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AN L SPACE WITH NON-LINDELÖF SQUARE

YINHE PENG

Abstract. We will first construct L spaces with the following
properties: an L space whose square contains an uncountable closed
discrete subset (in particular, it is not Lindelöf); an L space whose
square is the closure of a countable union of closed discrete subsets.
Then we will prove that Moore’s original L space has a non-Lindelöf
square, answering a problem of Boaz Tsaban and Lyubomur Zdom-
skyy.

Justin Tatch Moore in [3] constructed an L space and showed that its
square is not hereditarily Lindelöf. Then a natural question is whether
it is Lindelöf or even whether there exists an L space with non-Lindelöf
square. It was first appeared in [6] where Marion Scheepers and Franklin
D. Tall constructed an example by assuming the non-Lindelöf square prop-
erty. Then Boaz Tsaban and Lyubomur Zdomskyy [9] proved that some
finite power of Moore’s L space is non-Lindelöf which would guarantee the
existence of the example constructed in [6]. They also asked whether the
square of Moore’s L space is non-Lindelöf. Section 2 will give a positive
answer. Also, the proof of Theorem 2.6 answers some questions in [5].

1. An L Space with Non-Lindelöf Square

Two theorems of this section are both built on the technology of mini-
mal walk (see [8]). But instead of going into details on minimal walk, we
will just introduce some combinatorial facts generated from it.

Theorem 1.1. There is an L space such that every uncountable subspace
has a non-Lindelöf square.
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234 Y. PENG

The L space we need here is the same as the one defined in [3] except
for a slight change. First, let us fix {zα : α < ω1} ⊂ T 1 that are rationally
independent and introduce some notation.

Definition 1.2. (1) A set {wβ ∈ Tω1 : β < ω1} is said to be induced
from a map a : [ω1]

2 → ω if wβ(α) = z
a(α,β)+1
α , for α < β, wβ(β) = z

1/2
β ,

and wβ(α) = 1 for α > β.2

(2) For any space L = {wβ ∈ Tω1 : β < ω1} ⊂ Tω1 and any subset
X ⊂ ω1, the restriction subspace is L �X= {wβ ∈ L : β ∈ X}.

For a = (α, β) ∈ ω1
2, wa = (wα, wβ), and for D ⊂ X2, wD = {wa : a ∈

D}.
(3) For two sets of ordinals a and b, say a < b if any ordinal in a is less

than any ordinal in b.

We recall some facts from [3, Corollary 7.11, Proposition 7.13] and [4,
Lemma 2].

Proposition 1.3 ([3], [4]). There is an oscillation map osc : [ω1]
2 → ω

with the following properties:
(i) T (osc) = {osc(·, β) �α∈ ω<ω1 : α ≤ β < ω1} is an Aronszajn tree

(where the tree order is the function extension);
(ii) the space L = {wβ ∈ Tω1 : β < ω1} induced from osc is an L

space. In particular, L �X is hereditarily Lindelöf (and hence an
L space);

(iii) for every α ≤ β, there is an integer n(α, β) such that |osc(ξ, α)−
osc(ξ, β)| < n(α, β) for any ξ < α.

Now we fix L = {wβ ∈ Tω1 : β < ω1} to be the space induced from
the map osc guaranteed by Proposition 1.3. Then we fix an uncountable
X ⊂ ω1 and want to show that L 2 �X2= L �X ×L �X is not Lindelöf.
Actually, we are going to show that L 2 �X2 contains an uncountable
closed discrete set.

First, let us pick a D = {aα = (µα, να) ∈ X2 : µα < να and α < ω1}
such that for any α < β < ω1, να < µβ . Fix a natural number n(µα, να)
for each aα ∈ D guaranteed by property (iii) of Proposition 1.3. Let
Dn = {aα ∈ D : n(µα, να) = n}, then D =

∪
n<ω

Dn.

Lemma 1.4. For each n < ω and for any a ∈ X2\{(α, α) : α ∈ X}, there
is a neighborhood of wa that is disjoint from wDn \ {wa}. In particular,
wDn is discrete.

1Here T is the unit circle in C – complex numbers.
2Note here the definition of wβ(β) is different from that in [3], and this difference

is important to achieve our goal.
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Proof. Fix n < ω and a ∈ X2\{(α, α) : α ∈ X} and assume η = min(a) <
τ = max(a). As there are at most finitely many waα ∈ wDn \ {wa} such
that η or τ is a member of aα, we can find a neighborhood O1 of wa

disjoint from these waα ’s. Also,

O2 = {(x, y) : |x(η)− y(η)| ̸= |ziη − 1| for any natural number i < n}

is an open neighborhood of wa. Now define

O = O1 ∩O2 ∩ {(x, y) : x(η) ̸= 1}

and we will show this neighborhood of wa works. Now pick any waα ∈
wDn \ {wa}.

Case 1: η or τ is a member of aα.
Then waα /∈ O1 ⊃ O.

Case 2: η > µα.
wµα

(η) = 1. So waα
/∈ O.

Case 3:: η < µα.
|wµα(η) − wνα(η)| = |zosc(η,µα)−osc(η,να)

η − 1| where |osc(η, µα) −
osc(η, να)| < n(µα, να) = n. So waα /∈ O2 ⊃ O.

This completes the proof of the lemma. �

We have proved that L 2 �X2 \(wDn ∪∆) 3 is disjoint from wDn – the
closure of wDn . So if ∆ is disjoint from wDn , then wDn is closed (and
discrete by Lemma 1.4). From now on we shall additionally assume that
D = {aα ∈ X2 : α < ω1} has the following property:

(∗) There are an ordinal ξ and natural numbers i ̸= j such that for any
aα ∈ D, ξ < µα, osc(ξ, µα) = i and osc(ξ, να) = j.

This can be done since T (osc) is an Aronszajn tree (see property (i) of
Proposition 1.3).

Proof of Theorem 1.1. Fix X, pick D = {aα = (µα, να) : α < ω} as before
but with additional property (∗), and pick n such that Dn is uncountable.
O = {(x, y) : x(ξ) ̸= zi+1

ξ or y(ξ) ̸= zj+1
ξ } is an open set containing ∆ but

disjoint from wD, and therefore wDn . This, combined with Lemma 1.4,
suffices to prove that wDn is closed and discrete in L 2 �X2 . So L 2 �X2

is not Lindelöf. �
An easy corollary follows from the proof.

Corollary 1.5. For any uncountable X ⊂ ω1, L 2 �X2 contains an un-
countable closed discrete subset.

3∆ = {(wα, wα) : α ∈ X}.
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We have proved that D is a countable union of closed discrete subsets.
But this D is not dense by property (∗). Now we turn to find a dense one.

Theorem 1.6. There is an L space such that its square is the closure of
a countable union of closed discrete subsets.

Before we start, let us introduce some definitions.

Definition 1.7. For any α < ω1 and r ∈ R, wr
α(ξ) = z

osc(ξ,α)+r
ξ

4 for
ξ < α, wr

α(α) = zπα,5 and wr
α(ξ) = 1 for ξ > α.

Now we will use Kronecker’s Theorem to construct the required L
space.6

Kronecker’s Theorem ([2]). Let A be a real m× n matrix and assume
that {z ∈ Qm : AT z ∈ Qn} = {0}. Then for any ϵ > 0 and for any
b0, ..., bm−1 ∈ R, there exist p0, ..., pm−1 ∈ Z and q ∈ Zn such that |Aiq−
pi − bi| < ϵ for all i < m where Ai is the ith row of A.

Now let {Oα ×Uα : α < ω1} be a base for Tω1 ×Tω1 . Use Kronecker’s
Theorem to inductively construct an increasing sequence (µα, να) ∈ ω2

1

and (qµα , qνα) ∈ Q2 such that (w
qµα
µα , w

qνα
να ) ∈ Oα × Uα.

At stage α, assume Oα ⊃ {x ∈ Tω1 : |x(ξi)− bi| < ϵ for all i < m} for
some ϵ > 0, m < ω, ξi ∈ ω1, and bi ∈ T (i < m). Fix a large enough
µα (greater than ξi and νβ constructed before) and choose a qµα ∈ Q
guaranteed by Kronecker’s Theorem such that w

qµα
µα ∈ Oα. Then choose

να > µα and qνα similarly.
Moreover, if we consider wq

µα
(or wq

να
) as a function from Q to Tω1

with variable q, then it is continuous. So we have enough choice and can
assume additionally that qµα − qνα /∈ Z.

Let X = {µα, να : α ∈ ω1} and L �X= {wqβ
β : β ∈ X}. Denote

D = {(µα, να) : α ∈ ω1} and for each n < ω, q ∈ Q \ Z and Dn,q =
{(µα, να) : n(µα, να) = n and qµα − qνα = q}.

Lemma 1.8. L �X is an L space.

Proof. Nonseparable is trivial. If L �X is not hereditarily Lindelöf, then
there are an uncountable Y ⊂ X and a rational q such that L �Y is not
Lindelöf and qβ = q for every β ∈ Y . The proof of Corollary 7.11 in [3]
also shows that L �Y is Lindelöf. A contradiction. �

Since wD = {(wqµα
µα , w

qνα
να ) : α ∈ ω1} is dense in Tω1 × Tω1 , Theorem

1.6 follows from the following lemma.

4Here we assume (eiθ)r = eiθr.
5π can be replaced by any irrational number.
6A proof can be found in [1].
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Lemma 1.9. wDn,q is closed discrete in L 2 �X2 for each n ∈ ω, q ∈ Q\Z.

Proof. Fix such n and q. It suffices to prove that for any a ∈ X2, there
is a neighborhood O of wqa

a = (w
qa(0)

a(0) , w
qa(1)

a(1) ) disjoint from wDn,q \ {wqa
a }.

So fix a ∈ X2 and assume η = min(a) and τ = max(a). As there are
at most finitely many (w

qµα
µα , w

qνα
να ) ∈ wDn,q \ {wqa

a } such that η or τ is
in {µα, να}, we can find a neighborhood O1 of wqa

a disjoint from them.
Recall that q ∈ Q \ Z. So

O2 = {(x, y) : |x(τ)−y(τ)| ̸= |zi+q
τ −1| for any integer i such that |i| < n}

is a neighborhood of wqa
a . Now define

O = O1 ∩O2 ∩ {(x, y) : x(τ) ̸= 1 or y(τ) ̸= 1}.

We will show this neighborhood of wqa
a works. Now pick any (w

qµα
µα , w

qνα
να ) ∈

wDn,q \ {wqa
a }. By definitions of X and D, there is no ξ ∈ X such that

µα < ξ < να. So τ < να if and only if τ ≤ µα.
Case 1: Either η or τ is a member of {µα, να}.

Then (w
qµα
µα , w

qνα
να ) /∈ O1.

Case 2: να < τ .
w

qµα
µα (τ) = w

qνα
να (τ) = 1, so (w

qµα
µα , w

qνα
να ) /∈ O.

Case 3: να > τ and τ ̸= µα (so τ < µα).
|wqµα

µα (τ)−w
qνα
να (τ)| = |zosc(τ,µα)−osc(τ,να)+q

τ −1|. Since |osc(τ, µα)−
osc(τ, να)| < n(µα, να) = n, (wqµα

µα , w
qνα
να ) /∈ O2.

So O is a neighborhood of wqa
a disjoint from wDn,q \ {wqa

a }. �

2. Back to Moore’s Original L Space

Now we need to go back to the definition of osc to get more information.
To introduce osc, we need a few definitions and facts about minimal walk
(see [8] and [3] for more information).

Definition 2.1. (1) A C-sequence is a sequence ⟨Cα : α < ω1⟩ such that
Cα+1 = {α} and Cα is a cofinal subset of α of order type ω for limit α’s.

(2) For a C-sequence, the maximal weight of the walk is the function ρ1 :
[ω1]

2 → ω, defined recursively by ρ1(α, β) = max{|Cβ∩α|, ρ1(α,min(Cβ\
α))} with boundary value ρ1(α, α) = 0.

(3) For any β < ω1, eβ : β → ω is canonically induced from ρ1:
eβ(α) = ρ1(α, β) for any α < β.

(4) For any C-sequence, the lower trace L : [ω1]
2 → [ω1]

<ω is recursively
defined for any α ≤ β < ω1 as follows:

(i) L(α, α) = 0;
(ii) L(α, β) = (L(α,min(Cβ \ α)) ∪ {max(Cβ ∩ α)}) \max(Cβ ∩ α).
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(5) Suppose that s and t are two functions defined on a common finite
set of ordinals F . Osc(s, t;F ) is the set of all ξ in F \ {minF} such that
s(ξ−) ≤ t(ξ−) and s(ξ) > t(ξ) where ξ− is the greatest element of F less
than ξ.

(6) For α < β < ω1, Osc(α, β) denotes Osc(eα, eβ ;L(α, β)) and
osc(α, β) = |Osc(α, β)| denotes the cardinality of Osc(α, β).

Here are some basic facts.

Fact 2.2. Suppose that s and t are two functions defined on a common
finite set of ordinals F0 ∪ F1 where F0 < F1. Then
|Osc(s, t;F0)| + |Osc(s, t;F1)| ≤ |Osc(s, t;F0 ∪ F1)| ≤ |Osc(s, t;F0)| +
|Osc(s, t;F1)|+ 1.

Proof. Note by definition

Osc(s, t;F0) ∪ Osc(s, t;F1) ⊂ Osc(s, t;F0 ∪ F1) ⊂ Osc(s, t;F0)

∪Osc(s, t;F1) ∪ {min(F1)}. �
Fact 2.3 ([7]). ρ1 is coherent; i.e., for any α < β, {ξ < α : ρ1(ξ, α) ̸=
ρ1(ξ, β)} is finite.

Fact 2.4 ([8], [3]). (1) If α ≤ β ≤ γ and L(α, β) > L(β, γ), then
L(α, γ) = L(β, γ) ∪ L(α, β).

(2) If β > 0 is a limit ordinal, then lim
α→β

min L(α, β) = β.

The following lemma will be needed.

Lemma 2.5 ([3, Lemma 4.4]). Let A ⊂ [ω1]
k and B ⊂ [ω1]

l be uncount-
able and pairwise disjoint. There is a closed and unbounded set of δ < ω1

such that if a is in A \ δ,7 b is in B \ δ, and R is in {=, >}, then there
are a+ in A \ δ, and b+ in B \ δ such that for all i < k and j < l

(i) maxL(δ, b(j)) is less than both ∆(a(i), a+(i)) and
∆(b(j), b+(j)); 8

(ii) L(δ, b(j)) is a proper initial part of L(δ, b+(j));
(iii) if ξ is in L+ = L(δ, b+(j)) \L(δ, b(j)), then ea+(i)(ξ) R eb+(j)(ξ).

Now let us fix {zα : α < ω1} ⊂ T that are rationally independent.
Moore’s original L space is L = {wβ : β < ω1} where

wβ(α) =

{
z
osc(α,β)+1
α : α < β
1 : α ≥ β.

For X ⊂ ω1, LX = {wβ �X : β ∈ X} is a subspace of TX . Throughout
this section, we will write wβ for wβ �X when referring to elements of LX .

7A \ δ = {a ∈ A : a > δ}.
8∆(α, β) = min({ξ < α, β : eα(ξ) ̸= eβ(ξ)} ∪ {α, β}) for α, β < ω1.
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Theorem 2.6. For any uncountable X ⊂ ω1, L 2
X is not Lindelöf.

Proof. Fix X ∈ [ω1]
ω1 . Then fix a countable M ≺ H(ω2) containing all

relevant objects and δ = M ∩ ω1. Note δ has the property mentioned
in Lemma 2.5 for A = B = X since there is a closed unbounded set of
ordinals with this property in M . Using Lemma 2.5 four times, we can
get µδ and νδ in X \ δ such that |Osc(eµδ

, eνδ
;L(δ, νδ))| > 1.9

Now fix a γ < δ greater than L(δ, µδ) ∪ L(δ, νδ) and such that
(1) eµδ

�[γ,δ)= eνδ
�[γ,δ);

(2) for any τ ∈ (γ, δ) and for ξ ∈ {µδ, νδ}, L(τ, ξ) = L(δ, ξ) ∪ L(τ, δ)
and L(δ, ξ) < γ ≤ L(τ, δ).

Pick a sufficiently large γ ∈ Cδ. γ ∈ Cδ will guarantee γ ≤ L(τ, δ) for
τ ∈ (γ, δ) and the rest is guaranteed by Fact 2.3 and Fact 2.4. Let n(α, β)
be a natural number guaranteed by Proposition 1.3(iii) for any α, β < ω1.

Denote a = eµδ
�γ , b = eνδ

�γ , L′ = L(δ, µδ), L′′ = L(δ, νδ), and
n = n(µδ, νδ). Note a, b, L′, and L′′ are all in M by definition and Fact
2.3. Consider the set

A = {(α, µα, να) ∈ ω1×X×X : µα, να ≥ α, |Osc(eµα , eνα ;L(α, να))|
> 1, n(µα, να) = n, eµα �γ= a, eνα �γ= b, L(α, µα) = L′,
L(α, να) = L′′, and properties (1) and (2) above hold while
replacing (δ, µδ, νδ) by (α, µα, να)}.

Note A is in M and (δ, µδ, νδ) ∈ A. So A is uncountable and the set of
its first coordinates is uncountable as well.

Let Ai collect the ith coordinates of elements of A for i < 3. For each
µα ∈ A1, let

Oµα = {(x, y) ∈ L 2
X : |x(µα)−y(µα)| ̸= |zjµα

−1| for any j ∈ {1, 2, ..., n}}.
It is easy to see that Oµα is open and contains everything below µα, i.e.,
for η, τ < µα, (wη, wτ ) ∈ Oµα .

Then we claim that C = {Oµα : µα ∈ A1} is an open cover of L 2
X

without countable subcover.
First, it is easy to see that C is an open cover since A1 is unbounded

in ω1. The following claim will show that it has no countable subcover.
Claim. For (α, µα, να), (β, µβ , νβ) ∈ A, if µα < β, then osc(µα, µβ) <

osc(µα, νβ).

Proof of Claim. Note by definition of A, L(µα, ξ) = L(β, ξ) ∪ L(µα, β)
and L(β, ξ) < γ ≤ L(µα, β) for ξ ∈ {µβ , νβ}.

osc(µα, µβ) = |Osc(eµα , eµβ
;L(β, µβ) ∪ L(µα, β))|

≤ |Osc(eµα , eµβ
;L(β, µβ))|+ |Osc(eµα , eµβ

;L(µα, β))|+ 1

9Actually, we can make the size of the set arbitrarily large, but greater than 1 is
sufficient here. See also the proof of Theorem 4.3 in [3].
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= |Osc(a, a;L′)|+ |Osc(eµα , eµβ
;L(µα, β))|+ 110

= |Osc(eµα , eµβ
;L(µα, β))|+ 1.

osc(µα, νβ) = |Osc(eµα , eνβ
;L(β, νβ) ∪ L(µα, β))|

≥ |Osc(eµα , eνβ
;L(β, νβ))|+ |Osc(eµα , eνβ

;L(µα, β))|
= |Osc(a, b;L′′)|+ |Osc(eµα , eνβ

;L(µα, β))|
> 1 + |Osc(eµα

, eνβ
;L(µα, β))|.

Then osc(µα, µβ) < osc(µα, νβ) since eµβ
agrees with eνβ

on [γ, β).
This finishes the proof of the claim.
It follows from the claim that for any (α, µα, να), (β, µβ , νβ) ∈ A, if

µα < β, then osc(µα, νβ)−osc(µα, µβ) ∈ {1, 2, ..., n}, and hence (wµβ
, wνβ

)
̸∈ Oµα . Then C has no countable subcover since A0 is uncountable. �

Remark 2.7. The above proof shows that {Uµα = {x ∈ TX : x(µα) ̸=
ziµα

for any i ∈ {1, 2, ..., n}} : µα ∈ A1} is an open cover of the group
generated by LX without countable subcover since wνβ

w−1
µβ

/∈ Uµα
for

β ∈ A0 \ (µα + 1).

We can also find an uncountable closed discrete subset of L 2
X .

Corollary 2.8. For any uncountable X ⊂ ω1, L 2
X contains an uncount-

able closed discrete subset.

Proof. Let M , δ, A, and n be as in Theorem 2.6. We need one more
property of δ.

Claim. For any ξ < δ, the range of osc(·, δ) �[ξ,δ)∩X is unbounded.

Proof of Claim. Otherwise, there are ξ < δ and m < ω such that
osc(ξ′, δ) < m for any ξ′ ∈ [ξ, δ) ∩ X. Let E = {α > ξ : the range of
osc(·, α) �[ξ,α)∩X is bounded by m}. Then δ ∈ E and E ∈ M , and hence
E is uncountable. Using Lemma 2.5 2m times (or [3, Theorem 4.3]) for
A = X \ ξ and B = E, we can get some ξ′ ∈ X \ ξ and α ∈ E such that
osc(ξ′, α) ≥ m. A contradiction. This finishes the proof of the claim.

Without loss of generality, assume µδ < νδ (actually νδ can be chosen
arbitrarily large). Now define B = {(α, µα, να) ∈ A : α < µα < να and α
has the property mentioned in the above claim when replacing δ by α.}.
Note B ∈ M and (δ, µδ, νδ) ∈ B. So B and the set of its first coordinates
are both uncountable.

Pick an uncountable D′ ⊂ {(µα, να) : (α, µα, να) ∈ B for some α} such
that for (µα, να) ̸= (µβ , νβ) in D′, να < β or νβ < α. Let (µα0 , να0) be
the least pair in D′. Let D = D′ \ {(µα0 , να0)}.

As in §1, it suffices to find a neighborhood for each wa ∈ L 2
X disjoint

from wD \ {wa}. Assume η = min(a) and τ = max(a). We want to find

10Recall L(β, µβ) = L′ < γ.
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a neighborhood O disjoint from each (wµα , wνα) ∈ wD \ {wa}. Let us
discuss case by case. Fix (α, µα, να) ∈ B such that (µα, να) ∈ D.

Case 1: η or τ is in interval [α, να].
As there are at most finitely many (wµβ

, wνβ
) in wD such that η or

τ is in interval [β, νβ ], let O1 be a neighborhood of wa disjoint from all of
them.

Case 2: να < η.
Define O2 = {(x, y) : |x(µα0) − y(µα0)| ≠ |ziµα0

− 1| for any i ∈
{1, 2, ..., n}} if η = τ and O2 = {(x, y) : x(η) ̸= 1 or y(η) ̸= 1} if η < τ .

Case 3: α > τ .
Let ζ be the least such that (wµζ

, wνζ
) ∈ wD and τ < ζ. Pick a

neighborhood O3 of wa such that O3 ⊂ {(x, y) : |x(µζ)−y(µζ)| ̸= |ziµζ
−1|

for any i ∈ {1, 2, ..., n}} and (wµζ
, wνζ

) ̸∈ O3.
Case 4: η < α < να < τ .

Let β be the least such that (wµβ
, wνβ

) ∈ wD and η < β. Let n(β, τ)
be the natural number guaranteed by Proposition 1.3(iii). Since β has the
property mentioned in the above claim, we can find ξ ∈ [η, β) ∩ X such
that osc(ξ, β) > n + n(β, τ). Then osc(ξ, τ) > n. Define O4 = {(x, y) :
|x(ξ)− y(ξ)| ̸= |ziξ − 1| for any i ∈ {0, 1, 2, ..., n}}.

Let O = O1 ∩ O2 ∩ O3 ∩ O4. It is easy to see that O is uniquely
determined by wa and D. Then this O is a neighborhood of wa disjoint
from wD \ {wa}. �
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