http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Rationality of the $\mathrm{SL}(2,\mathbb{C})$ -Reidemeister torsion in dimension 3

 $\mathbf{b}\mathbf{y}$

JEROME DUBOIS AND STAVROS GAROUFALIDIS

Electronically published on June 8, 2015

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

RATIONALITY OF THE $SL(2, \mathbb{C})$ -REIDEMEISTER

JEROME DUBOIS AND STAVROS GAROUFALIDIS

TORSION IN DIMENSION 3

ABSTRACT. If M is a finite volume complete hyperbolic 3-manifold with one cusp and no 2-torsion, the geometric component X_M of its SL(2, \mathbb{C})-character variety is an affine complex curve, which is smooth at the discrete faithful representation ρ_0 . Porti defined a non-abelian Reidemeister torsion in a neighborhood of ρ_0 in X_M and observed that it is an analytic map, which is the germ of a unique rational function on X_M . In the present paper we prove that (a) the torsion of a representation lies in at most quadratic extension of the invariant trace field of the representation, and (b) the existence of a polynomial relation of the torsion of a representation and the trace of the meridian or the longitude. We postulate that the coefficients of the $1/N^k$ -asymptotics of the Parametrized Volume Conjecture for M are elements of the field of rational functions on X_M .

1. INTRODUCTION

1.1. The volume of an $SL(2, \mathbb{C})$ -representation and the *A*-polynomial. A well-known numerical invariant of a 3-dimensional finite volume hyperbolic manifold M with a cusp is its *volume*, a positive real number. A complete invariant of the hyperbolic structure of M is a discrete faithful representation of $\pi_1(M)$ into $PSL(2, \mathbb{C})$ (well-defined up to conjugation) which is also a topological invariant, as follows from Mostow rigidity Theorem. Every $PSL(2, \mathbb{C})$ -representation ρ of $\pi_1(M)$ has a real-valued volume $Vol(\rho)$; see [14, Ch.2] and also [17, 16]. When a representation

115

S.G. was supported in part by NSF.

²⁰¹⁰ Mathematics Subject Classification. Primary 57N10; Secondary 57M25. Key words and phrases. Knots, A-polynomial, Reidemeister torsion, volume, character variety, 3-manifolds, hyperbolic geometry, invariant trace field.

^{©2015} Topology Proceedings.

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.