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PRODUCTS AND COUNTABLE DENSE HOMOGENEITY

ANDREA MEDINI

Abstract. Building on work of Stewart Baldwin and Robert E.
Beaudoin, assuming Martin’s Axiom, we construct a zero-dimen-
sional separable metrizable space X such that X is countable dense
homogeneous while X2 is not. It follows from results of Michael
Hrušák and Beatriz Zamora Avilés that such a space X cannot be
Borel. Furthermore, X can be made homogeneous and completely
Baire as well.

1. Introduction

As it is common in the literature about countable dense homogeneity,
by space we will always mean “separable metrizable topological space.”
By countable we will always mean “at most countable.” For all undefined
topological notions, we refer to [15]. Our reference for descriptive set
theory is [8]. For all other set-theoretic notions, we refer to [9]. Given a
space X, we will denote by H(X) the group of homeomorphisms of X.
Recall that a space X is countable dense homogeneous (briefly, CDH) if, for
every pair (A,B) of countable dense subsets of X, there exists h ∈ H(X)
such that h[A] = B.

The fundamental positive result in the theory of CDH spaces is the
following (see [1, Theorem 5.2]). In particular, it shows that the Cantor
set 2ω, the Baire space ωω, the Euclidean spaces Rn, the spheres Sn, and
the Hilbert cube [0, 1]ω are all examples of CDH spaces. See [2, §14, §15,
and §16] for much more on this topic. Recall that a space is strongly
locally homogeneous (briefly, SLH) if there exists a base B for X such that
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for every U ∈ B and x, y ∈ U , there exists h ∈ H(X) such that h(x) = y
and h � (X \ U) = idX\U .

Theorem 1.1 (Anderson, Curtis, and van Mill). Every Polish SLH space
is CDH.

Using the fact that homeomorphisms permute the connected compo-
nents, it is easy to see that the product 2ω × S1 is not CDH. Therefore,
countable dense homogeneity is not productive, even in the class of com-
pact topological groups. However, the situation improves if we restrict
our attention to zero-dimensional spaces. Let

C = {X : X ≈ κ⊕ (λ× 2ω)⊕ (µ× ωω), where 0 ≤ κ, λ, µ ≤ ω}

be the class of spaces that are homeomorphic to a countable disjoint sum
of copies of 2ω, ωω, and 1. Recall that a space is an absolute Borel set (or
simply Borel) if it is a Borel subset of some Polish space. See [7, Lemma
2.2, Corollary 2.4, and Corollary 2.5] for a proof of the following theorem.

Theorem 1.2 (Hrušák and Zamora Avilés). If X is a zero-dimensional
Borel CDH space, then X ∈ C.

Proposition 1.3. The class C is closed under countable products.

Proof. It is easy to verify directly that C is closed under finite products.
So let X be the product of a countably infinite subcollection of C. Without
loss of generality, we can assume that all factors of X are non-empty and
infinitely many of them have size bigger than 1. It follows that X is a non-
empty zero-dimensional Polish space with no isolated points. Therefore,
X is homeomorphic to 2ω (if X is compact) or to ωω (if X is not compact,
hence nowhere compact). �

Corollary 1.4. Assume that I is countable and Xi is a zero-dimensional
Borel CDH space for every i ∈ I. Then

∏
i∈I Xi is CDH.

Using a method of Stewart Baldwin and Robert E. Beaudoin (see
§2), we will show that the “Borel” assumption in Corollary 1.4 cannot
be dropped.

The following is our main result. The construction of the example is
the content of §3, and the verification of its properties is the content of §4.
Recall that a space X is completely Baire if every closed subspace of X
is Baire. By a classical result of Hurewicz, a space is completely Baire if
and only if it does not contain any closed subspace that is homeomorphic
to Q (see [15, Corollary 1.9.13]).
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Theorem 1.5. Assume MA(σ-centered). Then there exists a zero-dimen-
sional CDH space X such that X2 is not CDH.1 Furthermore, X can be
made homogeneous and completely Baire as well.

We will not prove the second part of the theorem, since it can be
obtained by exactly the same methods used in the proof of [3, Theorem
3.5], and it would make our construction unnecessarily cumbersome. In
fact, those methods show that the space X can be made a homogeneous
Bernstein set. Recall that a subset B of 2ω is a Bernstein set if B∩K ̸= ∅
and (2ω \ B) ∩ K ̸= ∅ for every perfect subset K of 2ω. Using the
characterization mentioned above, it is easy to see that every Bernstein
set is completely Baire.

We conclude this introduction with several open questions.

Question 1.6. Can the assumption of MA(σ-centered) in Theorem 1.5
be dropped?

Question 1.7. For which κ such that 2 ≤ κ ≤ ω is there a zero-
dimensional space X such that Xn is CDH for every n < κ while Xκ

is not? 2 Can X be homogeneous and completely Baire?

Notice that the space X = 2ω ⊕ S1 is CDH while X2 is not. However,
in the case 3 ≤ κ ≤ ω, we would not know the answer to Question 1.7
even if the zero-dimensionality requirement were dropped.

The type of a countable dense subset D of a space X is {h[D] : h ∈
H(X)}. Clearly, a space is CDH if and only if it has exactly one type
of countable dense subsets. Also notice that c is the maximum possible
number of types of countable dense subsets of a space. In [6], Michael
Hrušák and Jan van Mill started an investigation of this natural notion.
In particular, [6, Theorem 4.5] gives a condition under which a space
must have c types of countable dense subsets (see also [10, Theorem 14
and Theorem 16] for more specific statements). However, we were unable
to answer the following question, even in the case κ = c.

1It follows from recent results of Rodrigo Hernández-Gutiérrez, Michael Hrušák,
and Jan van Mill [5] that such a space also exists in models obtained by adding at
least ω2 Cohen reals to a model of CH. Just consider X = Y ⊕ 2ω , where Y is a
meager CDH subspace of 2ω (such a space exists in ZFC by [5, Theorem 4.1]). Notice
that Z = X2 \ (2ω × 2ω) is meager and has size c, so it is not CDH by the proof of
[5, Theorem 4.4]. On the other hand, Z is preserved by every homeomorphism of X2,
because it is the union of all meager open subsets of X2. Therefore, X2 is not CDH.
However, it is clear that X is neither homogeneous nor Baire.

2The case κ = ω was recently settled by Hernández-Gutiérrez, Hrušák, and van
Mill [5, Theorem 4.8], who proved the existence of such a space in ZFC.
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Question 1.8. For which cardinals κ such that 2 ≤ κ ≤ c is there a zero-
dimensional CDH space X such that X2 has exactly κ types of countable
dense subsets?

By [7, Corollary 2.7], Theorem 1.2 extends to all projective spaces if
one assumes the axiom of Projective Determinacy. Hence, the same is
true for Corollary 1.4. Therefore, the following question seems natural.

Question 1.9. Is it consistent that there exists a zero-dimensional ana-
lytic CDH space X such that X2 is not CDH? Co-analytic?

By considering (ω + 1) × 2ω ≈ 2ω, one sees that a factor of a CDH
product need not be CDH. Actually, van Mill [13] constructed a rigid
space X such that X2 ≈ [0, 1]ω. Recall that a space is rigid if its only
homeomorphism is the identity. In particular, X is a continuum that is
not CDH, while X2 is CDH.

Question 1.10. For which κ such that 2 ≤ κ ≤ ω is there a space X
such that Xn is not CDH for every n < κ while Xκ is CDH? 3 Can X be
a continuum?

L. Brian Lawrence [11] constructed a non-trivial rigid zero-dimensional
space X such that X2 is homogeneous. But we do not know whether X2

can be made CDH.

Question 1.11. Is there a zero-dimensional space X that is not CDH
while X2 is CDH? Can X be rigid?

2. Results of Baldwin and Beaudoin

Given an infinite cardinal λ, a subset D of a space X is λ-dense in X
if |D ∩ U | = λ for every non-empty open subset U of X. The following
results are [3, Lemma 3.1 and Lemma 3.2]. We present a simpler version
of the proof of the first result. Similar posets were recently used in the
proofs of [12, Lemma 22 and Lemma 25].

Theorem 2.1 (Baldwin and Beaudoin). Assume MA(σ-centered). Let
κ < c be a cardinal. Suppose that Aα and Bα are countable dense subsets
of 2ω for each α < κ. Also assume that Aα ∩ Aβ = ∅ and Bα ∩ Bβ = ∅
whenever α < β < κ. Then there exists f ∈ H(2ω) such that f [Aα] = Bα

for every α < κ.

Proof. Consider the poset P consisting of all pairs of the form p = (g, π) =
(gp, πp) such that, for some n = np ∈ ω, the following requirements are
satisfied. Let A =

∪
α∈κ Aα and B =

∪
α∈κ Bα.

3Notice that X = ω + 1 and X = [0, 1]d for every d such that 1 ≤ d < ω answer in
the affirmative the case κ = ω.
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• g = gα1 ∪ · · · ∪ gαm , where α1 < · · · < αm < κ and each gαi is a
finite bijection from Aαi to Bαi .

• π is a permutation of n2.
• π(a � n) = g(a) � n for every a ∈ dom(g).

Order P by declaring q ≤ p if the following conditions are satisfied.
• gq ⊇ gp.
• πq(t) � np = πp(t � np) for all t ∈ nq2.

For each ℓ ∈ ω, define

Dℓ = {p ∈ P : np ≥ ℓ}.

Let p = (g, π) ∈ P with np = n, and let ℓ ∈ ω. Choose n′ ≥ ℓ, n big
enough so that all a � n′ are distinct for a ∈ dom(g) and all b � n′ are
distinct for b ∈ ran(g). Now it is easy to obtain a permutation π′ of n′

2
such that q = (g, π′) ∈ P and q ≤ p. So each Dℓ is dense in P.

For each a ∈ A, define

Ddom
a = {p ∈ P : a ∈ dom(gp)}.

Given p ∈ P and a ∈ Aα \dom(gp), one can simply choose b ∈ Bα \ ran(gp)
such that b � np = πp(a � np). This choice will make sure that q =
(gp ∪ {(a, b)}, πp) ∈ P. Furthermore, it is clear that q ≤ p. So each Ddom

a

is dense in P.
For each b ∈ B, define

Dran
b = {p ∈ P : b ∈ ran(gp)}.

As above, one can easily show that each Dran
b is dense in P.

It remains to show that P is σ-centered. We will proceed as in [9,
Exercise III.2.13]. It will be enough to construct xe : A −→ B for e ∈ ω
such that g ⊆ xe for some e whenever g = gp for some p ∈ P. Let
{fα : α < κ} be an independent family of functions (see [9, Exercise
III.2.12]). In particular, each fα : ω −→ ω, and, given any j1, . . . , jm ∈
ω and α1 < · · · < αm < κ, there exists e ∈ ω such that fα1(e) =
j1, . . . , fαm(e) = jm. Enumerate as {dαj : j ∈ ω} all finite bijections from
Aα to Bα. It is easy to check that defining

xe =
∪
α∈κ

dαfα(e)

for every e ∈ ω yields the desired functions. (Notice that P would be
σ-centered even if κ = c. However, in that case, we would have too many
dense sets.)

Since |A| < c and |B| < c, the collection of dense sets

D = {Dℓ : ℓ ∈ ω} ∪ {Ddom
a : a ∈ A} ∪ {Dran

b : b ∈ B}
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also has size less than c. Therefore, by MA(σ-centered), there exists a
D-generic filter G ⊆ P. To define f(x)(i), for a given x ∈ 2ω and i ∈ ω,
choose any p ∈ G such that i ∈ np and set f(x)(i) = πp(x � np)(i). �

Corollary 2.2 (Baldwin and Beaudoin). Assume MA(σ-centered). Let
κ < c be a cardinal. Suppose that Aα and Bα are λα-dense subsets of 2ω
for each α < κ, where each λα < c is an infinite cardinal. Also assume
that Aα ∩ Aβ = ∅ and Bα ∩ Bβ = ∅ whenever α < β < κ. Then there
exists f ∈ H(2ω) such that f [Aα] = Bα for every α < κ.

Proof. Notice that each Aα, being a λα-dense subset of 2ω, can be par-
titioned into λα countable dense subsets of 2ω. The same holds for each
Bα. Since MA(σ-centered) implies that c is regular (see, for example, [9,
Theorem III.3.61 and Lemma III.1.26]), we can apply Theorem 2.1. �

The results in this section were originally employed by Baldwin and
Beaudoin [3, Theorem 3.5] to construct a homogeneous CDH Bernstein
set under MA(σ-centered). We remark that their proof contains a small
inaccuracy. Using their notation, given λ-dense A,B ⊆ Xα, it is not
possible to use Corollary 2.2 to find g ∈ H(2ω) such that g[A] = B,
g[B] = A, g[Xγ \ (A∪B)] = Xγ \ (A∪B), and g[Yγ ] = Yγ , since A and B
might not be disjoint. However, this is easily fixed by requiring instead
that g[A] = B, g[Xγ \A] = Xγ \B, and g[Yγ ] = Yγ , as we do in the next
section.

3. The Construction

Let Q and R be any two disjoint countable dense subsets of 2ω. Given
i ∈ 2, denote by πi : 2

ω × 2ω −→ 2ω the natural projection on the i-th
coordinate. Given S ⊆ 2ω and a subgroup H of H(2ω), let

H[S] = {h(z) : z ∈ S, h ∈ H}

denote the closure of S under the action of H.
Enumerate as {(Aα, Bα) : α < c} all pairs of countable dense subsets

of 2ω, making sure that each pair is listed cofinally often. Enumerate as
{gα : α < c} all homeomorphisms satisfying the following conditions.

• gα : Tα −→ Tα, where Tα is a Gδ subset of 2ω × 2ω.
• Q2 ⊆ Tα.
• π0 � (gα[Q2]) is injective.

Notice that each Tα is dense in 2ω × 2ω. In particular, if M is meager
in 2ω × 2ω, then M ∩ Tα is meager in Tα. Also notice that each Tα is a
Polish space.
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By transfinite recursion, we will construct two increasing sequences
⟨Xα : α < c⟩ and ⟨Yα : α < c⟩ of subsets of 2ω and an increasing sequence
⟨Hα : α < c⟩ of subgroups of H(2ω).

By induction, we will make sure that the following requirements are
satisfied for every α < c.

(1) |Xα|, |Yα|, |Hα| ≤ max{|α|, ω}.
(2) Xα ∩ Yα = ∅.
(3) h[Xα] = Xα and h[Yα] = Yα for all h ∈ Hα.
(4) Xα+1 \Xα and Yα+1 \ Yα are max{|α|, ω}-dense in 2ω.
(5) If Aα ∪Bα ⊆ Xα and Xα \ (Aα ∪Bα) is max{|α|, ω}-dense in 2ω,

then there exists f ∈ Hα+1 such that f [Aα] = Bα.
(6) There exists (x, y) ∈ X2

α+1 ∩ Tα such that π0(gα(x, y)) ∈ Yα+1.
Start the construction by letting X0 = Q, Y0 = R, and H0 = {id2ω}.
Take unions at limit stages. At a successor stage α + 1, assume that

Xβ , Yβ , and Hβ are given for every β ≤ α. We will start by defining
Hα+1, making sure that condition (5) is satisfied. Let λ = max{|α|, ω}.
If (Aα ∪ Bα) * Xα or Xα \ (Aα ∪ Bα) is not λ-dense in 2ω, simply let
Hα+1 = Hα. Now assume that (Aα ∪ Bα) ⊆ Xα and Xα \ (Aα ∪ Bα)
is λ-dense in 2ω. By applying Corollary 2.2 with κ = 3, λ0 = ω, and
λ1 = λ2 = λ, one obtains f ∈ H(2ω) such that f [Aα] = Bα, f [Xα \Aα] =
Xα \ Bα, and f [Yα] = Yα. Let Hα+1 = ⟨Hα ∪ {f}⟩. For the rest of the
proof, let H = Hα+1.

Next, we will make sure that condition (6) is satisfied. Define

Ci
h = {(x, y) ∈ Tα : h(πi(x, y)) = π0(gα(x, y))}

for h ∈ H and i ∈ 2. Clearly, each Ci
h is closed. We claim that they

are also nowhere dense. We will prove this only for C0
h, since a sim-

ilar argument works for C1
h. In order to get a contradiction, assume

that U, V ⊆ 2ω are non-empty open sets such that h(x) = π0(gα(x, y))
whenever (x, y) ∈ (U × V ) ∩ Tα. Fix q, r, r′ ∈ Q such that r ̸= r′ and
(q, r), (q, r′) ∈ U × V . Then π0(gα(q, r)) = h(q) = π0(gα(q, r

′)), contra-
dicting the assumption that π0 � (gα[Q2]) is injective.

Since MA(σ-centered) obviously implies MA(countable), which is equiv-
alent to cov(meager) = c (see [4, Theorem 7.13]), and |H|, |Xα|, |Yα| < c
by condition (1), there exists (x, y) ∈ Tα such that

(x, y) /∈ g−1
α [π−1

0 [Xα] ∩ Tα] ∪
∪
i∈2

π−1
i [Yα] ∪

∪
h∈H,i∈2

Ci
h.

Notice that H[Xα]∩H[Yα] = Xα ∩ Yα = ∅ by conditions (2) and (3) and
by our choice of f . The set g−1

α [π−1
0 [Xα] ∩ Tα] guarantees that H[Xα] ∩

H[{π0(gα(x, y))}] = ∅. The sets π−1
i [Yα] guarantee that H[{x, y}] ∩

H[Yα] = ∅. The sets Ci
h guarantee that H[{x, y}]∩H[{π0(gα(x, y))}] = ∅.
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Combining the above observations, one sees that

H[Xα ∪ {x, y}] ∩H[Yα ∪ {π0(gα(x, y))}] = ∅.

It follows that it is possible to construct Xα+1 ⊇ H[Xα ∪ {x, y}] and
Yα+1 ⊇ H[Yα∪{π0(gα(x, y))}] that satisfy the requirement (4), while still
maintaining (1), (2), and (3). This can be done in λ stages, adding one
point to each from every non-empty clopen subset of 2ω and closing under
the action of H at each stage.

In the end, set X =
∪

α∈c Xα.

4. The Verification

We will start by showing that X is CDH. So fix a pair (A,B) of count-
able dense subsets of X. Since cf(c) > ω, there exists α < c such that
A∪B ⊆ Xα. Now fix β ≥ α+1 such that (A,B) = (Aβ , Bβ). Notice that
Xβ \ (Aβ ∪ Bβ) is max{|β|, ω}-dense in 2ω by condition (4). Therefore,
by condition (5), there exists f ∈ Hβ+1 such that f [Aβ ] = Bβ . Condition
(3) guarantees that f [X] = X, so f � X is the desired homeomorphism.

In order to show that X2 is not CDH, we will employ the following
classical result, which is a well-known tool for “killing” homeomorphisms
(see [14] for several interesting applications). For a proof of Theorem 4.1,
see [8, Theorem 3.9 and Exercise 3.10].

Theorem 4.1 (Lavrentiev). Let Z be a Polish space and S ⊆ Z. Every
homeomorphism f : S −→ S extends to a homeomorphism g : T −→ T ,
where T ⊇ S is a Gδ subset of Z.

Let D be a countable dense subset of X2 such that π0 � D is injective.
Such a subset is easy to construct using the fact that X has no isolated
points. Assume, in order to get a contradiction, that f : X2 −→ X2 is
a homeomorphism such that f [Q2] = D. By Theorem 4.1, there exists a
homeomorphism g : T −→ T that extends f , where T ⊇ X2 ⊇ Q2 is a
Gδ subset of 2ω × 2ω. Since we enumerated all such homeomorphisms, we
must have g = gα and T = Tα for some α < c. By conditions (6) and (2),
there exists (x, y) ∈ X2 ∩ Tα such that π0(gα(x, y)) /∈ X, contradicting
the fact that gα(x, y) = g(x, y) = f(x, y) ∈ X2.

Acknowledgments. The author is grateful to the anonymous referee
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