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NOTES ON OXTOBY SPACES AND
PSEUDOCOMPLETENESS

ROBERTO PICHARDO-MENDOZA

Abstract. This paper focuses on the notion of O-pseudocomplete-
ness, introduced by John C. Oxtoby, and two modifications of it
[Aaron R. Todd, Pacific J. Math. 95 (1981), no. 1, 233–250] and
[Melvin Henriksen et al., Topology Appl. 100 (2000), no. 2-3,
119–132]. The following facts are known for these notions: (1)
all of them imply Baireness, (2) they are productive, and (3) all
completely metrizable spaces and locally compact Hausdorff spaces
possess these properties.

We prove that these topological properties coincide in the class
of spaces having a π-base of countable subsets. We also show that
if a space X is a dense Gδ-subset of either a space possessing a
dense completely metrizable subspace or a product of completely
metrizable spaces, then X is O-pseudocomplete.

It is established that the notions of pseudocompleteness appear-
ing in the above noted papers by Todd and by Henriksen et al. are
inverse invariants of irreducible closed mappings.

Applications of elementary submodels to the study of these no-
tions of pseudocompleteness are presented too.

1. Introduction

In [8, §5] John C. Oxtoby was able to isolate the key ingredient in the
classical proof of the Baire Category Theorem. By using the notions of
quasiregularity and π-base (see definitions below), he introduced a pro-
ductive subclass of the class of Baire spaces which contains all completely
metrizable and all Hausdorff locally compact spaces.
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118 R. PICHARDO-MENDOZA

As it is well known today, the class of Baire spaces is not productive
[3, §4], so determining productive subclasses of it which are large enough
became an interesting problem. Two successful attempts in finding such
classes are Aaron R. Todd’s weakening of Oxtoby’s notion and the mod-
ification introduced by Melvin Henriksen et al. in [5, Definition 1.1], the
so called Oxtoby spaces.

Given the three classes mentioned above, one may wonder what the
connections are between them. For example, we know that Todd’s class
is precisely the class of Oxtoby spaces which are quasiregular [5, Theorem
2.6], but it is still an open question if Oxtoby’s class is a proper subclass
of Todd’s.

On the other hand, how similar are these classes to the class of Baire
spaces? Are they closed under open continuous images? How about under
dense subsets of type Gδ?

All of the above questions are the main concern of this article.
Our paper is divided as follows, §2 establishes the basic definitions

and notation we will use. Section 3 introduces formally the notions we
discussed above and presents some classes of spaces in which some of the
questions mentioned earlier have a positive answer (spaces having a π-
base of countable sets or having a dense completely metrizable subspace).
In §4, we study some applications of elementary submodels to the classes
of spaces mentioned above.

In §5 we consider unions of Oxtoby spaces and show that the class
of Oxtoby spaces is closed under finite unions and that all Baire spaces
which can be written as a countable union of Oxtoby spaces are themselves
Oxtoby.

Finally, sections 6 and 7 are dedicated to products and continuous
mappings. It is proved that all dense Gδ-subsets of an arbitrary product
of completely metrizable subspaces belong to Oxtoby’s class and that
Todd’s class is closed under irreducible closed preimages.

2. Preliminaries

Given a topological space X and a set A ⊆ X, the closure and the
interior of A will be denoted by A and intA, respectively, unless we feel
there is risk of confusion, in which case, the symbols clX A and intX A
will be used.

To make things simpler, we adopt the following convention: τX will
represent the collection of all open subsets of X and τ∗X will denote the
family of all non-empty open subsets of X.

The space X will be called quasiregular if every non-empty open set
in X contains the closure of a non-empty open subset of X; i.e., for each
U ∈ τ∗X , there is V ∈ τ∗X with V ⊆ U . One easily verifies the following.
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Remark 2.1. All dense subspaces of a quasiregular space are themselves
quasiregular.

A π0-base for X is a collection P of subsets of X with nonempty interior
such that any nonempty open subset of X contains a member of P. When
all members of P are open in X, P will be called a π-base for X.

Recall that a topological space X is Baire if the intersection of any
countable family of dense open subsets of X is dense in X.

Let Y be a subset of a set S. Given A, a family of subsets of S, the
trace of A over Y is A � Y := {A ∩ Y : A ∈ A}.

As usual, ω denotes the first infinite ordinal and c represents the car-
dinality of the continuum.

All topological notions whose definitions are not stated explicitly here
should be understood as in [2]. A similar remark goes for set-theoretical
notions and [7].

3. Three Notions of Pseudocompleteness

Given a topological space X, a sequence ⟨An : n ∈ ω⟩ of subsets of
X will be called a nest if An+1 ⊆ An, for each n ∈ ω. If the sequence
satisfies An+1 ⊆ intAn, for all n ∈ ω, then it will be called a strong nest.
Also, if A is a family of subsets of X, a nest in A (a strong nest in A) is
a nest (a strong nest) for which all members of it belong to A.

Given P⃗ = ⟨Pn : n ∈ ω⟩, a sequence of π0-bases for X, we will say that
a nest (a strong nest) P⃗ = ⟨Pn : n ∈ ω⟩ is an associated nest for (a strong
nest associated to) P⃗ if Pn ∈ Pn for each n ∈ ω.

A quasiregular space X will be called O-pseudocomplete or pseudocom-
plete according to Oxtoby (see [8, §5]) if it possesses a countable sequence
of π-bases, P⃗, in such a way that each strong nest associated to P⃗ has
nonempty intersection. A sequence P⃗ like the one described above will
witness that X is O-pseudocomplete.

When P⃗ is a sequence of π0-bases for a quasiregular space and all strong
nests associated to P⃗ have nonempty intersection, the space is called T-
pseudocomplete or pseudocomplete according to Todd (see [9, Definition
1.2]). In this case, we will say that P⃗ witnesses T-pseudocompleteness for
X.

After reading the previous definitions, one immediately wonders if the
class of all O-pseudocomplete spaces differs from the class of T-pseudo-
complete spaces. It is clear that all O-pseudocomplete spaces are T-pseu-
docomplete, but the reverse implication remains an open question (posed
originally in [9]).
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Question 3.1. Are O-pseudocompleteness and T-pseudocompleteness
equivalent?

An Oxtoby sequence for X is a countable sequence of π0-bases for X
in such a way that each associated nest to it has nonempty intersection.
Naturally, any space having an Oxtoby sequence will be called an Oxtoby
space (see [5, Definition 1.1]).

The following was proved in [5, Theorem 2.6].

Remark 3.2. A quasiregular space is T-pseudocomplete if and only if it
is Oxtoby. In particular, all T-pseudocomplete spaces are Oxtoby.

By [8, §5], all completely metrizable spaces, as well as all Hausdorff
locally compact spaces, are O-pseudocomplete.

The following result is a summary of [5, Theorem 1.2] and [8, (5.1)].

Proposition 3.3. Let X be an arbitrary topological space.
(1) If X is an Oxtoby space, X is Baire.
(2) If P is a π0-base for X and D is dense in X, P � D is a π0-base

for D.
(3) When X has a dense Oxtoby subspace, X itself is Oxtoby.
(4) If X is quasiregular and possesses a dense O-pseudocomplete sub-

space, then X is O-pseudocomplete.
Moreover, (1) remains true if one replaces Oxtoby by T-pseudocomplete
or by O-pseudocomplete.

The implication in (1) cannot be reversed. Indeed, it is argued in [5,
§2] that any Bernstein subset of the real line is a counterexample (see also
[2, Problem 5.5.4]). Thus, a natural question to ask is, how close are these
properties to Baireness? Particularly, we ask the following question.

Question 3.4. If X is Oxtoby (O-pseudocomplete, T-pseudocomplete),
(1) are all its dense Gδ-subsets Oxtoby (O-pseudocomplete, T-pseu-

docomplete) too?
(2) are all its (quasiregular) open continuous images Oxtoby (O-pseu-

docomplete, T-pseudocomplete) as well?

The following result shows that, in a non-trivial class of topological
spaces, Question 3.1 has a strong affirmative answer.

Proposition 3.5. Let X be a T1 space. If X has a π-base of countable sets
(equivalently, a π0-base of countable sets), then the following statements
are equivalent.

(1) X is O-pseudocomplete.
(2) X is Oxtoby.
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(3) X is Baire.
(4) X has a dense set of isolated points.

Proof. By Remark 3.2, (2) follows from (1). On the other hand, Proposi-
tion 3.3 guarantees that (3) is a consequence of (2).

Let us denote by A the set of isolated points of X.
To show that (3) implies (4), assume that (4) fails. Then U := X \ A

is a non-empty open subset of X, and so there is V ∈ τ∗X such that
V ⊆ U and |V | ≤ ω. Thus, no point in V is isolated and since X is T1,
{X \{x} : x ∈ V } is a countable family of dense open subsets of X whose
intersection misses V ; i.e., X is not Baire, and so (3) fails too.

Now suppose (4) holds. Hence, A is dense open in X. As a consequence,
if U is a non-empty open subset of X, there exists z ∈ U ∩A, and so {z}
is a non-empty open subset of X whose closure is contained in U , i.e., X
is quasiregular. To complete the implication (4)→(1), set Pn := {{x} :
x ∈ A}, for each n ∈ ω, to obtain ⟨Pk : k < ω⟩, a sequence witnessing
O-pseudocompleteness for X. �

Since all indiscrete spaces with at least two points are Baire quasireg-
ular and have no isolated points, the assumption on the space being T1

cannot be dropped in Proposition 3.5.
Observe that the argument given in the proof of (4)→(1) shows that

any space having a dense set of isolated points is Oxtoby. Also, given that
all countable spaces have, trivially, a π-base of countable sets, we get the
following.

Corollary 3.6. If X is a countable T1 topological space, then X is O-
pseudocomplete if and only if X has a dense set of isolated points.

Corollary 3.7. Assume X is a T1 space possessing a π-base of countable
sets. If X is Baire, then all its dense subspaces and all its T1 continuous
open images are O-pseudocomplete.

Proof. Suppose X is Baire and let us denote by A the set of isolated
points of X.

When Y is a dense subspace of X, A ⊆ Y and, by Proposition 3.3-(2),
Y satisfies the assumptions of Proposition 3.5. Thus, Y is O-pseudocom-
plete.

Now let f be an open continuous map from X onto the T1-space Z.
Observe that if B is a π-base for X, the collection {f [B] : B ∈ B} is a
π-base for Z. Hence, Z has a π-base of countable sets. Also, f [A] is a
dense subset of Z consisting of isolated points. Therefore, Z is O-pseu-
docomplete. �

According to [1, p. 4, Corollary], a metrizable space is O-pseudocom-
plete if and only if it has a dense completely metrizable subspace. Our
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following result establishes a connection between this kind of spaces and
Question 3.4.

Proposition 3.8. If X is a regular space containing a dense completely
metrizable subspace, then all dense Gδ-subsets of X are O-pseudocom-
plete.

Proof. Let Z be a dense completely metrizable subspace of X and let
Y be a dense Gδ-subset of X. Since Z ∩ Y is a Gδ-subset of Y , Alexan-
droff’s Theorem (see [2, Theorem 4.3.23]) implies that Z∩Y is completely
metrizable. Hence, we only need to show that Z∩Y is dense in Y to apply
Proposition 3.3(4) and conclude that Y is O-pseudocomplete.

Let us fix d, a complete metric compatible with the subspace topology
of Z, and {Un : n ∈ ω}, a decreasing sequence of open subsets of X
whose intersection is equal to Y . Thus, given x ∈ Z and r > 0, we define
B(x, r) := {y ∈ Z : d(x, y) < r}.

Assume that V is a non-empty open subset of X.
Claim. For each n ∈ ω, there exist zn ∈ Z, rn ∈ R, and Wn ∈ τX

such that
(1) 0 < rn < 2−n,
(2) zn ∈ Z ∩Wn ⊆ Z ∩ clX(Wn) ⊆ B(zn, rn) ⊆ V ∩ Un, and
(3) B(zn+1, rn+1) ⊆ Wn.

Before we engage in the details of the construction, let us note that,
for each integer n, the last two conditions give

(⋆) zn+1 ∈ Z ∩Wn+1 ⊆ B(zn+1, rn+1) ⊆ Z ∩Wn ⊆ B(zn, rn);

therefore, d(zn, zn+1) < 2−n. Hence, ⟨zk : k ∈ ω⟩ is a Cauchy sequence
in Z, and so it converges to some point z ∈ Z. On the other hand, a
consequence of (⋆) is that {zk : k ∈ ω \ n} ⊆ Wn, which combined with
condition (2) produces

z ∈
∩
k

(Z ∩ clX(Wk)) ⊆
∩
k

(V ∩ Uk) = V ∩ Y.

In other words, V ∩ Y has non-empty intersection with Z ∩ Y .
To finish the argument, let us prove the claim by induction. Since U0

is dense in X, we get V ∩ U0 ∈ τ∗X and so there exists z0 ∈ Z ∩ (V ∩ U0);
fix r0 < 1 such that B(z0, r0) ⊆ V ∩ U0 and use regularity of Z to obtain
W0 ∈ τX satisfying z0 ∈ Z ∩W0 ⊆ Z ∩ clX(W0) ⊆ B(z0, r0).

Now assume that zn, rn, and Wn have been defined accordingly for
some n ∈ ω. Hence, zn ∈ V ∩Wn and Un+1 is dense in X, so V ∩Wn∩Un+1

is a non-empty open subset of X. Since Z is dense, there exists zn+1 ∈
Z∩V ∩Wn∩Un+1 and, by proceeding as we did in the previous paragraph,
we obtain rn+1 and Wn+1 as required. �
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It is routine to verify that if ⟨Pn : n ∈ ω⟩ is an Oxtoby sequence for X
and Y is an open subspace of X, then ⟨{P ∈ Pn : P ⊆ Y } : n ∈ ω⟩ is an
Oxtoby sequence for Y . Thus, we get the following.

Remark 3.9. Any open subspace of an Oxtoby space is Oxtoby itself.

Following [10], we say that a point x in a topological space is rare if the
closure of {x} has void interior. Note that in a T1 space, the rare points
are precisely the non-isolated points.

A routine modification of the argument used to prove [10, Theorem 4]
can be used to show the following.

Lemma 3.10. If X is a non-empty topological space with a dense set of
rare points, any of the following conditions imply that |X| ≥ c.

(1) X is O-pseudocomplete.
(2) X is Oxtoby and T2.

From [4, Corollary 23B] we know that the statement if X is a Hausdorff
second countable topological space of size < c, then all its subsets are of
type Gδ is consistent with ZFC. Thus, a naïve approach to obtain the
consistency of a negative answer to Question 3.4(1) would be to find a
“pseudocomplete” space with the properties given above which has a non-
pseudocomplete dense subspace. Unfortunately, that approach will not
work.

Proposition 3.11. If X is a T2 Oxtoby space or an O-pseudocomplete
space, then X has a dense set of isolated points or |X| ≥ c.

Proof. Assume X is T2 Oxtoby and let A be the set of all isolated points
of X. When A is not dense in X, the open subspace Y := X \ A is non-
empty, Oxtoby, and has no isolated points (so, every point of it is a rare
point). Therefore, |X| ≥ |Y | ≥ c. The same reasoning is used for the case
when X is O-pseudocomplete. �

4. Elementary Submodels

For the arguments used in this section we are assuming familiarity with
the material contained in [7, Section III.8].

Given a topological space X, πw(X) denotes the π-weight of X, i.e.,
the least cardinality of an infinite π-base for X. Note that πw(X) is also
the minimum size of an infinite π0-base for X.

If σ and τ are a pair of topologies on a set X, we will say that σ is
Π-related to τ if σ∗ is a π0-base for τ . It is proved in [9, Proposition 3.1]
that “being Π-related” is an equivalence relation on the topologies for X.
Also, [5, Example 3.7] exhibits a quasiregular topology which is Π-related
to a non-quasiregular topology.
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Proposition 4.1. Let X be a topological space and set κ := πw(X). If
X is Oxtoby, then

(1) X has a dense Oxtoby subspace Y with |Y | ≤ κω and
(2) there exists σ ⊆ τX , a topology on X which is Π-related to τX ,

such that (X,σ) is Oxtoby and the weight of (X,σ) is at most κω.
Moreover, the above statements remain true when one replaces “Oxtoby”
with “T-pseudocomplete” (“O-pseudocomplete”, respectively).

Proof. Let θ be a suitable large cardinal for which Hθ has an elementary
submodel M of size κω satisfying Mω ∪ (κω + 1) ∪ {X, τX} ⊆ M . Hence,
there is B ∈ M such that B is a π-base for X with |B| = κ, so the
assumption κω + 1 ⊆ M gives B ⊆ M .

In order to prove (1) we need some remarks. Suppose that P ∈ M is a
π0-base for X. Hence, given U ∈ τ∗X , there is B ∈ B with B ⊆ U , and so,
by elementarity, P ⊆ B, for some P ∈ M ∩ P. Thus, M ∩ P is a π0-base
for X as well.

Observe that the above argument proves that if P ∈ M is a π-base for
X, then M ∩ P is a π-base for X too.

Assume now that X is Oxtoby and set Y := M ∩X. We will show that
Y is as needed in (1). Clearly, |Y | ≤ κω so let us fix P⃗ := ⟨Pn : n ∈ ω⟩ ∈
M , an Oxtoby sequence for X, and let us set P⃗M := ⟨M ∩Pn : n ∈ ω⟩ to
obtain a sequence of π0-bases for X.

Claim. If P⃗ = ⟨Pn : n ∈ ω⟩ is an associated nest for P⃗M , then
Y ∩

∩
n Pn ̸= ∅.

Start by noticing that P⃗ is also an associated nest for P⃗. Now, the
assumption Mω ⊆ M gives P⃗ ∈ M , and so, by elementarity, M thinks
that P⃗ has non-void intersection, i.e., ∅ ̸= M ∩

∩
n Pn = Y ∩

∩
n Pn.

Let P0 ∈ M ∩P0 be arbitrary. Using the fact that P⃗M is a sequence of
π0-bases, define ⟨Pn : n ∈ ω⟩, an associated nest for P⃗M . Hence, according
to the claim, Y ∩ P0 ̸= ∅. In conclusion, Y is dense in X because it has
non-void intersection with each member of the π0-base M ∩ P0.

Set Q⃗ := ⟨(Pn ∩M) � Y : n ∈ ω⟩ to obtain a sequence of π0-bases for
Y (see Proposition 3.3) and let ⟨Qn : n ∈ ω⟩ be an associated nest for Q⃗.
For each n ∈ ω fix Pn ∈ Pn ∩M such that Qn = Pn ∩ Y . Then Pn+1 and
Pn are members of M satisfying Pn+1 ∩M ⊆ Pn ∩M so, by elementarity,
Pn+1 ⊆ Pn. In other words, ⟨Pn : n ∈ ω⟩ is an associated nest for P⃗M , and
therefore an application of the claim produces

∩
n Qn = Y ∩

∩
n Pn ̸= ∅.

We just proved that if X is Oxtoby, then Y is Oxtoby and dense in X.
Moreover, when X is T-pseudocomplete, Y inherits quasiregularity from
X, and so Y is T-pseudocomplete whenever X is.

Assume, for the rest of the argument, that X is O-pseudocomplete.
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With the same notation as above: if P⃗ ∈ M witnesses O-pseudocom-
pleteness for X, then the claim holds when “nest” is replaced by “strong
nest” (note that if A ⊆ X and A ∈ M , then clX A ∈ M) so one can use
the quasiregularity of X to prove that Y has non-empty intersection with
each member of M ∩ P0. Hence, Y is dense in X and, as a consequence,
quasiregular.

Now let Q⃗ = ⟨Qn : n ∈ ω⟩ be a strong nest for Q⃗ and for each n < ω,
fix Pn ∈ M ∩ Pn with Qn = Y ∩ Pn. Observe that our assumption on
Q⃗ gives M ∩ clX Pn+1 ⊆ M ∩ Pn and since clX Pn+1 ∈ M , we conclude
that clX Pn+1 ⊆ Pn. Therefore, ⟨Pn : n ∈ ω⟩ ∈ M is a strong nest for
P⃗ so, by elementarity, Q⃗ has non-void intersection. In other words, Q⃗
witnesses O-pseudocompleteness for Y . This completes the proof of (1)
for all possible cases.

For (2), by elementarity, M ∩ τX is a base for some topology σ on
X. Note that σ is Π-related to τX (because B ⊆ σ) and its weight
does not exceed κω. If (X, τX) is Oxtoby, [5, Corollary 3.6] implies that
(X,σ) is Oxtoby too. On the other hand, if X has a sequence witnessing
O-pseudocompleteness, then there is ⟨Pn : n ∈ ω⟩ ∈ M witnessing O-
pseudocompleteness for X. Thus, by elementarity, P⃗M := ⟨M ∩ Pn : n ∈
ω⟩ is a sequence of π-bases for σ and since τX is finer than σ, any strong
nest for P⃗M in (X,σ) is a strong nest for P⃗ in X; therefore, we have
proved that P⃗M witnesses O-pseudocompleteness for (X,σ).

To complete the proof, note that if X is quasiregular and U ∈ M ∩ τ∗X ,
then, by elementarity, there exist F ∈ M and V ∈ M ∩ τ∗X satisfying
V ⊆ F ⊆ U and X \ F ∈ M ∩ τX . In other words, (X,σ) is quasiregular
as well. �

Corollary 4.2. Assume X is a T1 non-empty topological space with no
isolated points and satisfying πw(X) ≤ c.

(1) If X is Oxtoby and T2, X has a dense Oxtoby subspace of size c.
(2) When X is T-pseudocomplete (O-pseudocomplete, respectively),

X has a dense T-pseudocomplete (O-pseudocomplete, respectively)
subspace of size c.

Proof. Note that, in either case, any dense subspace of X possesses a dense
set of non-isolated points, so Lemma 3.10 implies that the cardinality of
the dense subset of X guaranteed by the previous proposition is c. �

A construction which has received some attention lately is the follow-
ing: given a topological space X and M , an elementary submodel of some
Hθ for which {X, τX} ⊆ M , the collection (M ∩ τX) � M is a base for
some topology on X ∩M ; the resulting topological space will be denoted
by XM . In a more colloquial way, XM is what M “thinks” that X is.
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Proposition 4.3. If X, θ, and M are as in the previous paragraph, the
following statements hold.

(1) XM is quasiregular if and only if X is quasiregular.
(2) When Mω ⊆ M and X is Oxtoby, XM is Oxtoby as well.

Also, (2) remains true when “Oxtoby” is replaced by “T-pseudocomplete”
or “O-pseudocomplete.”

Proof. To prove (1), assume that X is quasiregular and let U ∈ M ∩ τX
be so that U ∩M ̸= ∅. Since M knows that X is quasiregular, there exists
V ∈ M ∩ τX with V ∩M ̸= ∅ and clX V ⊆ U . To complete the argument,
let us show that clXM

(V ∩M) ⊆ clX V . By letting W := X \ clX V , we
obtain W ∈ M ∩ τX and W ∩ V = ∅, so M ∩W is an open subset of XM

which misses V ∩M ; thus

XM \ clX V = M ∩W ⊆ XM \ clXM
(V ∩M).

And vice versa: if X is not quasiregular, M knows it, and so there
exists U ∈ M ∩ τ∗X in such a way that M |= ∀V ∈ τ∗X (clX V ̸⊆ U).
As a consequence, given V ∈ M ∩ τ∗X , there is x ∈ M ∩ clX V \ U , and
therefore W ∩ V ∩ M ̸= ∅ whenever x ∈ W ∈ M ∩ τX . In other words,
x ∈ clXM

(V ∩M) \ U . This proves that XM is not quasiregular.
The proof of (2) will be broken down into several claims.
Claim 1. If P ∈ M is a π0-base for X, then (P ∩M) � M is a π0-base

for XM .
First, by elementarity, M thinks that each P ∈ P∩M has non-empty

interior, so there is U ∈ τ∗X with U ∩M ̸= ∅ and U ⊆ P . Clearly, U ∩M
is a non-empty open set in XM which is contained in P ∩ M . To finish
the proof of Claim 1, let U ∈ M ∩ τX be so that U ∩ M ̸= ∅. Since M
knows that P is a π0-base, there exists Q ∈ M ∩P satisfying Q ⊆ U , and
so Q ∩M ⊆ U ∩M .

Claim 2. Claim 1 is true for π-bases.
The argument is similar to the previous one, so we omit it.

Claim 3. If P⃗ = ⟨Pn : n ∈ ω⟩ ∈ M is an Oxtoby sequence for X,
Q⃗ := ⟨(Pn ∩M) � M : n ∈ ω⟩ is an Oxtoby sequence for XM .

According to Claim 1, Q⃗ is a sequence of π0-bases for XM so let
⟨Qn : n ∈ ω⟩ be an associated nest for Q⃗. For each n ∈ ω, fix Pn ∈ Pn∩M
with Qn = Pn ∩M and observe that the fact Mω ⊆ M implies that ⟨Pk :
k ∈ ω⟩ ∈ M . On the other hand, from Pn+1∩M = Qn+1 ⊆ Qn = Pn∩M ,
we deduce that Pn+1 ⊆ Pn; i.e., ⟨Pk : k ∈ ω⟩ is an associated nest to P⃗
and hence, by elementarity,

∩
k Qk = M ∩

∩
k Pk ̸= ∅.

Claim 4. Claim 3 remains true if we replace “Oxtoby sequence” by
“sequence witnessing O-pseudocompleteness.”
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Keeping the notation from Claim 3, let Q⃗ = ⟨Qn : n ∈ ω⟩ be a
strong nest for Q⃗. Fix, for each n ∈ ω, Pn ∈ M ∩ Pn in such a way that
Qn = M ∩ Pn and note that P⃗ := ⟨Pk : k ∈ ω⟩ ∈ M . We will show that,

(†) ∀n ∈ ω (M ∩ clX Pn+1 ⊆ Pn).

Since Q⃗ is a strong nest, x ∈ XM \ Pn implies x /∈ clX Pn+1, and so, by
definition, there exists U ∈ M ∩ τX with x ∈ U and U ∩ (Pn+1 ∩M) = ∅.
In other words, M thinks that U misses Pn+1 which, by elementarity,
gives U ∩ Pn+1 = ∅. Thus, x /∈ clX Pn+1.

Using (†) and elementarity, we deduce that P⃗ is a strong nest for P⃗, so
M knows that P⃗ has non-empty intersection, i.e.,

∩
k Qk = M∩

∩
k Pk ̸= ∅.

Hence, the proof of the proposition is complete. �

Note that the assumption Mω ⊆ M cannot be removed from the hy-
potheses: If M is a countable elementary submodel and R ∈ M , then RM

is countable T1 and has no isolated points so, according to Corollary 3.6,
RM is not O-pseudocomplete.

5. Unions

We start this section by proving that all topological spaces have a nice
decomposition.

Proposition 5.1. Given a topological space X, there exist XO and XN

such that
(1) XO and XN are disjoint open subsets of X whose union is dense

in X,
(2) the subspace XO is Oxtoby, and
(3) all Oxtoby subspaces of XN are nowhere dense in X.

Proof. Let us denote by U the collection of all open subspaces of X which
are Oxtoby. We will show that XO :=

∪
U and XN := X \ XO satisfy

conditions (1)–(3).
A standard argument involving the Axiom of Choice produces V, a

maximal pairwise disjoint family in U . Hence, Y :=
∪
V is a dense

subspace of XO so to verify that (2) holds, we will argue that Y is
Oxtoby (see Proposition 3.3(4)). Start by fixing, for each V ∈ V, an
Oxtoby sequence for V , let us say, P⃗V := ⟨PV

n : n ∈ ω⟩. By letting
P⃗ := ⟨

∪
{PV

n : V ∈ V} : n ∈ ω⟩, we obtain a sequence of π0-bases for Y

and, moreover, since V is pairwise disjoint, any associated nest for P⃗ is an
associated nest for P⃗V , for some V ∈ V. Thus, P⃗ is an Oxtoby sequence
for Y .
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Finally, let S be an Oxtoby subspace of XN . By Proposition 3.3(3)
and Remark 3.9, we get U := intX clX S ∈ U , and so U ⊆ XO. Given
that U ∩ S ⊆ XO ∩XN and U ⊆ clX S, we conclude that U = ∅. �

Any space which can be written as the union of countably many Oxtoby
subspaces of it will be called σ-Oxtoby.

Corollary 5.2. For a σ-Oxtoby space, being Baire is equivalent to being
Oxtoby.

Proof. Assume that {Yn : n ∈ ω} is a family of Oxtoby subspaces of a
topological space X such that X =

∪
n Yn.

Let XO and XN be as described in Proposition 5.1. Since each Yn∩XN

is an open subspace of Yn, we deduce that Yn∩XN is an Oxtoby subspace
of X contained in XN , and therefore it is nowhere dense. Hence, XN is
meager.

When X is Baire, we get XN = ∅ and, as a consequence, XO is dense in
X; thus, X is Oxtoby. The remaining implication is Proposition 3.3. �

Corollary 5.3. Any finite union of Oxtoby spaces is Oxtoby.

Proof. It suffices to prove that the union of two Oxtoby spaces is Oxtoby,
so let A and B be two Oxtoby subspaces of a topological space X with
X = A∪B. Then Y := A is Oxtoby. Also, Z := X \Y is Oxtoby because
it is an open subspace of B.

According to the previous corollary, we only need to show that X is
Baire so let D be a countable family of dense open subsets of X and let
U ∈ τ∗X be arbitrary. If U ∩Z ̸= ∅, then U ∩

∩
D ̸= ∅ because all members

of D � Z are dense open in Z. When U and Z are disjoint, U ⊆ Y , and
therefore U is Baire; so we conclude that U ∩

∩
D ≠ ∅. �

As expected, one cannot replace “Oxtoby” by “T-pseudocomplete” or
“O-pseudocomplete” in the last result.

Example 5.4. Let P be the subspace of R consisting of all irrational
numbers and let αP be its Alexandroff extension, i.e., αP denotes the
topological space obtained by endowing the set P∪{0} with the topology
which has the collection

τP ∪ {U ⊆ P ∪ {0} : (0 ∈ U) ∧ (P \ U is compact in τP)}

as a base. Since P and {0} are completely metrizable, we only need to
verify that αP is not quasiregular. To do so, note that P is a non-empty
open subset of αP and that 0 ∈ clαP V , for each V ∈ τ∗αP, because P is not
locally compact.
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It is pointed out in [6, (2)] that all Gδ-subsets of S, Sorgenfrey’s line,
are Oxtoby. One way to see this is as follows, given {Un : n ∈ ω}, a
family of open subsets of S, obtain an Oxtoby sequence for A :=

∩
n Un

by defining P ∈ Pn if and only if either
(1) P = A∩ [a, b] for some a, b ∈ A satisfying a < b and [a, b] ⊆ Un or
(2) P = {a}, where a is an isolated point of A.

Now consider the unit square [0, 1]× [0, 1] equipped with the topology
induced by the lexicographic order and denote by X the subspace [0, 1]×
{0, 1}. X is called Alexandroff double arrow space. As one easily checks,
the subspaces S0 := (0, 1]×{0} and S1 := [0, 1)×{1} are homeomorphic to
S so, whenever A is a Gδ-subset of X, the previous paragraph guarantees
that A ∩ Si is Oxtoby. Thus, Corollary 5.3 gives the following.

Example 5.5. All Gδ-subsets of the double arrow space are Oxtoby.

6. Products

For the purposes of this section, all members of a cartesian product
are choice functions, so if x is an element of a cartesian product and A is
a set, x � A is the restriction of x to the set A. Also, given a set S, [S]<ω

will denote the collection of all finite subsets of S and [S]≤ω will stand
for the set of all countable subsets of S.

Regarding Question 3.4(2), we have the following.

Proposition 6.1. Let {Xα : α < κ} be a family of non-empty completely
metrizable topological spaces and let X be its topological product. If Y is
a dense Gδ-subset of X, then Y is O-pseudocomplete.

Proof. Let us start by fixing, for each α < κ, a complete metric dα which
is compatible with the topology of Xα. Also, set P := {x � F : x ∈
X ∧ F ∈ [κ]<ω}.

Now, given p ∈ P and m ∈ ω, define

[p;m] := {x ∈ X : ∀α ∈ dom(p) (dα(p(α), x(α)) < 2−m)}

and notice that {[q; k] : q ∈ P ∧ k ∈ ω} is a base for X.
Assume that {Un : n ∈ ω} is a family of open subsets of X with

Y =
∩

n Un. In order to prove that Y is O-pseudocomplete, define, for
each integer n, the family Pn as follows: P ∈ Pn if and only if there are
p ∈ P and m ∈ ω \ n satisfying clX [p;m] ⊆ Un and P = Y ∩ [p;m].

Let q ∈ P and k ∈ ω be arbitrary. Since Un is a dense open subset of
X, there exist p ∈ P and ℓ ∈ ω such that clX [p; ℓ] ⊆ Un ∩ [q; k]. Thus,
by letting m := ℓ + n + 1, we get [p;m] ⊆ [p; ℓ], and so P := Y ∩ [p;m]
satisfies P ∈ Pn and P ⊆ Y ∩ [q; k]. Also, the fact that Y is dense in
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X implies that all members of Pn are non-empty open subsets of Y . In
other words, Pn is a π-base for Y .

Suppose now that P⃗ = ⟨Pn : n ∈ ω⟩ is a strong nest associated to
⟨Pn : n ∈ ω⟩.

For each n ∈ ω, let pn ∈ P and mn ∈ ω \n be so that clX [pn;mn] ⊆ Un

and Pn = Y ∩ [pn;mn]. Since Y is dense in X,

(†) clY Pn = Y ∩ clX Pn = Y ∩ clX(Y ∩ [pn;mn]) = Y ∩ clX [pn;mn].

For all α < κ and n ∈ ω, let Bn
α be the open ball {x ∈ Xα :

dα(x, pn(α)) < 2−mn} and set aα := {i ∈ ω : α ∈ dom(pi)}. Hence,
if πα : X → Xα is the αth projection map, we get

(⋆) clX [pn;mn] =
∩

{π−1
ξ [clXξ

(Bn
ξ )] : ξ ∈ dom(pn)}.

Claim. For each α ∈ A :=
∪

n dom(pn), there exists zα ∈
∩
{clXα(B

n
α) :

n ∈ aα}.
Before we prove our assertion, assume it is true and fix z ∈ X with

z(α) = zα, for each α ∈ A.
Let us show, first, that z ∈

∩
i clX [pi;mi]. Indeed, given n ∈ ω, if

α ∈ dom(pn), then n ∈ aα, and so πα(z) ∈ clXα(B
n
α); thus, by (⋆),

z ∈ clX [pn;mn].
From the previous paragraph, we deduce that z ∈

∩
n Un = Y , and

therefore, by (†), z ∈ Y ∩ clX [pn+1;mn+1] = clY Pn+1 ⊆ Pn ⊆ [pn;mn].
In conclusion, z ∈

∩
i Pi and the proof would be complete. So we only

need to show that our claim holds.
Fix, for each integer n, an arbitrary point xn ∈ Pn and let α ∈ A be

arbitrary. If k, ℓ ∈ aα satisfy k < ℓ, then {xk, xℓ} ⊆ Pk ⊆ clX [pk;mk]; so,
according to (⋆),

max{dα(pk(α), xk(α)), dα(pk(α), xℓ(α))} ≤ 2−mk ≤ 2−k

and, as a consequence, dα(xk(α), xℓ(α)) ≤ 2 · 2−k.
The last inequality implies that if aα is infinite, then ⟨xn(α) : n ∈ aα⟩ is

a Cauchy sequence in Xα, and so it converges to some point zα. Now note
that if n ∈ aα and i ∈ aα \ n, then xi ∈ Pn, and therefore xi(α) ∈ Bn

α;
in other words, {xi(α) : i ∈ aα \ n} ⊆ Bn

α, for all n ∈ aα. Hence, we
conclude that zα is as needed in the claim.

When aα is finite, we let k := max aα. Thus, for each n ∈ aα, we
obtain n ≤ k, and so xk ∈ Pn; in particular, xk(α) ∈ Bn

α. Therefore,
zα := xk(α) works. �

It is proved in [5, Theorem 3.2] that Σ-products of Oxtoby spaces are
Oxtoby spaces themselves so it is natural to ask if the same holds for
σ-products.
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Proposition 6.2. If κ is an infinite cardinal, the σ-product

X := {x ∈ 2κ : |x−1{1}| < ω}

is not Baire.

Proof. For each n ∈ ω, Dn := {x ∈ 2κ : |x−1{1}| ≥ n} is a dense
open subset of 2κ, and therefore {X ∩ Dn : n ∈ ω} is a family of dense
open subsets of X. Also, if x ∈

∩
n Dn, then |x−1{1}| ≥ ω, and so∩

n(X ∩Dn) = ∅. �

Given a topological space X, the collection of all Gδ-subsets of X is a
base for a topology on the set X. When X is endowed with this topology,
the resulting topological space PX is called the Gδ-expansion of X.

Our next result requires some preliminary notions. A topological space
is feebly compact if every locally finite family of open subsets of it is finite.
Thus, a space in which every point has a feebly compact neighborhood
will be called locally feebly compact. It is well known that for Tychonoff
spaces, feeble compactness is equivalent to pseudocompactness (see [2,
Theorem 3.10.22]).

By a clopen subset of a topological space, we mean a subset which is,
simultaneously, closed and open. A subset F of a topological space will
be called regular closed if F = intF .

Proposition 6.3. If X is a Σ-product of a family of non-empty regular
locally feebly compact spaces, then PX has a base consisting of non-empty
clopen subsets such that any nest in it has non-void intersection. In par-
ticular, PX is zero-dimensional and O-pseudocomplete.

Proof. Let us assume that {Xα : α < κ} is the family whose Σ-product
is X. Set Z :=

∏
α<κ Xα and denote by πα : Z → Xα the αth projection

map. Also, suppose that X is the Σ-product about z ∈ Z.
Given α < κ, let Bα be the collection of all sets of the form

∩
n Cn,

where ⟨Cn : n ∈ ω⟩ is a strong nest of non-empty regular closed feebly
compact subsets of Xα. The argument used to prove [10, Main Theorem
2] shows three things:

(1) Bα consists of non-empty closed Gδ-subsets of Xα,
(2) Bα is a base for PXα, and
(3) every nest in Bα has non-void intersection.

Define B as follows, B ∈ B if and only if there exist F ∈ [κ]≤ω and
{Bα : α ∈ F} in such a way that each Bα belongs to Bα and B =
X ∩

∩
α∈F π−1

α [Bα]. We will show that B is the collection whose existence
is claimed in our proposition. Start by noting that, according to (1) above,
all members of B are clopen subsets of PX.
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To prove that B is a base for PX, assume that W is an open subset of
PX and let x ∈ W be arbitrary. Then there is a sequence {Vn : n ∈ ω}
of canonical basic open subsets of Z with x ∈ X ∩

∩
n Vn ⊆ W . For each

integer n, fix Fn ∈ [κ]<ω and {V n
α : α ∈ Fn} in such a way that each V n

α is
an open subset of Xα and Vn =

∩
α∈Fn

π−1
α [V n

α ]. Now, if α ∈ F :=
∪

n Fn,
then Uα :=

∩
{V n

α : n ∈ ω ∧ α ∈ Fn} is a Gδ-subset of Xα containing
πα(x), so we apply (2) to obtain Bα ∈ Bα satisfying πα(x) ∈ Bα ⊆ Uα.
Hence, X ∩

∩
α∈F π−1

α [Bα] is a member of B which contains x and is a
subset of

∩
n Vn.

Finally, let us consider ⟨Bn : n ∈ ω⟩, a nest in B. Given n ∈ ω, there
exist Fn ∈ [κ]≤ω and {Bn

α : α ∈ Fn} in such a way that Bn
α ∈ Bα, for each

α ∈ Fn, and Bn = X ∩
∩

α∈Fn
π−1
α [Bn

α]. Define F :=
∪

n Fn and, for each
α ∈ F , set Sα := {n ∈ ω : α ∈ Fn}.

We will argue that {Bn
α : n ∈ Sα} is a decreasing sequence. Indeed, if

there were m,n ∈ Sα with m < n and Bn
α \ Bm

α ̸= ∅, then, using (1), we
would be able to get a choice function e ∈

∏
β∈Fn

Bn
β with e(α) /∈ Bm

α .
Therefore, e ∪ (z � (κ \ Fn)) would end up being a member of Bn \ Bm.
An absurdity.

From the previous paragraph and (3), we deduce that, for each α ∈ F ,
there exists yα ∈

∩
n∈Sα

Bn
α. Now fix a point y ∈ X satisfying πα(y) = yα,

for all α ∈ F . A straightforward argument gives y ∈
∩

n Bn. In particular,
∅ /∈ B, and this finishes the proof. �

Todd [10, Questions 7] asks for an example of a T-pseudocomplete
space with a non-Baire Gδ-expansion. The previous result shows that
such an example cannot be obtained from a Σ-product of regular locally
feebly compact spaces.

Let us recall that those subsets of a topological space X which are
dense in PX are called Gδ-dense.

Proposition 6.4. Let ⟨Bn : n ∈ ω⟩ be an Oxtoby sequence for a topologi-
cal space X. If each Bn consists of clopen subsets of X, then all Gδ-dense
subsets of X are O-pseudocomplete.

Proof. Clearly, our assumptions imply that X is quasiregular, so let Y be
a Gδ-dense subset of X. Hence, P⃗ := ⟨Bn � Y : n ∈ ω⟩ is a sequence of
π-bases of Y .

Now assume that ⟨Pn : n ∈ ω⟩ is an associated strong nest for P⃗. Fix,
for each n, Bn ∈ Bn such that Pn = Y ∩ Bn. Thus, Y ∩ Bn+1 = Pn+1 ⊆
Pn ⊆ Bn, and since Y is dense in X,

Bn+1 ⊆ Bn+1 = Y ∩Bn+1 ⊆ Bn = Bn.

Given that
∩

n Bn is a non-empty Gδ-subset of X,
∩

n Pn = Y ∩
∩

n Bn ̸=
∅. �
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7. Mappings

A continuous map f of X onto Y is called irreducible if no proper closed
subset of X is mapped by f onto Y .

Proposition 7.1. If f : X → Y is irreducible and closed, the following
hold.

(1) For each U ∈ τ∗X , there is V ∈ τ∗Y with V ⊆ f [U ] and f−1[V ] ⊆ U .
(2) X is quasiregular if and only if Y is quasiregular.
(3) X is an Oxtoby space whenever Y is an Oxtoby space.

Proof. Let us start by proving (1): If U ∈ τ∗X , then V := Y \ f [X \ U ]
turns out to be non-empty and open because f is irreducible and closed.
Moreover, we have that f−1[V ] ⊆ U and, since f is onto, V ⊆ f [U ].

To prove (2) assume, first, that X is quasiregular and let W ∈ τ∗Y .
Given that f−1[W ] ∈ τ∗X , there is U ∈ τ∗X with U ⊆ f−1[W ]. Thus,
according to (1), there exists V ∈ τ∗Y with V ⊆ f [U ] ⊆ f [U ]. Applying
the fact that f is closed, we obtain V ⊆ f [U ] ⊆ W . So Y is quasiregular.

Now suppose that Y is quasiregular and let U ∈ τ∗X . Use (1) to get V ∈
τ∗Y with f−1[V ] ⊆ U and let W ∈ τ∗Y be so that W ⊆ V . Then f−1[W ] is a
non-void open set in X whose closure is contained in f−1[W ] ⊆ f−1[V ] ⊆
U . So X is quasiregular.

For (3), let us start by fixing P⃗ = ⟨Pn : n ∈ ω⟩, an Oxtoby sequence
for Y . For each integer n, set Qn := {f−1[B] : B ∈ Pn}. We will argue
that Q⃗ := ⟨Qn : n ∈ ω⟩ is an Oxtoby sequence for X.

Let n ∈ ω be arbitrary. Clearly, each member of Qn has non-empty
interior. Now, given U ∈ τ∗X , there exists V ∈ τ∗Y with V ⊆ f [U ] and
f−1[V ] ⊆ U . Thus, for some P ∈ Pn, we obtain P ⊆ V ; hence, f−1[P ] ∈
Qn and f−1[P ] ⊆ U . Therefore, Qn is a π0-base for X.

Finally, let us assume that ⟨Qn : n ∈ ω⟩ is an associated nest for Q⃗.
Our definition of Q⃗ guarantees the existence of a sequence ⟨Pn : n ∈ ω⟩
such that Pn ∈ Pn and Qn = f−1[Pn], for all n ∈ ω. Since f is onto,
f [Qn] = Pn, and so ⟨Pk : k ∈ ω⟩ is an associated nest for P⃗. Thus,∩

n Qn = f−1[
∩

n Pn] ̸= ∅. �

An immediate consequence of the previous result is that “being Oxtoby”
and “being T-pseudocomplete” are inverse invariants of irreducible closed
mappings. Thus, the following question seems natural.

Question 7.2. Is O-pseudocompleteness an inverse invariant of closed
irreducible mappings?

Given a topological space X, let us denote by A(X) the Alexandroff
duplicate of X, in other words, the topological space which results in
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endowing the set X × 2 with the topology which has the collection

{{(x, 1)} : x ∈ X} ∪ {(U × 2) \ {(x, 1)} : (U ∈ τX) ∧ (x ∈ U)}
as a base. Standard arguments show that (a) the subspace X × {0} is
closed in A(X) and homeomorphic to X; (b) X×{1} is a discrete subspace
of A(X); and (c) when X has no isolated points, X×{1} is dense in A(X).
Hence, we note the following.

Remark 7.3. If X is a topological space with no isolated points, then X
embeds as a closed subspace of A(X) and all dense subspaces of A(X) are
Oxtoby. In particular, when X is not Oxtoby, A(X) is an Oxtoby space
with a closed non-Oxtoby subspace.

Let p : A(X) → X be the map given by p(x, i) = x, for all x ∈ X and
i < 2. It is straightforward to prove that p is perfect, and therefore we
conclude the following.

Remark 7.4. Being Oxtoby is not an invariant of perfect mappings.
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