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TOPOLOGICAL DYNAMICS OF
DIANALYTIC MAPS ON KLEIN SURFACES

JANE HAWKINS

Abstract. We study analytic maps of the sphere, the torus, and
the punctured plane with extra symmetries; namely, they project to
well-defined maps on corresponding nonorientable Klein surfaces.
We define Julia and Fatou sets on Klein surfaces and discuss their
topological dynamical properties; in particular, we construct new
examples where the Julia set is the entire Klein surface. We charac-
terize examples with Julia set the full surface for Klein bottles and
construct the first such examples on the real punctured projective
plane, as well as discuss new examples on the real projective plane.
The examples show that topologically and measure theoretically
complex behavior occurs on these surfaces.

1. Introduction

This paper combines topological and complex dynamics to produce
new examples of maps of some nonorientable surfaces that are as close
to analytic as is possible. This refers to both the surface structure and
the map in the sense that the surfaces are doubly covered by connected
orientable Riemann surfaces and each map has an analytic lifting to one
on its Riemann surface double cover. Up to now there have been few
examples given of Julia sets on nonorientable surfaces; the only examples
we are aware of are on the real projective plane, denoted by RP2, were
studied by the author with Sue Goodman in [9]. We recently learned there
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are also examples of Julia sets on RP2 in unpublished work in progress
by Araceli Bonifant, Xavier Buff, and John Milnor [7] with topological
properties different from the examples in this paper. In this paper we
extend work in [9] to compute explicit examples of Julia sets on addi-
tional nonorientable surfaces; namely the Klein bottle and the punctured
projective plane. We also provide new examples on RP2 as well. The
maps we focus on are topologically exact and transitive, and have a dense
set of repelling periodic points. On each surface of interest we specify
a Riemannian metric, which in turn defines a probability measure; we
denote the measure by m and discuss some measure theoretic properties
of the maps with respect to m. The examples we construct in this paper
show that imposing extra symmetry on analytic maps does not restrict
topological or measure theoretical dynamical mixing behavior.

Given an open set Ω ⊂ C, a map f : Ω → C is called dianalytic on Ω
if its restriction f |V to any component V of Ω satisfies either ∂(f |V ) = 0
or ∂(f |V ) = 0, i.e., f is either holomorphic or anti-holomorphic on each
connected component of Ω. The domain for the maps considered in this
paper is a Klein surface S, which is a surface with an atlasA = {Ui, ϕi}i∈N
such that all overlap maps ϕi ◦ ϕ−1j are holomorphic or anti-holomorphic
on their respective domains. We call this a dianalytic structure on S.
This definition of Klein surface is from the book of Norman L. Alling
and Newcomb Greenleaf [1], though others appear in the literature. All
Riemann surfaces are Klein surfaces, but Klein surfaces are more general
and include surfaces with boundary and nonorientable surfaces.

We say S is a nonorientable Klein surface if in addition to the dianalytic
structure there exists a connected surface X which is an orientable double
cover of S, and a fixed point free anti-holomorphic involution ϕ of X
such that S is dianalytically conjugate to the quotient surface X/[ϕ].
The orientable double covering space X is uniquely determined up to a
conformal mapping. The focus of this paper is to construct dynamically
interesting maps on nonorientable Klein surfaces.

Notions of equicontinuity pass from a Riemann surface to a nonori-
entable Klein surface with an appropriate choice of Riemannian metric,
so Fatou and Julia sets are well-defined concepts on Klein surfaces. The
maps we focus on in this paper have Julia set the entire surface S because
we are interested in maximizing the topological mixing behavior of the
dynamics. Therefore, our attention is restricted to the genus 0 and 1 case
for the double cover, by Montel’s theorem; this was pointed out explicitly
by Hans Rådström in 1953 [16]. Once we know that the set of normality
is empty for each set of examples constructed, we obtain interesting topo-
logical dynamical information as a consequence of classical properties of
Julia sets.
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The paper is organized as follows. In section 1.1 we give the definitions
of Julia and Fatou sets and the dynamical properties of interest. Section
2 begins with a review of work in [9] and adds to it with two results:
namely, Proposition 2.4, where new examples are given, and Theorem 2.5,
where limit sets are discussed. In section 3 we construct the first explicit
examples of dianalytic maps of the punctured real projective plane with
Julia set the entire surface; we show that there are many such examples
and discuss their dynamical behavior. In section 4 we give the complete
picture for the dianalytic maps on the Klein bottle and discuss the Julia
sets and ergodicity. We also take the opportunity to add to statements in
[4], where some of the maps appearing in this paper were discussed quite
generally, but neither their dynamical properties nor their Julia sets were
studied.

1.1. Definitions and notation.

Let C∞ denote the Riemann sphere, and let Ω ⊆ C∞ be some domain
(an open connected set). We consider analytic maps H : Ω → Ω, and
let Hn = H ◦H ◦ · · · ◦H denote the n-fold composition. We put a metric
d on Ω (usually the spherical metric), and consider the family of maps on
Ω, F = {Hn}n≥1; we say F is equicontinuous at z ∈ Ω if, for every ε > 0,
there exists δ > 0 such that

d(ω, z) < δ ⇒ d(Hn(ω), Hn(z)) < ε ∀n ∈ N.

Definition 1.1. We define the Fatou set of H, by

F (H) = {z ∈ Ω : F is equicontinuous at z}.
The Julia set of H is its complement in Ω:

J(H) = Ω \ F (H).

In this paper we consider only the following three cases for Ω (and H):
(1) Ω = C∞; in this case, then H = p/q, with p and q polynomials, a

rational function. We assume deg(H) ≥ 2.
(2) If Ω = C∞ \ {∞} = C, we use the Euclidean metric for d in this

case and H = az + b, a ∈ C∗, b ∈ C, and assume |a| > 1.
(3) If Ω = C∞ \ {0,∞}, then H(z) = znef(z)+g(1/z) with f and g

entire functions on C, often called a Rådström function (see e.g.,
[12]).

These properties of Julia sets are well established; most of them date back
to Fatou. For a discussion of the history and for proofs of these results in
this more general setting, see [8], [10], or [12].

Proposition 1.2. Under the standing hypotheses above for H : Ω → Ω,
the following hold.
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(1) J(H) is a nonempty perfect set.
(2) J(Hk) = J(H) for all n ∈ N.
(3) J(H) is completely invariant, i.e., H−1(J(H)) = J(H).
(4) J(H) is the closure of the set of repelling points, i.e.,

J(H) = cl{z ∈ Ω : Hp(z) = z and |(Hp)′(z)| > 1},
where cl denotes the topological closure in Ω.

(5) If K ⊂ Ω is compact, given any neighborhood U of a point z ∈
J(H), there exists an integer n0 such that K ⊂ Hn0(U).

In the case where Ω = C∞ \ {3 or more points}, Ω is a hyperbolic
surface and, using the Poincaré metric on Ω, it is a classical result that
J(H) = ∅ always holds (see [16] or [15] for a statement and proof).

Proofs of the statements in Theorem 1.3 when S is compact can be
found, for example, in [5] or [14]; they follow from Proposition 1.2 as well.
Most were known already to Fatou on the sphere.

Theorem 1.3. Suppose that H : Ω → Ω is analytic and Ω is of type
(1)-(3) above. Assume that J(H) = Ω, and that H induces a dianalytic
map Ĥ : S → S on a Klein surface S. Then J(Ĥ) = S, and the following
hold:

(1) Ĥ is topologically exact in the sense that if U ⊂ S is a nonempty
open set, then ∪n≥0Ĥn(U) = C∗.

(2) Ĥ is topologically transitive: There exists some z ∈ S such that
O+(z) = ∪k≥0Ĥk(z) is dense in S.

(3) Periodic points are dense in S.
(4) Every point z ∈ S satisfies O−(z) = {w : ∃ k ≥ 0 : Ĥk(w) =

z} = ∪k≥0Ĥ−k(z) is dense in S.

Proof. These properties follow from the corresponding properties on the
orientable double cover Ω and Proposition 1.2. �

When S is compact, we define the ω-limit set of z ∈ S for a continuous
map H : S → S by

ω(z) = {y ∈ S | ∃ni →∞ with Hni(z)→ y}.
If S is not compact, it can occur (and does for some of our examples
below) that ω(z) is empty for many z ∈ S.

2. The Real Projective Plane

In this section we add to the results known about dynamics of diana-
lytic maps of the real projective plane, which were studied by the author
and Sue Goodman in [9] as well as by Milnor [14] and Ilie Barza and
Dorin Ghisa [4]. A wide variety of dynamical behavior occurs and here
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we increase the understanding of what occurs in parameter space for some
families of mappings. We obtain dianalytic maps of the real projective
plane as follows. The Riemann sphere C∞ is an orientable double cover of
RP2, via the anti-holomorphic involution ϕ(z) = −1/z, which has no fixed
points. This induces an equivalence relation on C∞ with each equivalence
class containing exactly 2 points; we take the quotient by the relation ∼ϕ
, and this gives RP2 the structure of a nonorientable Klein surface [4]. We
use p to denote the quotient map from C∞ to RP2 using the relation ∼ϕ.
To simplify notation we will write RP2 ∼= C∞/[ϕ], with “ ∼= ” meaning
dianalytically conjugate, to denote this relationship. Maps on RP2 that
lift via p to analytic maps of the double cover C∞ are dianalytic. In [9,
Theorem 3.1], the author and Goodman showed the following result.

Theorem 2.1. Every rational map of C∞ of (odd) degree n ≥ 3 with
exactly two distinct critical points which induces a dianalytic map of RP2,
is conformally conjugate to exactly one of the form

(2.1) hα(z) =
zn + α

−αzn + 1
, arg(α) ∈ [0, π/(n− 1)].

We denote the induced dianalytic map on RP2 by ĥα. In [9] it is shown
that a wide variety of dynamics occurs as the parameter value α varies in
the space described in the theorem; in Figure 1 (see page 345), we show
the parameter space, with regions of solid color corresponding to areas
of stability in which there is an attracting periodic orbit. Darker shades
represent higher periods.

If R∞ denotes the one point compactification of real line (i.e., the
equator of C∞), we have the following.

Proposition 2.2 ([9], Proposition 5.8). Let hα(z) = z3+α
−αz3+1 , α ∈ R, and

set h ≡ hα|R∞ . If ρ(h), the rotation number of h, is irrational, then
(1) there exists a homeomorphism ϕ : R∞ → S1 conjugating h to

Tρ(h), irrational rotation on S1; and
(2) J(hα) = C∞ and J(ĥα) = RP2.

While these maps satisfy the hypotheses of Theorem 1.3, the measure
theoretic properties of such a map are difficult to determine since the
equator of the sphere is a forward invariant rotation set. This is discussed
in Theorem 2.5 below. We now turn to a different type of map in this
family with Julia set all of RP2.

In the next few results we prove that we can obtain maps of the form
(2.1) that are ergodic, exact, and conservative.

Theorem 2.3 ([5], Theorem 4.3.1). If every critical point of hα is pre-
periodic but not periodic, then J(hα) = C∞.
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We endow the Riemann sphere with the usual Borel structure and con-
sider the probability measure m on C∞ which is normalized surface area
measure on S2 ∼= C∞ where the conjugacy is implemented via stere-
ographic projection. We say h : C∞ → C∞ is ergodic if, whenever
h−1(A) = A for a measurable set, we have m(A) = 0 or m(A) = 1.
We say h : C∞ → C∞ is exact if, whenever h−n ◦ hn(A) = A for a mea-
surable set, and for all n ∈ N, we have m(A) = 0 or m(A) = 1. Exact
maps are ergodic but the converse does not necessarily hold. The map h
is called conservative if, for all sets A of positive measure, there exists a
k ∈ N such that m(h−k(A) ∩A) > 0.

Proposition 2.4. If the unique critical point of ĥα is pre-periodic but not
periodic, then J(ĥα) = RP2 and ĥα is ergodic, exact, and conservative
with respect to the m̂ on RP2 where m̂ is the pullback measure from m.
Moreover, these maps exist with liftings of the form (2.1).

Proof. It is was shown in [2] that a critically finite map of C∞ is ergodic
and exact. If either of these properties were to fail for ĥα, then it would
fail for the lifting hα as well.

To show that parameters α with this property exist, namely that the
critical points are pre-periodic but not periodic (and obtain their approx-
imate values), we use the following algorithm:

• We consider only the critical point 0, since the other critical point
∞ exhibits antipodal behavior.

• Since hα(0) = α, then α and −1/α are the only critical values.
• We show that hα(α) = α has only α = 0 as a solution. To see this,

if we set hα(α) = α and assume α 6= 0 the equation reduces easily
to α = −1/α, but the involution has no fixed points. Therefore,
the critical value is never fixed.
• For k ≥ 2, we set hk+1

α (α) = hkα(α) and solve for α.
The Fundamental Theorem of Algebra guarantees there are solutions.
Each solution represents a parameter α corresponding to a map hα with
the property that hkα(α) is a (necessarily) repelling fixed point and then
Theorem 2.3 implies the result. �

We show a few of the parameters satisfying the hypotheses of Propo-
sition 2.4 using red (dark) dots in Figure 1; finding precise values for the
parameters is difficult.

In Table 1 we show the approximate values of some parameters α such
that hα satisfies the hypothesis of Proposition 2.4. While the family of
maps hα does not vary homomorphically in α due to the presence of
α in Equation (2.1), the dependence of hα on α is real analytic, and
the dependence of fixed points on the parameter is smooth but quite
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Figure 1. Each α = x+ iy shown corresponds to a map
of the form hα; the solid regions are stable parts of pa-
rameter space. The red (dark) dots mark post critically
finite parameters.

Value of k Approximateα
2 .94165 + .71130i

3 .96511 + 1.04128i

4 1.14318 + .49905i

5 .82911 + .66296i

6 .414056 + .60668i

Table 1. The values of α with repelling fixed critical
value hkα(α) = hk−1α (α).

complicated. Therefore, it is likely that a result of Mary Rees [17], which
was proved for analytic maps of the sphere, can be modified to show that
there is a set of parameters of positive measure that correspond to maps
that are ergodic and exact with respect to m (these sets would contain
the parameters obtained in Proposition 2.4). However, we do not prove
it here; rather, we conjecture that it is true.

2.1. The ω-limit sets.

For the maps hα resulting from Proposition 2.2, a variety of ω-limit
sets can occur. In particular, letting R∞ denote the equator as above, for
any z ∈ B = {∪n≥1h−nα (R∞)}, ω(z) = R∞; the set B projects to a dense
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set B̂ in RP2, with the property that each point in B̂ has a limit set a
closed curve in RP2. We also have a dense set of periodic points whose
ω-limit set is its finite forward orbit, and, in addition, there are points
z ∈ RP2 such that ω(z) = RP2. We set E = P(R∞), the image of the
equator under the antipodal map.

For the maps hα resulting from Proposition 2.4, the last two cases of
ω-limit sets occur. We summarize the possibilities in the next result.

Theorem 2.5. For maps of the form hα(z) = z3+α
−αz3+1 ,

(1) if hα satisfies the hypotheses of Proposition 2.2, then for the cor-
responding map ĥα; either
(a) ω(z) = E for m-a.e. point z ∈ RP2, or
(b) ω(z) = RP2 for m-a.e. point z ∈ RP2;

(2) if hα satisfies the hypotheses of Proposition 2.4, then for the cor-
responding map ĥα, ω(z) = RP2 for m-a.e. point z ∈ RP2;

(3) for any map hα, there is a dense set of points in RP2 such that
for the map ĥα, ω(z) is finite.

Proof. If hα satisfies the hypotheses of Proposition 2.2, then both critical
points are real and recurrent and have a dense forward orbit in R∞. We
also have that J(hα) = C∞. If we apply a result from ([6], Theorem 2.1),
then either m-a.e. point is attracted to R∞, or m-a.e. z ∈ C∞ satisfies
ω(z) = C∞. We project via the antipodal map to RP2 to obtain the result
in (1).

If hα is post-critically finite, then the result on the sphere is standard
and appears in [2] and [6]. We project to RP2 to obtain the result in
(2). Statement (3) follows from the fact that periodic points are dense in
J(ĥα). �

3. The Punctured Projective Plane RP2
∗

The dynamics of iterated analytic functions of the punctured plane
C∗ = C \ {0} have been studied by several authors, for example [8], [10],
[11], [12], [13], and [16]. In this section we study a nonorientable Klein
surface covered by C∗, namely the punctured real projective plane which
we denote by RP2

∗. Properties of Julia sets for analytic maps on C∗ have
been considered in the papers listed above, but no examples have been
computed or studied on the punctured real projective plane. The surface
RP2

∗ is the projective plane with a point removed; it has the structure
of a nonorientable Klein surface with orientable double cover C∗. We
consider only analytic maps H : C∗ → C∗ with essential singularities at 0
and ∞ (using a Mobius map to place the essential singularities at 0 and
∞); otherwise we could just consider H as being rational or entire. By
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the commuting diagram, each such map lifts via the exponential map to
an entire map of C:

C H̃−→ C

exp ↓ ↓ exp

C∗ H−→ C∗

Therefore, H(z) has the following form:

(3.1) H(z) = znef(z)+g(1/z)

for n an integer, with f and g entire functions.
It is discussed in [4] and easy to check that if we regard C∗ ∼= C∞ \

{0,∞}, a dianalytic map on RP2
∗ is induced by an analytic map H :

C∗ → C∗ that commutes with the involution: ϕ(z) = −1/z as above.
Maps of C∗ that commute with ϕ appear in [4]; here, we add to the

discussion with the following result, proving some dynamical properties
about some basic examples.

Proposition 3.1. (1) Let p(z) = a0 + a1z + a2z
2 + · · ·+ amz

m and
q(z) = −a0 + a1z − a2z2 + · · ·+ (−1)m+1amz

m; then if n ∈ Z is
odd,

(3.2) H(z) = znep(z)+q(1/z)

commutes with ϕ on C∗.
(2) If n ∈ Z is odd and m ∈ N is odd, Hn,m(z) = znez

m+z−m

com-
mutes with ϕ on C∗.

(3) If n ∈ Z is odd and m ∈ N is even, Kn,m(z) = znez
m−z−m

commutes with ϕ on C∗.
Proof. To show (1), we have that

H ◦ ϕ(z) = (−1)nz−nep(−1/z)+q(−z),

and
ϕ ◦H(z) = −z−ne−(p(z)+q(1/z)) = −z−ne−p(z)−q(1/z).

By our hypotheses, n is odd, so (−1)nz−n = −z−n; and by our choice
of q, q(−z) = −p(z). It then follows, replacing z by −1/z, that p(−1/z) =

−q(−1/z), from which (1) follows.
Both (2) and (3) are special cases of (1), with p(z) = zm.
This proves the result. �

Remark 3.2. (1) Consider functions of the form (3.2). The proof
of Proposition 3.1 shows that n cannot be an even integer if H
induces a well-defined dianalytic map on RP2

∗. The integer n is
sometimes called the degree of H.
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(2) In Proposition 3.1(1), the form of the coefficients given for p and
q in (3.2) extends to infinite series for entire functions (see [4]).
In particular, all that is needed is that p and q be entire with
q(−z) = −p(z).

(3) If a0 = x+ it, where x, t ∈ R, then a0 − a0 = 2it, so any function
of the form

(3.3) H(z) = zneitep(z)+q(1/z),

with p and q entire, p(0) = 0 and q(−z) = −p(z), using any t ∈ R,
will induce a dianalytic map on RP2

∗.

Corollary 3.3. Under the hypotheses of Proposition 3.1, all maps of the
form (3.3) induce dianalytic maps of RP2

∗.

We describe the Julia sets and dynamics of the simplest examples:
Hn,1(z) = zne(z+1/z).

Proposition 3.4. If Hn,1(z) = zne(z+1/z), for n an odd integer, then
J(Ĥ) = RP2

∗.

Proof. It is enough to show that J(H) = C∗ since the normality with
respect to the spherical metric persists under the quotient map. Fix any
odd integer (positive or negative) so that by Proposition 3.1 the map
g ≡ Hn,1 induces a well-defined dianalytic map on RP2

∗. We easily
calculate:

• g′(z) = ez+1/zzn−2(z2 + nz − 1);
• there are two critical points in C∗, both real, one negative and

one positive, of the form ci =
−n±

√
n2 + 4

2
, i = 1, 2 with c1 =

−1/c2;
• the calculus of g restricted to the real line shows that if c1 is

labelled to be the negative real critical point, then

lim
k→∞

gk(c1) = 0 and lim
k→∞

gk(c2) =∞.

By the symmetry imposed on the maps, once we establish that one
critical point iterates under g to 0, this forces the other critical point
to iterate to ∞; in particular, the map ĝ : RP2

∗ → RP2
∗ is unicritical

with the critical point c satisfying limk→∞ ĝk(c) = [∞]. It was shown by
J. Kotus ([12], Theorem 2) and independently by Linda Keen [10] and
P. M. Makienko [13] that there are no Fatou components for maps of the
punctured plane of the form (3.1) other than those occurring for rational
maps. In particular, there are no wandering domains, and as is the case
for rational maps, each of the periodic cycles of Fatou components require
a critical point associated to it (as shown by [16]). Therefore, J(g), and
hence J(ĝ) is the entire surface. �
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In Figure 2 we show an approximation to the Julia set of a map on
RP2

∗, colored as follows. We color points yellow (light) if they’re heading
to 0 under iteration; the points colored blue (dark) iterate to ∞. The
Julia set occurs at the interface between the two colors (see Theorem 3.5
below); under successive iterations a point will head towards 0 say under
some number of iterations, then near 0, by the Big Picard Theorem, it
gets “thrown” to an arbitrary value in the plane. After that it might head
to∞ (or 0 again), and the behavior at∞ is identical. So the large blocks
of color break up randomly near the omitted values.

Figure 2. An approximation showing the structure of
J(g) for g(z) = 1

z e
z+1/z, with the unit circle in white.

In [8] the following result was shown.

Theorem 3.5 ([8], Theorem 2). For any map of the form (3.2),

J(g) = ∂{z ∈ C∗ | lim
n→∞

gn(z) = 0} = ∂{z ∈ C∗ | lim
n→∞

gn(z) =∞}.

This leads to the following corollary.

Corollary 3.6. If Hn,1(z) = zne(z+1/z), for n an odd integer, then there
is a dense set of points in RP2

∗ with an empty ω-limit set.

Proof. The corollary holds since a dense set on C∗, consisting of the preim-
ages of the critical points, iterates to either 0 or ∞, and these project to
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a single point under the quotient map. Since this point is not in RP2
∗,

for any z in that dense set we have ω(z) = ∅. �

There are other rich dynamics in this family of maps obtained by vary-
ing the degrees and multiplying the standard form by a rotation ( i.e.,
choosing a0 6= 0). In Figure 3 we show a Julia set for a map with one at-
tracting period two orbit whose attracting basins are shown in white. The
remaining colors show points iterating to 0 or ∞, or unresolved. When
projected down onto RP2

∗, the periodic orbit collapses to an attracting
fixed point.

Figure 3. An approximation showing the structure of
J(f) for f(z) = e.4iz3(ez

2−1/z2), showing the attracting
basin of a period two cycle in white. The antipodal sym-
metry with respect to the dotted black circle is evident.

4. The Klein Bottle

The case of the Klein bottle is different and simpler since the Klein
bottle is a Klein surface which is double covered by the torus. We show
that only a limited number of maps on tori give rise to dianalytic maps of
the Klein bottle, but each is uniformly expanding and hence has the Julia
set the entire surface. Due to the uniform expansion, ergodic properties
are well understood in this setting.
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We start with an analytic automorphism of C, which is therefore of
the form F (z) = az + b, with a 6= 0 and b ∈ C. Let λ1, λ2 ∈ C\{0} such
that λ2/λ1 /∈ R. We define a lattice of points in the complex plane by
Λ = [λ1, λ2] : = {mλ1 +nλ2 : m,n ∈ Z}. Two different sets of vectors can
generate the same lattice Λ; if Λ = [λ1, λ2], then all other generators λ3
and λ4 of Λ are obtained by multiplying the vector (λ1, λ2) by the matrix

A =

(
a11 a12
a21 a22

)
with aij ∈ Z and a11a22 − a12a21 = 1. We view Λ as a group acting on C
by translation, each λ ∈ Λ inducing a transformation of C.

We consider here Λ = [1, iβ] = {n + miβ : n,m ∈ Z, β > 1}, and
we consider the map F as an induced map on C/Λ. For F to be well
defined, we need F (Λ) ⊆ Λ. Therefore, we assume that a ∈ N, though
in this generality it is not necessary, but sufficient (see e.g., [15, Problem
6-a]). We are interested in maps on the Klein bottle K, which we view
as a Klein surface so we need the following condition: Given the maps
T (z) = z + iβ and C(z) = z + 1/2, we need F to commute with both
maps on T = C/Λ. We note that C ◦C(z) = z+ 1, which is an involution
on C/Λ.

If F ◦T (z) = az+ b+ aiβ mod Λ equals T ◦F (z) = az+ b+ iβ mod Λ,
a 6= 0, this imposes the condition that a be an integer. If b ∈ R, then
forcing them to commute gives

F ◦ C(z) = az +
a

2
+ b mod Λ = az + b+ 1/2 mod Λ = C(F (z)),

so a must be an odd integer. Moreover, if b has any imaginary component,
say b = x+ iy, y 6= 0, then

F ◦ C(z) = az + x+
a

2
+ iy mod Λ = az + x− iy +

1

2
mod Λ = C(F (z)),

which only holds if y = nβ
2 for an integer n. This also implies a is an odd

integer.
This discussion leads to the following result, which is a sharpening of

a statement in [4].

Theorem 4.1. An analytic map of F : C→ C induces a dianalytic map
f̂ of K ∼= T/[C] if and only if is of the form:

(4.1) F (z) = az + α+
n0iβ

2
,

with a ∈ Z odd, n0 ∈ Z, α ∈ R, and Λ = [1, iβ]. Moreover, writing c =

α+ n0iβ
2 , if a 6= 1, and n0 = m0(a−1), m0 ∈ Z the map f̂ is dianalytically
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conjugate to f̂a(z) = a z via the conjugating map h(z) = z + c
1−a . That

is, f̂ = h ◦ f̂a ◦ h−1.

Theorem 4.2. For any integer a, |a| ≥ 3 any map of the form (4.1)
induces a dianalytic map on the Klein bottle: f̂ : K→ K that is uniformly
expanding with respect to the flat metric. Moreover, J(f̂) = K, and f̂ is
ergodic, measure-preserving, and exact with respect to m.
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