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`2-BETTI NUMBERS AND THE GENUS OF A GRAPH

TIMOTHY A. SCHROEDER

Abstract. Associated to a Coxeter system (W,S) is a labeled
simplicial complex L, and a complex Σ on which W acts. Theorems
and conjectures regarding the (reduced) `2-homology of Σ provide
avenues along which to approach questions regarding the genus
of a graph, where the graph is understood as a subcomplex of
the simplicial complex L. This paper explains this connection,
describes a program for estimating the genus of a graph, and uses
this connection to provide examples of some nice embeddings of
complete graphs in higher genus surfaces.

1. Introduction

In several papers (e.g., [1], [2], and [4]), Michael W. Davis describes a
construction which associates to any Coxeter system (W,S), a simplicial
complex Σ(W,S), or simply Σ when the Coxeter system is clear, on which
W acts properly and cocompactly. This is the Davis complex. Associated
to any Coxeter system is also a finite simplicial complex called the nerve
of (W,S), denoted L. Now, it is not the case that every simplicial complex
can arise as the nerve of a Coxeter system, but, for simplicial complexes
that can arise as nerves, we can reverse this correspondence. That is,
we can take a simplicial complex L as the initial data and then develop
corresponding Coxeter systems and Davis complexes.

Indeed, a Coxeter labeling of a simplicial complex L is a labeling of the
edges of L with integers ≥ 2 so that if mst is the label on edge {s, t}, then
L corresponds to the nerve of a Coxeter system (WL, S) where S denotes
the vertex set of L and WL has the presentation〈
S | s2 = 1∀ s ∈ S, and (st)mst = 1 whenever {s, t} is an edge of L

〉
.
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We denote by ΣL the Davis complex associated to (WL, S). For details
of this correspondence, see §2.2.

The complex ΣL admits a cellulation under which the link of each ver-
tex is L. Thus, when L is a triangulation of Sn−1, ΣL is an aspherical
n-manifold. In this case, the authors of [5], [3], [14], and [15] prove var-
ious results regarding the (reduced) `2-homology of ΣL, H∗(ΣL). These
results are largely sub-cases of Singer’s Conjecture applied to these Davis
manifolds.

Conjecture 1.1 (Singer’s Conjecture for Coxeter Groups). Let (W,S)
be a Coxeter system whose nerve L is a triangulation of Sn−1. Then
Hi(ΣL) = 0 for all i 6= n

2 .

With proper edge labeling, any graph Γ can be the nerve of a corre-
sponding Coxeter system (see §2.2); that is, any graph can be treated
as the (labeled) nerve of a related Coxeter system. This observation is
the key to connecting the `2-homology of Davis complexes with the study
of the genus of a graph, i.e., the minimal integer n such that Γ can be
embedded in a surface of genus n. For example, in [15], the author proves
Conjecture 1.1 is true in dimension 3, i.e., for Coxeter systems whose
nerves are triangulations of S2. Hence, `2-homological statements about
1-dimensional subcomplexes of these triangulations can be translated into
statements about genus 0 (planar) graphs, see [17]. The purpose of this
paper is to use the following generalization of Singer’s Conjecture to higher
genus nerves as a means of studying the genus of graphs.

Conjecture 1.2 (Generalized Singer Conjecture for Surfaces). Let (W,S)
be a Coxeter system with nerve L, a genus g surface. Then βi(ΣL) = 0
for i 6= 2 and β2(ΣL) = g.

In [5], the authors provide evidence that the right-angled version of
Conjecture 1.2 is true, and here in section 5, the author provides specific
examples for which it is true. This survey paper will then have two facets:
(1) Assuming Conjecture 1.2, provide an `2-homological program which
approximates the genus of any graph Γ. (2) Provide a family of examples
of Conjecture 1.2.

2. Background

Let (W,S) be a Coxeter system. Given a subset U of S, define WU to
be the subgroup of W generated by the elements of U . A subset T of S
is spherical if WT is a finite subgroup of W . In this case, we will also say
that the subgroup WT is spherical. Denote by S the poset of spherical
subsets of S, partially ordered by inclusion. Given a subset V of S, let
S≥V := {T ∈ S|V ⊆ T}. Similar definitions exist for <,> and ≤. For
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any w ∈ W and T ∈ S, we call the coset wWT a spherical coset. The
poset of all spherical cosets we will denote by WS.

The poset S>∅ is an abstract simplicial complex. This simply means
that if T ∈ S>∅ and T ′ is a nonempty subset of T , then T ′ ∈ S>∅. Denote
this simplicial complex by L and call it the nerve of (W,S). The vertex
set of L is S and a non-empty subset of vertices T spans a simplex of L
if and only if T is spherical.

2.1. The Davis complex.

Let K = |S|, the geometric realization of the poset S. It is a finite
simplicial complex. Denote by Σ(W,S), or simply Σ when the system
is clear, the geometric realization of the poset WS. This is the Davis
complex. The natural action of W on WS induces a simplicial action of
W on Σ which is proper and cocompact. K includes naturally into Σ
via the map induced by T → WT . So we view K as a subcomplex of
Σ and note that K is a strict fundamental domain for the action of W
on Σ. Σ has a coarser cell structure: its cellulation by “Coxeter cells.”
(References include [2] and [5].) The features of the Coxeter cellulation
are summarized by [2, Proposition 7.3.4]. We point out here that under
this cellulation the link of each vertex is L. It follows that if L is a
triangulation of Sn−1, then Σ is a topological n-manifold.

2.2. Metric flag simplicial complexes.

Given a Coxeter system (W,S) with nerve L, we define a labeling on
the edges of L by the map m : Edge(L)→ {2, 3, . . .}, where {s, t} 7→ mst.
This labeling accomplishes two things: (1) the Coxeter system (W,S)
can be recovered (up to isomorphism) from L and (2) the 1-skeleton of
L inherits a natural piecewise spherical structure in which the edge {s, t}
has length π − π/mst. L is then a metric flag simplicial complex (see [2,
Definition I.7.1]).

Our idea is to use a given simplicial complex as starting data and, from
it, define Coxeter systems and corresponding Davis complexes. To that
end, given a finite simplicial complex L with vertex set S, we consider all
labelings, with integers ≥ 2, of the edges of L. For each labeling, define
the Coxeter group WL with presentation
(2.1)〈
S | s2 = 1∀ s ∈ S, and (st)mst = 1 whenever {s, t} is an edge of L

〉
.

If the labeled L is isomorphic to the labeled nerve of the Coxeter group
defined by equation (2.1), we call this labeling a Coxeter labeling of L and
refer to L as a metric flag simplicial complex. In this case, we denote the
associated Davis Complex ΣL with fundamental chamber KL.
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For the purpose of this paper, the term “metric flag triangulation”
refers to both a simplicial complex and a particular Coxeter labeling of
that complex. Note that for a labeling to define a simplicial complex L as
a metric flag simplicial complex, it must have the property that a set of
vertices spans a simplex if and only if the generators corresponding to that
set of vertices, with the prescribed relations, generate a finite subgroup
of WL, as defined in equation (2.1).

Recall that a simplicial complex L is flag if every nonempty, finite set
of vertices that are pairwise connected by edges spans a simplex of L.
Thus, it is clear that any flag simplicial complex is metric flag if the edges
are labeled with 2’s. But if, for instance, L contains pairwise connected
vertices r, s, and t, but not the 2-simplex spanned by r, s, and t, that is,
L is not flag, then L cannot be labeled with 2’s and be metric flag. For
then {r, s, t} is a spherical subset (generating Z3

2), but does not span a
simplex in L. In this case, in order for L to be metric flag, we must have
the labels on these edges satisfy

1

mrs
+

1

mst
+

1

mrt
≤ 1.

That is, we must ensure that the subgroup generated by {r, s, t} is infinite.
In general, to achieve a Coxeter labeling for a given simplicial complex
L, one must label the edges so that whenever the (k − 1)-skeleton of
a k-simplex is in L but the k-simplex is not, then the simplices in the
(k − 1)-skeleton must each correspond to a finite Coxeter group, but the
vertices of the k-simplex must generate an infinite Coxeter group. The
classification of finite Coxeter groups is well known, see [2] or [9].

As stated in the §1, it is possible that a given simplicial complex can-
not arise as the nerve of a corresponding Coxeter system, regardless of
the labeling scheme. For example, the 2-skeleton of a 6-simplex cannot
arise as the nerve of a Coxeter system (see [6]). It is also possible for a
given simplicial complex to have some labelings define it as metric flag,
and others not. For an example, see Figure 1. The 1-dimensional complex
(graph) on the left is not metric flag, for the vertices, with the prescribed
relations, do generate a finite group, yet the corresponding 2-simplex is
not present. But the graph on the right is metric flag, because the cor-
responding Coxeter group is infinite. This example (and the discussion
above applied to 1- and 2-simplices) also makes it clear that, with proper
edge labeling, any graph can arise as the (labeled) nerve of a Coxeter sys-
tem. Indeed, since a graph contains no 2-simplices, labeling all the edges
of any graph with 3 results in a Coxeter labeling. But note that there
are, in general, many Coxeter labelings for a given graph.



`2-BETTI NUMBERS AND THE GENUS OF A GRAPH 163

Figure 1. The graph on the left is not metric flag. The
graph on the right is.

2.2.1. Full subcomplexes. A full subcomplex A of a simplicial com-
plex L has the property that whenever the vertices of a simplex σ of L
are contained in A, then σ is a simplex of A. When A is a full subcom-
plex of the metric flag simplicial complex L, then A is the nerve for the
subgroup generated by the vertex set of A. We will denote this subgroup
by WA. Let ΣA denote the Davis complex associated to (WA, A

0) with
fundamental domain KA. The inclusion WA ↪→ WL induces an inclusion
of posets WASA ↪→ WLSL and thus an inclusion of ΣA as a subcomplex
of ΣL. Note that WA acts on ΣA and that if w ∈WL−WA, then ΣA and
wΣA are disjoint copies of ΣA in ΣL. Denote by WLΣA the union of all
translates of ΣA in ΣL.

2.3. Useful `2-homology.

Let L be a metric flag simplicial complex, and let A be a full subcom-
plex of L. The following notation will be used throughout.

hi(L) := Hi(ΣL)(2.2)
hi(A) := Hi(WLΣA)(2.3)

hi(L,A) := Hi(ΣL,WLΣA)(2.4)
βi(A) := dimWL

(hi(A))(2.5)
βi(L,A) := dimWL

(hi(L,A)).(2.6)

Here, dimWL
(hi(A)) is the von Neumann dimension of the Hilbert WL-

module WLΣA and βi(A) is the ith `2-Betti number of WLΣA. The
notation in equations (2.3) and (2.5) will not lead to confusion since
dimWL

(WLΣA) = dimWA
(ΣA). We now present several useful results
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from `2-homology theory. For references to the above notation and the
following results, see [5], [7], and [15].

2.3.1. 0-dimensional homology. Let ΣA be the Davis complex con-
structed from a Coxeter system with nerve A, so WA acts geometrically
on ΣA. The reduced `2-homology groups of ΣA can be identified with
the subspace of harmonic i-cycles (see [7] or [5]). That is, x ∈ hi(A) is
an i-cycle and i-cocycle. 0-dimensional cocycles of ΣA must be constant
on all vertices of ΣA. It follows that if WA is infinite, and therefore the
0-skeleton of ΣA is infinite, then β0(A) = 0.

2.3.2. Singer Conjecture in dimensions 1, 2, and 3. Conjec-
ture 1.1 is true for elementary reasons in dimensions 1 and 2. Indeed, let
L be S0 or S1, the nerve of a Coxeter system (W,S). Then W is infinite
and so, as stated above, β0(L) = 0. Poincaré duality then implies that
the top-dimensional `2-Betti numbers are also 0, giving the result. In [15,
Corollary 4.4], the author proves that Conjecture 1.1 holds for arbitrary
Coxeter systems with nerve S2.

2.3.3. Orbihedral Euler characteristic. ΣL is a geometric
WL-complex. So there is only a finite number of WL-orbits of cells in
ΣL, and the order of each cell stabilizer is finite. The orbihedral Euler
characteristic of ΣL/WL, denoted χorb(ΣL/WL), is the rational number
defined by

(2.7) χorb(ΣL/WL) =
∑
σ

(−1)dimσ

|StabWL
(σ)|

,

where the summation is over the simplices ofKL and |StabWL
(σ)| denotes

the order of the stabilizer of σ inWL. Then, if the dimension of L is n−1,
a standard argument (see [7]) proves Atiyah’s formula:

(2.8) χorb(ΣL/WL) =

n∑
i=0

(−1)iβi(L).

2.3.4. Right-angled joins. For the following, please reference [5,
§7]. If L = L1 ∗ L2, the join of L1 and L2, where each edge connecting
a vertex of L1 with a vertex of L2, is labeled 2, we write L = L1 ∗2 L2

and then WL = WL1
×WL2

and ΣL = ΣL1
× ΣL2

. We may then use the
Künneth formula to calculate the (reduced) `2-homology of ΣL, and the
following equation from [5, Lemma 7.2.4] extends to our situation:

(2.9) βk(L1 ∗2 L2) =
∑
i+j=k

βi(L1)βj(L2).
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If L′ = P ∗2 L, where P is one point, then we call L′ a right-angled cone,
and denote it CL. ΣP = [−1, 1], so there are no 1-cycles in ΣP and
β1(P ) = 0. But χorb(ΣP /WP ) = 1/2. So by equation (2.8), β0(P ) = 1/2.
Thus, equation (2.9) implies that

(2.10) βi(CL) =
1

2
βi(L).

If L′ = P2 ∗2 L, where P2 is two disjoint points, then we call L′ a right-
angled suspension and denote it SL. hi(P2) = 0 for i = 1, 2, as noted in
2.3.2. So by equation (2.9), we have that

(2.11) βi(SL) = 0 for all i.

It then follows from equations (2.10) and (2.11), excision, and the long
exact sequence of the pair (CL,L) that

(2.12) βi+1(CL,L) =
1

2
βi(L) for all i

(see [5, Lemma 7.3.3]).

3. Surfaces of Higher Genus

We now consider cases is which the simplicial complex L is a metric flag
triangulation of a surface of genus g, g ≥ 0. We begin with a conjecture.
It is a generalization of [5, Conjecture 11.5.1].

Conjecture 3.1. Let L be a metric flag triangulation of a genus g surface.
Then βi(L) = 0 for i 6= 2 and β2(L) = g.

There is evidence to believe Conjecture 3.1, particularly in the right-
angled case (see [5]). Herein, §5 provides specific examples of this con-
jecture. For this section, we will assume Conjecture 3.1 and describe a
program that uses it to approximate the genus of a graph.

3.2. Triangulating a surface.

Suppose we are given a connected, finite graph Γ with a particular
Coxeter labeling. Since we are concerned with the genus of Γ, and since
it is known that trees are planar graphs, we assume that Γ is not a tree.
Next, suppose Γ is embedded in a surface Mg of minimal genus g; that
is, Γ does not embed in a surface of genus g − 1. The idea, then, is
to develop a metric flag triangulation of Mg in which Γ, with its given
labeling, is a full subcomplex. Then, assuming Conjecture 3.1, we will
apply `2-homological results to the corresponding Coxeter system and
Davis Complex to approximate g.

The first issue is to develop a metric flag triangulation of Mg. In doing
this, we generalize Γ to any connected, metric flag simplicial complex A,
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not a tree, and we suppose A is embedded (topologically) in a surface Mg

of minimal genus g. Introduce a vertex in the interior of each comple-
mentary region and cone off the boundary of each region. This produces
a triangulation L of Mg. Preserve the labels of the edges of A and label
each cone edge with 2. Now, it could be the case that there exists an
n-cycle in A bounding a complementary region, n ≥ 4, in which non-
adjacent vertices x and y are connected by an edge in A. If A contains
no such cycle, then we have a Coxeter labeling of L in which A is a full
subcomplex. But if we do have such a cycle, then, with c representing the
cone point introduced in this complementary region and with the edges
{c, x} and {c, y} labeled 2, no matter the label on {x, y}, the vertices x,
y, and c generate a finite Coxeter group. As a result, the nerve of the cor-
responding Coxeter system would not be L. In fact, the nerve would not
only fail to triangulate a manifold, since it would triangulate the surface
of Mg, but also include the 2-simplex {x, y, c}. See Figure 2.

Figure 2. The nerve of WL is not a triangulation of Mg.

Now, to avoid this issue, remove the labels of 2 on each edge of L−A
(preserve the labels on A) and take the barycentric subdivision bL of L,
relative to A, as in [10, Definition 2.5.7]. That is, we do not subdivide any
edge or 2-simplex in A, preserving the structure of A and WA See Figure
3. It is clear that, in general, A is a full subcomplex of bL. Finally,
label each edge of bL − A with 2, and we have our desired metric flag
triangulation of Mg.

Lemma 3.2.1. The labeled triangulation bL of Mg, described above, is
metric flag.

Proof. We need to show that bL, with the described labeling, is the nerve
of the Coxeter group WbL, generated by the vertices of bL, with relations
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Figure 3. The barycentric subdivision of L relative to A.

determined by the labeling of the edges (see equation (2.1)). Since bL is 2-
dimensional and since any two vertices generate a finite group if and only
if they are connected by an edge, we only need to show that three vertices
a, b, and c of bL span a 2-simplex of bL if and only if {a, b, c} generate a
finite (Coxeter) subgroup of WbL. Where appropriate, we denote by mab,
mbc, andmac the labels on the edges {a, b}, {b, c}, and {a, c}, respectively.
We consider four cases.
Case 1: All three vertices are in A. Then, since A is metric flag, we know
{a, b, c} spans a 2-simplex if and only if {a, b, c} generates a finite Coxeter
group.
Case 2: Exactly two vertices are in A. Without loss of generality, take
a and b as vertices in A. Since bL is the barycentric subdivision of L,
relative to A, if {a, b, c} spans a 2-simplex, then c must be the barycen-
ter of a 2-simplex of L, and thus the edge {a, b} is in the boundary of
the complementary region containing c. Then, with the labeling scheme
described above, we know mac = mbc = 2, and so regardless of the label
on {a, b}, {a, b, c} generates a finite Coxeter group. Conversely, if {a, b, c}
generates a finite Coxeter group in WbL, with a, b ∈ A, then a, b, and c
must be pairwise connected by edges in bL. But again, since bL is the
barycentric subdivision of L, relative to A, we know c is the barycenter
of a 2-simplex of L, and thus {a, b, c} spans a 2-simplex of bL.
Case 3: Exactly one vertex is in A. Again, without loss of generality, take
a to be a vertex in A. If {a, b, c} spans a 2-simplex in bL, then b and
c are both barycenters of L, one of a 2-simplex, the other of an edge of
L. Thus, mab = mbc = mac = 2, and therefore {a, b, c} generates a finite
subgroup. Conversely, if {a, b, c} generates a finite subgroup, then a, b,
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and c must be pairwise connected by edges in bL. But, with only a in A,
these edges are part of the barycentric subdivision of L relative to A, and
so {a, b, c} spans a 2-simplex.
Case 4: No vertices are in A. If {a, b, c} spans a 2-simplex in bL, then each
edge label is 2, and thus {a, b, c} generates a finite subgroup. Conversely,
if {a, b, c} generates a finite subgroup, then just as in the second half of
Case 3, it follows that {a, b, c} spans a 2-simplex of bL. �

Definition 3.2.2. We say a full subcomplex A of a metric flag simplicial
complex L has a right-angled complement if the label on all edges not in
A is 2.

In this metric flag triangulation, it is clear that A satisfies Definition
3.2.2. Thus, Lemma 3.2.1 and the initial paragraphs of §3.2 provide the
proof of the following.

Proposition 3.2.3. Let A be a connected, metric flag simplicial complex,
not a tree, embedded in a surface Mg of minimal genus g. Then there
exists a metric flag triangulation L of Mg which preserves the labeling of
A and for which A is a full subcomplex with right-angled complement.

3.3. `2-homology.

Now let L be a metric flag simplicial complex and let A ⊆ L be a full
subcomplex with a right-angled complement. Let B be a full subcomplex
of L such that A ⊆ B and let v ∈ B − A be a vertex. Then Bv, the
link of v in B, is a full subcomplex of L with a right-angled complement.
Moreover, with B′ = B−v, B = B′∪CBv. Indeed, it is clear that Bv has
a right-angled complement. Next, to see that Bv is full in L, let T be a
subset of vertices contained in Bv and the vertex set of a simplex σ of L.
Then T defines a spherical subset of the corresponding Coxeter system,
and since v /∈ A, and since the elements of T are in Bv, v commutes with
each vertex of T . Thus, T ∪ {v} is a spherical subset, and therefore σ is
in Bv, and so Bv is a full subcomplex of L. This observation allows us
to apply Mayer-Vietoris arguments to subcomplexes of L, decomposing
them in terms of right-angled cones and allowing us to use results from
§2.3.

Lemma 3.3.1. Let L be a metric flag triangulation of S1 and let A be a
full subcomplex of L. Then βi(A) = 0 for i > 1.

Proof. Consider the long exact sequence of the pair (ΣL,WΣA):

0→ h2(A)→ h2(L)→ h(L,A)→ ...

Since Conjecture 1.1 is true in dimension 2, h2(L) = 0 and exactness
imply the result. �
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Lemma 3.3.2. Suppose that L is a metric flag simplicial complex of a
genus g surface. Suppose that A is a full subcomplex with right-angled
complement. Then h3(L,A) = 0.

Proof. Let (L,A) be as in the statement and let A ⊆ B ⊆ L. We induct
on the number of vertices of L−B, the case L = B being trivial. Assume
hi(L,B) = 0 for i > k and let v be a vertex of B−A and set B′ = A− v.
Then B = B′ ∪ CBv and B′ = B − v, and β3(B,B′) = β3(CBv, Bv) =
1
2β2(Bv), the first equality by excision, the second by 2.12. Since L is a
surface, Bv is a subcomplex of S1, and so by Lemma 3.3.1, β2(Bv) = 0.
Hence, by induction, if we assume the lemma holds for (L,B), then it also
holds for (L,B′). �

Then, assuming Conjecture 3.1, we have the following statement on
subcomplexes embedded in surfaces.

Proposition 3.3.3. If a finite, metric flag simplicial complex A, not
a tree, can be embedded as a subcomplex in a surface of genus g, then
β2(A) ≤ g.

Proof. By Proposition 3.2.3, we can assume A is a full subcomplex, with
a right-angled complement of some metric flag triangulation L of a genus
g. By Lemma 3.3.2, h3(L,A) = 0; hence, the map h2(A) → h2(L) is
injective. Since we are assuming β2(L) = g, the result follows. �

3.4. `2-homology and graphs.

Proposition 3.3.3 gives us the following program for testing the genus
of any graph.

Indeed, suppose Γ is a simple, connected graph, not a tree. We consider
all possible Coxeter labelings of Γ. Since Γ is not a tree, we know Γ is
not a single point nor a single edge, so we know β0(Γ) = 0 (see §2.3.1),
so by equation (2.8), we know that χorb(ΣΓ/WΓ) ≤ β2(Γ). So, using this
formula, we have the following corollary of Proposition 3.3.3.

Corollary 3.4.1. Suppose Γ is a simple, connected graph, not a tree, and
suppose Γ embeds in a genus g surface. Then for all Coxeter labelings,
χorb(ΣΓ/WΓ) ≤ g.

3.4.2. Calculating χorb. Key to this program is a calculation of the
orbihedral Euler characteristic for a graph. So, consider a Coxeter label-
ing of a graph Γ with V vertices and E edges in which ne is the label on
the edge e. Let ΣΓ denote the corresponding Davis complex with funda-
mental domain KΓ, and consider the simplicial decomposition of KΓ, in
which simplices correspond to linearly ordered (with respect to contain-
ment) chains of spherical subsets. Then KΓ has one 0-simplex with trivial
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stabilizer, corresponding to the empty set; V 0-simplices with stabilizers
of order 2; and, for each edge e, a 0-simplex with a stabilizer of order
2ne. KΓ has E + V 1-simplices with trivial stabilizers, corresponding to
chains of the form ∅ ⊂ {r} or ∅ ⊂ {r, s}, where r 6= s are vertices Γ,
and 2E 1-simplices with stabilizers of order 2, corresponding to chains of
the form {r} ⊂ {r, s}, where r 6= s are vertices of Γ. Finally, KΓ has
2E 2-simplices with trivial stabilizers corresponding to chains of the form
∅ ⊂ {r} ⊂ {r, s}, where r 6= s are vertices of Γ. So we have that
(3.1)

χorb(ΣΓ/WΓ) =

(
1 +

V

2
+

(∑
e

1

ne

)
1

2

)
−
(
V + E +

2E

2

)
+ (2E)

= 1− V

2
+

(∑
e

1

ne

)
1

2
.

So, with γ(Γ) denoting the genus of a graph, Corollary 3.4.1 can be re-
stated as follows.

Corollary 3.4.3. Let Γ be a simple, connected graph, with V > 2 vertices.
If Γ admits a Coxeter labeling where ne (an integer ≥ 2) is the label on
the edge e with

1− V

2
+

 ∑
edges e

1

ne

 1

2
> g,

for some non-negative integer g, then γ(Γ) > g.

In [15], the author proves Conjecture 3.1 is true for g = 0. So, the
above does give an `2-homological test for planar graphs. See [17] for a
complete treatment of planar graphs.

3.5. Complete graphs.

Now consider a complete graph on n vertices; we denote this graph
by Γn. A uniform labeling of 3 on each edge is a Coxeter labeling. So, in
this case

χorb(ΣΓn/WΓn) = 1− n

2
+

(
n(n− 1)

6

)
1

2
=

(n− 4)(n− 3)

12
.

That is, by Corollary 3.4.3,

(3.2) γ(Γn) ≥
⌈

(n− 3)(n− 4)

12

⌉
.

Now let Γm,n denote the complete bipartite graph on m + n vertices.
Since Γm,n does not contain 3-cycles, a uniform labeling of 2 results in a
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metric flag complex. In this case, we have

χorb(ΣΓm,n/WΓm,n) = 1− m+ n

2
+
(m · n

2

) 1

2
=

(m− 2)(n− 2)

4
.

So, again by Corollary 3.4.3,

(3.3) γ(Γm,n) ≥
⌈

(m− 2)(n− 2)

4

⌉
.

Of course, the classical (non-`2-homological) methods give exact cal-
culations for the genus of complete and complete bipartite graphs. That
is, that

γ(Γn) =

⌈
(n− 3)(n− 4)

12

⌉
and γ(Γm,n) =

⌈
(m− 2)(n− 2)

4

⌉
([13], [12] and [8, p. 118–119]). While it is interesting that the above
`2-homological methods imply (part) of the same, it is also clear that the
strength of this method does not lie in these classical cases, but rather
in its versatility. Indeed, given any graph, one can determine a Coxeter
labeling and calculate χorb(ΣΓ/WΓ) to find a lower bound for the genus
of the graph, as we will see below in Example 3.6.

Note that in equation (3.1), increasing any one edge label of Γ decreases
χorb, so in case Γ contains no 3-cycles, it is clear that a labeling of 2’s on
each edge will give you the largest possible orbihedral Euler characteristic.
It is also the case that uniform labeling by 3’s can always produce a
Coxeter labeling of a graph. But there are, in general, many labelings
that result in metric flag graphs, and in case there are 3-cycles, it is
possible that non-uniform labelings produce a larger Euler characteristic
than a uniform labeling with 3.

Example 3.6. Let Γ be the graph pictured in Figure 4, a member of the
Petersen family of graphs, where V = 8 and E = 15. So a labeling by
3’s gives χorb(ΣΓ/WΓ) = − 1

2 and does not detect that Γ has genus ≥ 1.
However, with the indicated Coxeter labeling,

χorb(ΣΓ/WΓ) =
1

4
.

Hence, by Corollary 3.4.3, we can conclude that γ(Γ) ≥ 1. Note: In Figure
4, we demonstrate an embedding for this graph in a genus 1 surface, so
we do know that γ(Γ) = 1.

4. Furthering the Singer Program

Since the terminology and notation are developed, we now take a mo-
ment to further the program for Singer’s Conjecture for Coxeter groups.
We begin with the following, the main result of [17].
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4 4

44

2 2

2

2 2
2 2

22

2

Figure 4. A Petersen graph with Coxeter labeling and
embedded in genus 1 surface.

Theorem 4.1. Let L be a metric flag triangulation of S2 and A ⊆ L a
full subcomplex with right-angled complement. Then

βi(A) = 0 for i > 1.

Proof. Let B be a full subcomplex of L such that A ⊆ B ⊆ L. We induct
on the number of vertices of L − B, the case L = B cited here in 2.3.2.
Assume hi(B) = 0 for i > 1. Let v be a vertex of B−A and set B′ = B−v.
Then B = B′ ∪ CBv where Bv and B′ are full subcomplexes, the former
by the first paragraph of §3.3. We have the following Mayer–Vietoris
sequence:

. . .→ hi(Bv)→ hi(B
′)⊕ hi(CBv)→ hi(B)→ . . . .

Bv is a full subcomplex of Lv, the link of v in L, a metric flag triangulation
of S1. So Lemma 3.3.1 implies hi(Bv) = 0, for i > 1. Thus, by equation
(2.10), hi(CBv) = 0 for i > 1. It follows from exactness that hi(B

′) =
0. �
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The statements in Lemma 3.3.1 and Theorem 4.1 are specific versions
of the following statement, which is a variation of V(n) as found in [5,
§8].

V′(n). Suppose L is any metric flag triangulation of Sn−1 and that A is
a full subcomplex with a right-angled complement.

• If n = 2k is even, then hi(L,A) = 0 for all i > k.
• If n = 2k + 1 is odd, then hi(A) = 0 for all i > k.

Compare Theorem 4.2 with [5, Lemma 9.2.1]. As we point out, the
proof given in [5] generalizes from the right-angled case to the case where
the subcomplexes simply have a right-angled complement. Of course, with
this hypothesis, we are unable to extend V′(2k) to the generic statement
of Conjecture 1.1 as in [5], but we do include the following as furthering
the program on Singer’s Conjecture for Coxeter systems.

Theorem 4.2. V ′(2k − 1) =⇒ V ′(2k).

Proof. Let (L,A) be as in V ′(2k) and let A ⊆ B ⊆ S. As in the proof
of Theorem 4.1, we induct on the number of vertices of L − B, the case
L = B being trivial. Assume hi(L,B) = 0 for i > k and let v be a vertex
of B − A and set B′ = A− v. Then B = B′ ∪ CBv, and we consider the
exact sequence of the triple (L,B,B′):

. . .→ hi(B,B
′)→ hi(L,B

′)→ hi(L,B)→ . . . .

h(L,B) = 0 by induction. By excision, βi(B,B′) = βi(CBv, Bv), and by
equation (2.12), βi(CBv, Bv) = 1

2βi−1(Bv). Bv is a full subcomplex of
Lv with a right-angled complement, and since i − 1 > k − 1, V′(2k − 1)
gives us that βi−1(Bv) = 0. Thus, βi(B,B′) = 0 for i > k, and the proof
follows from exactness. �

See [16] for more information on furthering the program to prove
Singer’s Conjecture for Coxeter groups (Conjecture 1.1).

5. Examples of the Generalized Singer Conjecture
for Surfaces

Let Γn denote the complete graph on n vertices and let Γm,n denote
the complete bipartite graph on m + n vertices. As mentioned above, it
is known (independent of the given `2-homological methods) that
(5.1)

γ(Γn) =

⌈
(n− 3)(n− 4)

12

⌉
and γ(Γm,n) =

⌈
(m− 2)(n− 2)

4

⌉
.
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Using these and `2-homological results noted in §§5.1 and 5.2, we demon-
strate examples of triangulations of higher genus surfaces for which Con-
jecture 1.2 is true.

5.1. Complete, bipartite graphs.

Let Pk denote k disjoint points. ΣPk
is a k-valent tree, and then, using

the results from 2.3.1 and equation (2.8), we have that

(5.2) βi(Lm) =

{
m
2 − 1 if i = 1

0 if i 6= 1.

Km,n with each edge labeled 2 is metric flag and is the right-angled join
Pm ∗2 Pn. So by Künneth formula, equation (2.9), we have that

(5.3) βi(Γm,n) =

{(
m
2 − 1

) (
n
2 − 1

)
= (m−2)(n−2)

4 if i = 2

0 if i 6= 2.

Note that the `2-Betti number calculations above are exactly the right-
hand side of the “classical” genus calculations listed in equation (5.1).

5.2. Complete graphs.

Complete graphs are not themselves flag complexes, but labeling each
edge with 3 does result in a metric-flag graph. Then, by equation (3.1),
we have that χorb(ΣΓn

/WΓn
) = (n−4)(n−3)

12 . We also know that if Γn has
at least two vertices, then β0(Γn) = 0 (see §2.3.1). Thus, by equation
(2.8), we know that χorb(ΣΓn

/WΓn
) ≤ β2(Γn). But Wiktor J. Mogilski

[11] shows that, in fact, β1(Γn) = 0 as well. That is, Mogilski shows

(5.4) βi(Γn) =

{
1− n

2 + n(n−1)
12 = (n−3)(n−4)

12 if i = 2

0 if i 6= 2.

Note that the corresponding Davis complex is 2-dimensional, so it is au-
tomatic that βi(Γn) = 0 for i ≥ 3.

5.3. Euclidean circuits.

Let A denote a triangle, with each edge labeled 3 or a 4-gon, with
each edge labeled with 2 and with opposite vertices not connected by
an edge. In either case, we call A a Euclidean circuit (as in [15]), for
ΣA ∼= E2 and we know that hi(A) = 0 for all i [2]. These circuits will
form the boundary of complementary regions in embeddings of Γn or Γm,n
in surfaces for specific m and n. As in the paragraph preceding Lemma
3.2.1, we will cone off these complementary regions, labeling each cone
edge with 2. Then by equation (2.10), we know βi(CA) = 0 for all i.
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5.4. Embeddings of Γn and Γm,n.

We now consider examples in which the formulas in equation (5.1)
above are exactly integers, for example, if n = 7 in the complete graph
case or if m = n = 4 in the complete bipartite graph case. We will see
that in these cases, the graphs contain all the `2-homological information
and can be embedded in such a way as to generate examples of Conjecture
1.2.

First, suppose Γn is a complete graph for which (n − 3)(n − 4) ≡ 0

(mod 12). Then Γn embeds in a genus
(

(n−3)(n−4)
12

)
surface. Γn has

(n(n − 1))/2 = E edges and let F denote the number of complemen-
tary regions in the surface. In the embedding, each edge is part of the
boundary of two of the F complementary regions or has, on each side, the
same complementary region. So, for this embedding, we have the Euler
characteristic calculation:

n− n(n− 1)

2
+ F = 2− (n− 3)(n− 4)

6
=⇒ F =

n(n− 1)

3
,

which implies that 3F = 2E. So, we know that each complementary
region is a triangle. Now, take a uniform labeling of 3 on every edge,
add a vertex in each complementary region, and cone off on each triangle,
labeling each cone edge with 2. We then have Γn embedded as a full
subcomplex of a triangulation of a genus g surface, where g = ((n −
3)(n− 4))/12. For an example, see Figure 5.

Figure 5. K7 embedded in a genus 1 surface with 14
complementary regions, all 3-gons.

Similarly, consider a complete bipartite graph Γm,n where either m
and n are both even or m ≡ 2 mod 4 and n is odd. In either case, the
calculation above gives that Km,n embeds in a surface of genus g where
g = (m−2)(n−2)

4 . Take such an embedding and let F denote the number
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of complementary regions and note that the number of edges E is (mn).
We then have that

(m+ n)− (mn) + F = 2− 2

(
(m− 2)(n− 2)

4

)
.

This implies that 4F = 2(mn). Then again, since each edge is used twice
as a part of a boundary of one of the F complementary regions and each
complementary region is at least a 4-gon, we know that each complemen-
tary region is a 4-gon. As above, add a vertex in each complementary
region and cone off each 4-gon. Label each edge with 2 and we obtain a
metric flag triangulation of a surface for which Γm,n is a full subcomplex.
For an example, see Figure 6.

We now consider such triangulations of genus g surfaces. That is, we
consider triangulations L that contain either Γn, where (n− 3)(n− 4) ≡
0(mod12), or Γm,n, where m and n are both even or m ≡ 2 (mod 4)
and n is odd, as full subcomplexes and for which the complements of
these graphs are collections of cones on Euclidean circuits. We have the
following result.

Proposition 5.4.1. Let L denote a metric flag triangulation of a genus
g surface as described above. Then βi(L) = 0 for i 6= 2 and β2(L) = g.

Proof. L contains, as a full subcomplex, a graph Γ where either Γ is a
complete graph on n vertices for which (n − 3)(n − 4)/12 = g or Γ is a
complete bipartite graph on m+n vertices for which (m−2)(n−2)/4 = g.
Let Rk, k = 1, . . . , F , denote the boundaries of the complementary regions
of Γ in L. By the above, each Rk is either a 3-gon with edges labeled with
3 or a 4-gon, with edges labeled with 2, and we have that L = Γ∪CR1 ∪
CR2 ∪ . . . ∪ CRF . For j = 0, 1, . . . F , let Li = Γ ∪ CRi+1 ∪ . . . ∪ CRF .
Then L0 = L and LF = Γ. By Mayer–Vietoris, we have

. . .→ hi(R1)→ hi(L1)⊕ hi(CR1)→ hi(L)→ . . . .

Since hi(R1) = 0 and hi(CR1) = 0 for all i (see §5.3), we have that
βi(L1) = βi(L). Using Mayer–Vietoris again with L1 = CR2 ∪ L2, we
have βi(L1) = βi(L2). Proceeding in this way, we get that βi(L) =
βi(L1) = . . . = βi(LF ) = βi(Γ) for all i. Finally, applying equation (5.3),
in the case that Γ is a complete bipartite graph, or equation (5.4) in the
case that Γ is a complete graph, we have that βi(Γ) = 0 if i 6= 2 and
β2(Γ) = g. �

5.5. The limitations of our examples.

It is interesting to note why the above Mayer–Vietoris method cannot
be applied to any complete graph: It requires that the boundaries of the
complementary regions are themselves full subcomplexes. Indeed, Figure
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Figure 6. K4,4, K3,6, and K3,10 embedded in surfaces
with complementary regions all 4-gons.

7 contains an embedding of Γ3,3 in a genus 1 surface. Labeling each edge
with 2 defines a Coxeter labeling for Γ3,3, and the method described in §3
does accurately bound the genus of Γ3,3 above 0, and the given embedding
shows the genus of Γ3,3 is 1; but the methodology of §5 does not produce
examples of Conjecture 1.2. Indeed, the boundaries of the complementary
regions are two full 4-gons and one “10-gon.” (Two edges are used twice
and four vertices are used multiple times, but a complete circuit along
the boundary of this region is a path of length 10.) Note that there are
edges not in the boundary of this region that connect vertices. Thus, the
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“10-gon” is not a full subcomplex, and the Mayer-Vietoris method does
not provide proof of an example of Conjecture 1.2.

Figure 7. K3,3 embedded in a genus one surface.

For another example, the embedding in Figure 4 does not fit the
methodology of §5 because one complementary region is a 6-gon in which
vertices are connected by an edge not contained in the 6-gon; thus, it is
not a full subcomplex.
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