolds can be done so that their characteristic numbers satisfy the
equalities (e1 + σ1 + e2 + σ2) = 4k+ + 4(g + r) and (e′1 + σ′1 + e′2 + σ′2) =
4k−+ 4(g+ r). Thus, all possible values of c1c2 are realized by manifolds
from Theorem 1.2 and Theorem 1.3. The corollary now follows from
Lemma 4.4. �
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