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A STABILITY CONJECTURE FOR THE COLORED
JONES POLYNOMIAL

STAVROS GAROUFALIDIS AND THAO VUONG

AssTrACT. We formulate a stability conjecture for the coefficients
of the colored Jones polynomial of a knot when the color lies in
a fixed ray of a simple Lie algebra. Our conjecture is motivated
by a structure theorem for the degree and the coefficients of a g-
holonomic sequences given in [6] and by a stability theorem of the
colored Jones polynomial of an alternating knot given in [8]. We
prove our conjecture for all torus knots and all simple Lie algebras
of rank 2. Finally, we illustrate our results with a few explicit
g-series.

1. INTRODUCTION

1.1. The degree and coefficients of a g-holonomic sequence. Our
goal is to formulate a stability conjecture for the coefficients of g-holonomic
sequences that appear naturally in Quantum Knot Theory [7]. Our con-
jecture is motivated by

(a) astructure theorem for the degree and coefficients of a g-holonomic
sequence of polynomials given in [6],

(b) a stability theorem of the colored Jones polynomial of an alter-
nating knot [8].
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216 STAVROS GAROUFALIDIS AND THAO VUONG

To discuss our first motivation, recall [22] that a sequence (f,(q)) is ¢-
holonomic if it satisfies a linear recursion

d

ci(q", @) fntj(q) =0
j=0

for all n where ¢;(u,v) € Zlu,v] and ¢q # 0. Here, f,(q) is either in
Z[q™1], the ring of Laurent polynomials with integer coefficients, or more
generally in Q(g), the field of rational functions with rational coefficients
or even Z((q)), the ring of Laurent power series in ¢ EjeZ ajq¢’ (with a;
integers, vanishing when j is small enough). Z((q)) has a subring Z[[q]]
of formal power series in g, where a; = 0 for j < 0. The degree 6*(f(q))
of f(q) € Z((q)) is the smallest integer m such that ¢ f(q) € Z[[q]]-
Thus, we can expand every non-zero sequence (f,(g)) in the form

(L1 fale) = ao(n)g’” " + a1 (n)g” ™ 4 ag(n)g® M2 4

where §*(n) is the degree of f,(¢) and ag(n) is the k-th coeflicient of
¢ ™ £, (q), reading from the left. We will often call ax(n) the k-th
stable coefficient of the sequence (fy,(q)).

In [6] it was proven that if (f,,(¢)) is ¢-holonomic, then

e 5*(n) is a quadratic quasi-polynomial for all but finitely many
values of n,

e for every k € N, ag(n) is recurrent for all but finitely many values
of n.

Recall that a quasi-polynomial (of degree at most d) is a function of the
form

d
p:N—Z, an(n):ch(n)nj
3=0

where ¢; : N — Q are periodic functions. Let P denote the ring of
integer-valued quasi-polynomials. A recurrent sequence is one that satis-
fies a linear recursion with constant coefficients. Recurrent sequences are
well-known in number theory under the name of Generalized Fxponential
Sums [21, 5]. The latter are expressions of the form

with roots «;, 1 < i < m distinct algebraic numbers and polynomials A;.
Integer-valued generalized exponential sums form a ring £, which contains
a subring P that consists of integer-valued exponential sums whose roots
are complex roots of unity.



A STABILITY CONJECTURE FOR THE COLORED JONES POLYNOMIAL 217

1.2. Stability of the colored Jones polynomial of an alternating
link. The second motivation of our Conjecture 1.5 below comes from the
stability theorem of [8] that concerns the colored Jones polynomial of
an alternating link. Let Z((q)) denote the ring of formal Laurent power
series in ¢ with integer coefficients. Every element of Z((q)) has the form
fl@) =202, ang" for some ng € Z and a,, € Z. If f(q) # 0, the smallest
n such that a, # 0 is denoted by §*(f). Given f,.(q), f(q) € Z((q)), we
say that

Jim fo(q) = f(9)

if there exists C such that 6*(f,.(g)) > C for all n, and for every m € N
there exists n,, € N such that

fn(q) = f(q) € ¢"Z][q]]

for all n > n,,. The next definition of stability appears in [7] and the
notion of its tail is inspired by Dasbach-Lin [4].

Definition 1.1. We say that a sequence f,(q) € Z[[¢]] is stable if there
exists a series F(z,q) = Y ey Pr(q)2" € Z((q))[[z]] such that for every
k € N, we have

(1.2) lim ¢ *" | f(g) =) ®5(9)/ Y | = 0.

k
n—roo
J=0

We will call F(z,q) the (x,q)-tail (in short, the tail) of the sequence

(fn(q))-

Examples of stable sequences are the shifted colored Jones polynomials
of an alternating link. Let Jx ,(¢) € Z[g*'/?] denote the colored Jones
polynomial of a link K colored by the (n + 1)-dimensional irreducible
representation of sly (see [19, 20]). Let ¢} (n) and axo(n) denote the
degree and the 0-th stable coefficient of Jk ,,(q). It is well-known that
ako(n) = (—1)°~" where c_ is the number of negative crossings of K
[15].

Theorem 1.2. [8] If K is an alternating link, then the sequence
ax.o(—n)g~ k™ Jx . (q) € Z|q] is stable.

1.3. c-stability. We are now ready to introduce the notion of c-stability.

Definition 1.3. We say that a sequence f,(q) € Z((q)) with g-degree
d*(n) is c-stable (i.e., cyclotomically stable) if there exists a series

F(n,z,q) = ) ®x(n,q)a" € P((q))[[=]]

k=0
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such that for every k € N, we have

(1.3) lim ¢ " g7 f () = D @5(n,q)? Y | = 0.

k
n— o0
Jj=0

We will call F(n,z,q) the (n,z,q)-tail (in short, tail) of the sequence

Remark 1.4. The stable coefficients of a c-stable sequence (f,(q)) are
quasi-polynomials. Le., with the notation of Equation (1.1), we have that
ar € P for all k. In fact, if (f,(q)) is c-stable and [ € N, the stable
coefficients of the sequence

-1

g falg) = Y @5(q)g’ Y
=0

are quasi-polynomials.

1.4. Our results. For a knot K in S3, colored by an irreducible represen-
tation V) of a simple Lie algebra g with highest weight A, one can define
the colored Jones polynomial J% 1, () € Z[g*'] [19, 20]. This requires a
rescaled definition of ¢, which depends only on the Lie algebra and not on
the knot, and is discussed carefully in [14]. In [7] it was shown that for
every knot K and every simple Lie algebra g, the function A — J ?{,VA (q)
(and consequently the sequence (J Ig(ym\(q))) is g-holonomic.

Conjecture 1.5. Fix a knot K, a simple Lie algebra g and a dominant
weight A of g. Then the sequence (J5,,4(¢)) of colored Jones polynomials
is c-stable.

Theorem 1.6. Conjecture 1.5 holds for all torus knots and all rank 2
simple Lie algebras.

For a precise formula for the tail, see Theorem 7.2.
An earlier publication [9] gives an alternative proof of Theorem 1.6 for
the trefoil and the case of the A, simple Lie algebra.

Remark 1.7. Theorem 1.2 implies that if K is an alternating knot with
c_ crossings and k € N, the k-th stable coefficient ax 1 (n) of the sequence

(Jx.n(q)) is given by
ax k(n) = (—1)°"coeff (P o(q), ¢")

and satisfies the first order linear recurrence relation

agr(n+1)—(=1)akr(n)=0.
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Here coeff(f(q),q") denotes the coefficient of ¢* in f(q) € Z((¢q)). The
stable coefficients ck x of an alternating knot K are studied in [11, 10].
In all examples of the colored Jones polynomial of a knot that have been
analyzed (this includes alternating knots, torus knots and the 2-fusion
knots), the k-stable coefficient is a quasi-polynomial of degree 0, i.e., it is
constant on suitable arithmetic progressions. One might think that this
holds for all simple Lie algebras. Example 1.10 below shows that this is
not the case, hence the notion of c-stability is necessary.

1.5. A sample of g-series. In this section we give a concrete sample of
tails and g-series that appear in our study.

Example 1.8. Consider the theta series given by [3]

(14) Gb,c(q) — Z(i]‘)sq%‘92+cs .

SEZ
In Section 10 we will prove the following.

Theorem 1.9. The tail of the c-stable sequence (J;}é b).ma (q)) forb>2
odd is given by

Op,5_1(a)(1 +°2%) + ¢°0, v 15 (q)x
(1-¢)(1—qz)(1 - q%x)
In particular, when b =3 (i.e., the case of the trefoil), the tail equals to

1—qx+ ¢®a?
1—q)(1—qx)(1—q%x)
Here, (2;q)oc = [Theo(1 — ¢"2) and (¢)oe = (45 ¢)so-

2

Example 1.10. The tail of the c-stable sequence (J;}(4 5) np(4)) is given
by

(q)oo(

1
(1 —2q)?(1 — 22¢?)
where Ao(q), A1(q) € Z[[q]] are given explicitly in Proposition 10.3. The
first few terms of those g-series are given by

Ao(q) =1-2¢+2¢° — ¢* +¢*° — 2¢°° — 2¢°7 + 2¢% + 2¢°° + 2¢%°
£20™ — 76— 2™ —2¢8T — 2% — B — 2% 4 245 4 ..

A(q) =1-2q+2¢° — ¢* — ¢ +2¢° + 2¢"° — 2¢"* — 44" — ¢"® 4+ 2¢"*
£ 20%0 4 3¢22 — 2077 — 2470 — 243 4 AP0 — "2 — 2% 4 ¢
— 2™ 425 + 2% + 47T — 2% + 2450 — 4g — 2456 — 245
— 2™ — 70 4™ 4 20% + 2% + P 4 2¢% — 2% 4.

(Ao(q) +nAi(q))
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It follows that for every fixed k, the k-th stable coefficient ap(n) of
(Ja2 (q)) satisfies the linear recursion relation

T(4,5),np
ar(n +2) — 2a(n+1) + ax(n) =0
for all n.
Using the methods of [3], one can show that

2 2
Al (q) _ 2 q20(m1+3m1m2+3m2)+2m1+3m2

m1,moE€Z

. (1 o q4m1+1)(1 o q4m1+12m2+1)(1 o q8m1+12m2+2)

(Q)oo Z(—l)"qw_ Z (_1)nq%

nez nG%JrZ
= (@)oo ((4750")o0 (4% ¢")o0 (4" ¢") o0
—q(1 = ¢*)(¢"%¢") (4" ¢") 0 (0" "1 ¢"%) o) -

2. LIE ALGEBRA NOTATION

We recall some standard Lie algebra notation that we will use through-
out the paper [2, 12].

g denotes a simple Lie algebra over the complex numbers. W is the
Weyl group of g, A and A, are the weight and root lattices of g. AT
denotes the set of dominant weights, with respect to a choice of Weyl
chamber.

p: A, — N denotes the Kostant partition function which is the num-
ber of ways to express an element of the root lattice as a linear combina-
tion (of nonnnegative integer coefficients) of positive roots of g.

Let p denote half of the sum of positive roots.

If A € AT is a dominant weight, V) denote the irreducible representa-
tion of highest weight A\, and IT, denote the set of weights of V).

If r is the rank of g, we we denote by «a; for ¢ = 1,...,r the simple
roots of g, and by \; for i = 1,...,r the fundamental weights of g.

3. THE COLORED JONES POLYNOMIAL OF A TORUS KNOT

3.1. The Jones-Rosso formula. To verify Conjecture 1.5 for all torus
knots T'(a,b) (where 0 < a < b and a and b are coprime integers), we will
use the formula of Jones-Rosso [16]. It states that

H—ab b
(3.1) T an (@) = 25— > mh L dub
A HESN a

where
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e d, is the quantum dimension of V) and 0, is the eigenvalue of the
twist operator on the representation V) given by:

[(A+ p, )] LA A+2
(3.2) dy = LI a2 HAZQQ( A+ P), [n] =
1 )
° m’;’a € Z is the multiplicity of V), in the a-plethysm of V) where
1, denote the a-Adams operation. I.e., we have:

(3.3) P (chy) = Z mh ,chy,
HESA,a
where chy is the formal character of V).

To describe the plethysm multiplicity m‘)fya and the summation set S q,
recall the Kostant multiplicity formula [13] which expresses the multiplic-
ities m4 of the p-weight space of Vy in terms of the Kostant partition
function p:

(3.4) ml = 3 (~1)7ple(A+p) — i — ).

ceW
As usual, W is the Weyl group of the simple Lie algebra g and p is half
the sum of its positive roots.

Lemma 3.1. (a) We have:

ntp—o(p)
(3.5) ml/{,a = Z (=1)%m,
oeW
where the summation is over the elements ¢ € W such that Hp%a(p) is
in the weight lattice (but not necessarily a dominant weight).

(b) It follows that

(3.6) Sxa=| lJ (0lp) = p+ally) | NAT

ceW
where IIy is the set of all weights of Vy and A* is the set of dominant
weights of g.

Remark 3.2. The Jones-Rosso formula (3.1) combined with Equations
(3.4) and (3.5) imply that that we can write

(3.7) Tana@ =2 T ree @)

o,0’'eW
for some rational functions J%(a’b)A,U’U,(q). It is easy to see that the
sequences (J:%(a b Ao (q)) are g-holonomic (with respect to n) and c-

stable. If cancellation of the leading and trailing terms did not occur in
Equation (3.7), it would imply a short proof of Theorem 1.6 for all torus
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knots and all simple Lie algebras. Unfortunately, after we perform the
sum in Equation (3.7) cancellation occurs and the degree of the summand
is much lower than the degree of the sum. This already happens for As
and the trefoil, an alternating knot. This cancellation is responsible for
the minimizer p , to be of order O(\) rather than O(1) in case A, part
(b) of Theorem 3.4.

3.2. The degree of the colored Jones polynomial. The Jones-Rosso
formula can be written in the form

. g~ F AN (=1+ab)(\p)
(3.8) JT(a,b),A(q) = 11— q(Aer,a))

a>0
Z q%(u,u)-&-(—l-&-%)(uw) H(1 _ q(u+p,a)) .
HESA, a a>0

Here the products are taken over the set of positive roots {a} of g. When
the dominant weight A and the torus knot T'(a, b) is fixed, the minimum
and the maximum degree of the summand are positive-definite quadratic

forms f*(u) and f(u) given by

(3.9a)
fﬂmz;;mm+(4+zymm—?@Aw4—uwwmm
(3.9b)

b b ab

7o) = gt + (14 2) 0p) = FON = L+ )1 9.
a a 2
In Section 8 we will prove the following.

Theorem 3.3. Fiz a simple Lie algebra g and a torus knot T(a,b). The
quadratic form f(u) achieves mazimum uniquely at My, = aX € Sg .

Mx,a _
Moreover, my =1

The next theorem states that f*(u) has a unique minimizer which we
denote by 1y, and describes py o explicitly for all simple Lie algebras of
rank 2. Below, {A1, A2} are the dominant weights of a simple Lie algebra
of rank 2. Its proof is given in Section 9 using a case-by-case analysis.

Theorem 3.4. When g is a simple Lie algebra of rank 2, then

(a)The quadratic form f*(u) achieves minimum uniquely at px,q € Sq.x
and mk , # 0.

(b) For a dominant weight A = mjA; + maAa, we have

For Aj:

prz =0

" _ (m1 - mg))\z if mi 2 mao
A2 (mg —mq)A;  if mp <my
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and
0 if m1 = m9 mod 3
trae =14 (@=3) ifmi=me+1mod3 fora>4.
(a—3)Ag if my =mg+2mod 3
For Bs:
A ifmg =0,m2 =1mod 2
Hr2 = 0  otherwise
0 if mq, ms =0 mod 2
B3 = 42X if my =1 mod 2, my = 0 mod 2
A1+ X ifmg =1mod?2
fag =0 u/\a{() ?meEOmodZ fora>5.
' ' (a—4)\s if me =1 mod 2
For Ga:

tre =0fora>2.
Theorem 3.4 part (b) implies the following.

Corollary 3.5. pna,q 95 a piecewise quasi-linear (i.e., quasi-polynomial
of degree 1) function of n for n > 0.

Let 0% () and dx(A) denote the minimum and the mazimum degree
of the colored Jones polynomial .J 5(7‘/)\ (¢) with respect to gq.

Corollary 3.6. We have:

(3.10a) 5;((1,17)()\) = ["(kxa)
(3.10Db) O7(ap)(A) = fla).

4. SOME LEMMAS ABOUT STABILITY

In this section we collect some lemmas about stable sequences.

Lemma 4.1. Fiz natural numbers ¢ and d and consider g, (q) = I_ch(gZ»d .

Then (fn(q)) is stable if and only if (gn(q)) is stable. In that case, their
corresponding tails F(x,q) and G(x,q) satisfy
_ Fz,q)

1 —qdzc”

(4.1) G(z,q)

Proof. Let

F(z,q) =Y ér(@r*,  Glzg) = dulg)a".
k=0 k=0
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If F and G satisfy Equation (4.1), collecting powers of 2* on both sides
implies that

(4.2) Yr(q) = Z bi(q) g’ .

i+jc=k

Assume that f,,(q) is stable, and define 9 (¢q) by Equation (4.2). We will
prove by induction on k that g,(q) is k-stable with corresponding limit

Yr(q). Let

a0,n(q) =fn(q)
ak,n(Q) :qin(ak—l,n - ¢k—1(Q))

k—1
=g (fn(q) - Zdn(q)ql") k=1
=0

and
Bon(q) =gn(q)
Brn (@) =¢ " (Br—1,n — Yr-1(q))
k-1
=g *" (gn(Q) - sz(q)ql”> c k>
1=0
For k = 0, the limit of g,(q) is limp 00 gn(q) = lim, e lfgfgld =

®0(q) = Yo(q). Assuming by induction that g¢,(q) is (k — 1)-stable, we
have

I B (AN ,k_l N gd (i+je)n
Brn(a) =q 1— gen+d Z Z di(9)a’"q

1=0 i+jc=l

0<itje<k—1

=¢ " | fu(@ Y T = > gilggm gt
=0
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We continue,

[ 2]

k—1—jc
5k,n(Q) = qilm Z qj(cn+d) (fn(Q) - Z le(Q)qm)

Jj=0

Z qj(cn+d) fn(Q)
j>Lk21

Lk_lj k—1—jc ‘
= Z ¢/lq~ b (mq)— > @(q)qm)
+q Y P

i>1E1)

(31J
= > ok jen@+a D @ ()
i=0

]>Lk;1

71

Z ¢ jen(q) +q*" Z 7 f,(q)

(Bt <i<t
+q Y I £ (g)

i>%
= Z qjdai,n(Q) + Z qn<jc*k)+jdfn(Q) .
i+jc=k j>E
Therefore,
. _ jd 4 ()
lim Brala) = D ¢di(a) = vila).
i+jc=k
Conversely, if (g,(g)) is stable, so is (fa(q))- U

Lemma 4.2. Fiz a rational polytope P C [0,00)" that intersects the
interior of every positive coordinate ray and a positive definite quadratic
function Q : Z" — Z. Let ¢ : N X Z" — 7Z be such that for each
fized v € Z" and for n > 0, c(n,v) = t(n,v) where n — t(n,v) is a
quasi-polynomial. For each natural number n define

T.(q)= > c(nv)g®",

veEnPNL
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where L =7". Then (T,,(q)) is c-stable and its (n, z, q)-tail is independent
of x and given by

F(n,z,q) = Y t(n,v)g?").

veELNRY

Proof. Let ¢o(n,q) = 3. t(n,v)g?™. We need to prove that for all
UELOR:_

k >0, we have

n—roo

Let P, = nP N L. We have

(43) ¢ *M(Tulg) = do(n, @) = 7" > (e(n,v) — t(n, v))g?™)
veEP,

_ Z t(n, v)qRW)~kn

vE(LNRT)\ Py

Tt

vE(LNRT)\ P,

for n large enough. Let us first assume that @ is a quadratic form and
let d be the minimum of @ on R” \ P°, where P° denotes the interior of
P. We will prove that d > 0. Indeed, since @ is a positive definite form
we only need to minimize ) over the union F' of the faces of P that are
not in the coordinate planes. Since F' is compact, () attains its minimum
at some vg € F and d = Q(vg) > 0 since vy # 0. If v € R" \ nP° then
v=nv',v" € R"\ P° s0 Q(v) = Q(nv') = n?2Q(v') > dn?. Therefore the
limit of the right hand side of Equation (4.3) as n approaches infinity is
Zero.

If @ is not a quadratic form we can write Q = Q2 + Q1 where ()5 is the
quadratic part of Q. Then if v € R™\nP° we have Q(v) = Q2(v)+Q1(v) >
dn? + Q1 (v) > (d + 1)n? for n large enough. O

Remark 4.3. Let p € P. The tangent cone Tan(P,p) is defined to be
the set of all directions v that one can go and stay in P:

Tan(P,p) = {v € R"|p + ev € P for smalle > 0}.

Lemma 4.2 still holds if we replace nP with n(P — p) or nP — p and £
with a union of a finite number of translates of £. In this setting, the
stable series is

Fonao) = 3 tn0)g®.
vETan(P,p)NZ"
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Remark 4.4. Suppose that f,(q) satisfies §*(f,(q)) > cn? for some ¢ >
0,n > 0 then g,(q) is c-stable if g,(q) + fn(g) is c-stable and they have
the same tails.

5. STABILITY OF THE MULTIPLICITY

5.1. Lie algebra notation. Let us recall some standard notation from
[2, 12]. Let g denote a simple Lie algebra of rank r with weight lattice
A, root lattice A, and normalized inner product (-,-) on A. Let W be
its Weyl group and AT the set of all the dominant weights with respect
to a fixed Weyl chamber. Let «; (resp., A;), 1 < i < r, be the set of
simple roots (resp., fundamental weights) of g.The root lattice A, has the
T

partial order given by § < « if and only if « — 8 = Y n;«; where n; € N,
t=1,...,r. =

For a dominant weight A € A™, let V) denote the corresponding irre-
ducible representation V) and let I, denote the set of all of the weights
of V)\.

The Kostant partition function p(a) of an element of the root lattice
a is the sum of all ways of writing o as a nonnegative integer linear
combination of positive roots [13].

5.2. A formula for the multiplicity of the plethysm. In this section
we prove Lemma 3.1.

Proof. (of Lemma 3.1) (a) We have

(5.1)  talcha) =va( Y mhey) = D> mhvialen) = > mheay.
HEIIN HEITN HEIIy

From Equations (3.3) and (5.1) we have

(5.2) Zmﬁf’achu = Z mheq, .
© HETTN

Let us define w(p) := Y (=1)%eq(,) by for g € AT. The Weyl char-
oeW
acter formula states that [12]:

w(p)chy = w(A+p).

Multiplying both sides of Equation (5.2) with w(p) and applying Weyl’s
formula we have

(5.3) D omf wlp+p) = (Y mhea)w(p).

peIly
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Replacing w(p +p) with > (=1)7eq(uqp) and w(p) with > (=1)7eq ()
oeW oeW
in Equation (5.3) we have

(54) YD (TR oturn =( D mhea) (D (=1)7eq(y)

n oW peIly ceW
(5.5) = > > (=1 mheauiot) -
pelly ceW

Setting o( + p) = v + p on the left hand side of Equation (5.5) and
ap + o(p) = v + p on right hand side we have

(5.6) 33 (—1)TmL, e, =30 S (1) T e

v ceW v oceW

But we want o~ !(v + p) — p to be a dominant weight, which can happen
only when o = 1. Therefore Equation (5.6) becomes

(5.7) S e =30 S ()T ey

v oceW

Identifying the coefficients of e, 4, on both sides of Equation (5.7) gives
us the desired equality.
(b) This follows from the fact that m§ # 0 if and only if v € II). If

V= ‘H'p%o(p) this means that p € o(p) — p + ally. O

5.3. Stability of the plethysm multiplicity. In this section we will
prove that m”}"" is a piecewise quasi-polynomial of n > 0 where A € A™*,
wrveA A pieéewise quasi-polynomial function on a rational vector space
is a rational polyhedral fan together with a quasi-polynomial function on
each chamber of the fan. Piecewise quasi-polynomials appear naturally as
vector partition functions [17]. The Kostant partition function of a simple
Lie algebra g is a vector partition function (see [13]), hence a piecewise
quasi-polynomial.

Theorem 5.1. Let A € AT, u,v € A, then mﬁj\'zy is a piecewise quasi-
polynomial in n for n > 0.

Proof. We have

58 ptny 1)° u+m/+ap—<7(r>)
( . ) Muxa = Z(i ) LY

ceW
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and by Kostant’s multiplicity formula in [13], we have

5= 07p (o un ) - (BERELZS0) L)

a
olew

ptnv+p—o(p)
a
mm\

D I T R e e )

= 3 07 (0o’ = By - (o)
oleWw

= Z (—1)0/1) (n\' —a') .

Assume that n)\ — o/ can be written as sum of positive roots of g so
that p(n\ — ') # 0. For n > 0, n) — o/ stays in some fixed Kostant
chamber and it follows from Theorem 1 in [17] that p(n\ — ') is a quasi-
polynomial in n. Since mf}iﬁ" is a finite sum of quasi-polynomials in n,

it is also a quasi-polynomial in n. O

6. THE SUMMATION SET

6.1. A lattice point description of the summation set. In this sec-
tion give a lattice point description of the summation set Sy ,. Let Py
denote the convex polytope defined by the convex hull of IIy N A™T.

Lemma 6.1. For all \,a we have:

(61) S/\,a C ‘Ck,a N Pa/\

where

(6.2) Lra = U (aX+o(p) —p—+al,).
ceW

is a finite union of translates of the root lattice al,.. Let
(6.3) Ryo = (LxaNPar)\ Sra

denote the set of missing points.

Proof. Recall that Py consists of all o that satisfy (see [12]),
(6.4) (o, ;) >0, A=—a,X) >0

for all i = 1,...,7. We first prove that Sy, C P,x. By Lemma 3.1(b),
we can write u = av + o(p) — p € AT where v € II). Since p € AT,
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Inequality (6.4) holds trivially. To prove the second part of Inequality
(6.4), it suffices to show that (i, A;) < (aX, \;) for every 1 < i <r. We
have

(@A, Ai) = (i, Ai) = (@A — 1, \y)

= (a(A = p) +p—0a(p), \i)
>0

since a(A — p) + p — o(p) is a N-linear combination of positive roots.

Let p = av + o(p) — p € Srq where v € IIy and 0 € W. Then
u = a(A—a)+ o(p) — p where « is some positive root. It follows that
w € aly +ar+o(p) —p C Ly, This proves that Sy, C £y, and
completes the proof of the lemma. O

Remark 6.2. The inclusion in Equation (6.1) is not an equality in gen-
eral. For example, consider g = Ba, A = p,a = 2. In weight coordinates
we have (see also Figure 1)

(6.5)  Sp2 =Usew(a(p) — p+20,) N AT
(6.6) ={(2,2),(0,4),(3,0),(2,0),(0,2),(1,0),(0,0)}.

FIGURE 1. S,».

It is clear that (1,2) € Ps,. We show that (1,2) = A\ +2Xy € L, 5,
hence this is a missing point. Indeed, by the definition of £, 2, we only
need to find 0 € W and a root a such that

(6.7) A 42X =201 +3a2 =2p+0(p) —p+2a.
In root coordinates we have
2p = 3aq + 4ag, p—o(p) € {0,a1, @z, a1 + 3z, 201 + ag, 31 + 4as} .

So by choosing @ = ay and o such that p — o(p) = a1 + 3as we have
equality (6.7).

Nevertheless, equality holds when g = As,a = 2, A\ = A;. This is the
content of the next section.
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6.2. A special case: no missing points.
Proposition 6.3. For Ay, we have: Spx, 2 = Lnx,2 N Papy, -
Proof. Let p = Ly, 2 N Payy, of the form

p=2nA+o(p) —p+2a=2v—(p—o(p))

where v = nA\; + « and some o € W. As o runs over the Weyl group W,
p — o(p) is expressed in weight and root coordinates as follows

(6.8)

weight | (0,0) (2,—-1) (-1,2) (0,3) (3,0) (2,2)
ot | (0,0) (0,1 _(L0) (L2 (1) (22

Since p € Pany,, from inequality (6.4) we have (2v — (p — o(p)), i) > 0,
ie, 2(v,aq) > (p—o(p),a;), i = 1,2. Looking at the first row of the
above table we see that this forces (v, ;) > 0, i = 1, 2. Therefore we have
veAt.

From inequality (6.4) we have (2n\; —p, A;) > 0, ¢ = 1,2. This implies
that (—2a + p — o(p), A;) > 0 or equivalently

1 =1,2. We consider the following cases.

Case 1: If p — o(p) = 0,1 or as then inequalities (6.9) imply that
(a, A;) <0 for all i so a < 0. Since v = nA\; + «a € A, it follows from
[12, §13.4] that v € II,,5, and hence p € Sy, 2.

Case 2: If p—0o(p) = a1 +2as then from (6.9) we have (a, A1) < 0 and
(o, A2) < 1. If we also have («, A2) < 0 then by a similar the argument
to Case 1 we conclude that p € Spa, 2. If (o, A2) = 1 we can write
a = —zay + ag, where x € N. Tt follows that p = 2nA\; + 2a — (p —
o(p)) = 2n\ — 2zaq + 202 — a1 — 29 = 2(nA; — za1) — a1. Since
v =n)\+a € AT, from inequality (6.4) we have (nA\; —zai +az, 1) > 0,
ie, n—2x—12>0. We have (n\,a) = % =n>2x+1>x,
therefore n\; —xay € Iy, (see [12, § 13.4]). Since we can choose ¢’ such
that p — o’(p) = a1, we have p=2(nA\;1 —zaq) — (p — o’(p)) € Snxr,.2-

Case 3: If p—o(p) = 2011 + 2 then by a similar argument to the above
we can write a = a7 — xag, * € N. We show that a cannot have this
form. Indeed, since v = nA; +a € AT, we have (nA; + a1 — zas, ) > 0,
i.e., =1 — 2z > 0. This is in contradiction to the fact that x € N.

Case 4: If p—o(p) = 201 + 202 = 2p then (a, A1) < 1 and (o, A2) < 1.
If either (o, A1) < 0 or (o, A2) < 0 then the same argument as in Cases
2 and 3 above apply. If (a, A1) = (a, A2) = 1 then @ = a1 + ag = p and
w=2nM+2a—(p—0o(p)) =2n 1 +2p—2p =2nX\ € lapx, € Spr, 2. O
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6.3. An estimate for the missing points. The next proposition shows
that the norm of the missing points in R,), is bounded below by a
quadratic function of n.

Proposition 6.4. For every A\ € A" there exists a simple root B such
that if 4 € Rpx,q and n > 0 then

(A B)?
(8,8)

Proof. Let p = aa + anh + o(p) — p = a(nA + a) + o(p) — p for some
a € A, and o € W. Since it € Spiq, we have that nA+a & II,,5. The ray
nA + a meets one of the facets of the convex hull of II,,) at some point,
say An. There exist 01,09 € W such that o1(n)), o2(n\) are the vertices
of this facet, and we have

(1.1) > a®n*(AA) — -1).

(nA+ a,nA 4+ a) > (A, A\n)
o1(nA) + o2(nA) o1(nA) + o2(nA)

= 2 ’ 2 )
= T (01(0).01(0)) + (02(1). 22()) +2(01 (A) 2(A)))
= T 2O +201(1). 02(V)))
= SN + (01(0), 02(V))
as(nA) 2itoand) n
AA2
A
o1(nX) 1(n))+05(n)) oa(nA)

2
nA+ «
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Since g1(A),02(A) are in two nearby chambers, there exists a simple
root [ such that

(1(X),52(A)) = (A, a5(N)).

We have
_ o NB) oA B)?
So
2 _ ()‘7B)2
(nA 4+ a,nA + @) > n (A A) B.5) ).
Therefore

(1, 1) = (a(nA +a) = (p—a(p)),a(nr + o) = (p—a(p)))
=a’(n\ + a,n\ +a) — 2a(nA +a,p —o(p)) + (p — a(p),p — o(p))
2,2 o (/\76)2
> a"n”((AA) )

for large enough n. ]

—1)

Let us introduce some useful notation.
(6.10) S‘A,a =Sra— e E)\,a =Lxa— Hra

Pux = Pax — KX as R)\,a = RA;G — Hxa -

Remark 6.5. From now we fix a natural number ng and we work with
n = ng mod da where d is the order of the fundamental group A/A,.
Theorem 3.4 implies that for such n, we have:

— ol 0 : 1 0 +
® lnxa =NV, + vy, for some fixed weights VxaVaa € AT,

® Loxna = Lngxr,a- Indeed, we have

['n/\,a = ‘Cn)\,a — HMn)a
A+ o(p) — p+ah, — v, — o4,
=noA+0(p) = p+al, —novy , — 1R, + (n—n0)(A = vy ,)
=ngA+0(p) —p+al, — pingra + k(a.d)(A — V}\ya), keN
=noA+0(p) — p+ al, — fingr,a (since d(A\ — V)l\ﬂ) eA,)

= ‘Cno)\,a — Hngi,a = ﬁnoz\,a .
Corollary 6.6. (1) S'Mya - ﬁnn)\’a N P
(2) Let Ruxa = (Lugria N Pana) \ Sura- If fi € Ryyx 0 then

(ﬂaﬂ) + Q(ﬂa ,un)\,a) Z a2n2 ((A; )\) - ((AB’ @) - 1> - (Mn)\7a7lu/n/\,a)

for some simple root f3.
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Proof. Part (1) follows from Lemma 6.1(b) and Remark 6.5:
Snx,a - f'n)\,a N Py = ﬁno,\,a N Pap -
For part (2), recall that
(s 1) = (fo + tnxas o+ Hnxa)
and therefore if i € R, A,a then

(ﬂ7 ﬂ) + 2(ﬂu ,un)\,a) = (,u> /1*) - (/J'n)\,ay ,un)\,a)

2
2 (0~ 553

by Proposition 6.4. ]

- 1> - (,un)\,auuan,a)

Proposition 6.7. If g has rank 2 and [ € Rm,a then

(ﬂa ,[L) + 2(:&" ,un)\,a) > n?.

Proof. We can prove this by a direct computation for the rank 2 simple Lie
algebras Ay, B and G using Theorem 3.4 that gives an explicit formula
for px,q-

For As and my > mg, from Theorem 3.4 we have

2
(Inxas inra) < (n(ma — ma) e, n(my —ma)de) = gnQ(m —mg)?

By Corollary 6.6 we have

oA N X\ a1)?
(i ) + 200 o) = @0 () = 222 1) (i, pn )
(a1, a1)
2 mi 2
> a2n2(§(m? + mima +m3) — 71 —-1)— gnz(ml — mg)?
a®—4 2 2
=n’( 5 mi + g(a2 + 2)mims + g(a2 —1)ym3 —1)
2(47’)@17712 —+ 2771% — 1)

>n
>n?

except when a = 2 and my = 0. In the later case, Proposition 6.3 says
that Ry, = 0 and the inequality holds trivially. The argument is similar
for the case mq < ma.
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2 2
For B, ((Aﬂ’ﬂﬁ)) is either 21 or m3. We have

2
I . A ap)?
(,u,u) + 2(#7#”)\,@) > a2n2(()\, /\) - Eal ;)1) - 1) - (:un)\,ayﬂnk,a)
2 2 02
:aQnQ(m%—l—mlmg—i—m — ma {m1 2}—1)

2
- (//fn)\,an Mn)\,a)
> n?
where in the last inequality we have used the fact that (uxq,pre) is
bounded for Bg, see Theorem 3.4.

2
For Gg, ’B 7y is either L or @ Therefore we have

(/\, 041)

(o1, 1)

(ﬂaﬂ) + 2([’1, ,un/\,a) Z a2n2(()‘7 )‘) - - 1) - (MnA,aa ,un/\,a)

3
= a®n*(2m3 + 6mymy + 6m3 — maux{m1 m2} -1

)

- (Nn),a, /in)\,a)
> n?

since jiy,q = 0 for Gy, see Theorem 3.4. O

7. PROOF OF THEOREM 1.6

In this section we will prove Theorem 1.6 assuming Theorem 3.4. Corol-
lary 3.6 implies that the shifted colored Jones polynomial defined by

(7-1) j%(a,b),)\(q) =dq TG, b>(/\)<]7g(a b), )\( ) € Z[q}

satisfies

R 1 5

g _ g
Ir(ap (@) = M- q(A—i-p,a))JT(a,b),)\(q)
a0
where
(72)  Faya@= Y mh e 2 i+ (1 D) (op) 4 (atine)
AESA o
. H (1— q(ﬂ+m,a+p,a))

a>0

with SA,(L = SA,a — HXa and ﬂ =H— HUxa-

Fix a natural number n, observe that (f,(q)) is c-stable if and only if
(fMn+no(q)) is c-stable for all ng = 0,1,..., M. In what follows, we will
use M = ad and fix n = ng mod ad.
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Proposition 7.1. (j%(a b) (@) is c-stable if and only if

(7.3)
1

L0~ gmo)

a>0

Z mizl‘*ﬂq%(ﬂ,ﬂ)+(—1+§)(ﬂ7p)+%(ﬂym,a)H(l_q(ﬂ-ﬁ-ux,a-ﬁ-p,a))
A€LnoxaNPanx a0
is c-stable. In that case, they have the same tails.
Proof. Fix a,b, A and let g, (q) denote the difference between jT(a’b)m)\(q)
and Equation (7.3). Then

1

H (1 _ q(n/\+p,a))
a>0

Y (m//;“zﬂmwaqﬁ(ﬂ,ﬂ)ﬂfpr%)(ﬂ,p)+§(ﬂ’#m,a)

(7.4) gn(q) =

lleRnk,a

. H (1— q(ﬂ+ﬂnk,a+PwO‘))) .

a>0

Proposition 6.7 implies that the minimum degree of the summands of
Equation (7.4) is greater or equal to %nz for n > 0. The proof then
follows from Remark 4.4.

Proposition 6.7 implies that we can replace the summation set S’MHG
by Lnxa N Panx without affecting the stability of j;(a’b)yn)\(q): if i €

(ﬁA,aﬂPm)\)\S’n;\@ then the minimum degree of the summand of Equation
(7.3) is

b b b b
—(fa, [ -1+ =)(/ —(f = — (1, 1) + 2(f — (i
5 (s )+ (=14 ) (@ p)+— (A ) = 5 (A 1) + 2(8; 1xa)) = (2, p)
b b

> 22 oy 22

2 5.1~ (p) =5 n" +0(n)
whereAthe last inequality follows from Proposition 6.7. By Remark 6.5 we
have L5, = £, and the Proposition follows. O

ﬂ+ﬂn%,a.

Let ¢ty pa(n) = Mpxa Theorem implies that t) ;. is a quasi-
polynomial. Lemma 4.2, Proposition 6.7, Proposition 7.1 together with
the special case given in Section 10.1 imply the following.

Theorem 7.2. Fiz a rank 2 simple Lie algebras g, a dominant weight X,
and a torus knot T'(a,b). The colored Jones polynomial J%(a b) (@) s
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c-stable and its (n,x,q)-tail is given by

(7.5)
. B 1
T(a,b),)\(nvxa q) - H (1 . :L.()\,a)q(p,a))
a>0
3 (tA () B (1D () (05,0) g3 o
AELN oNAT
ITa- q<ﬂ+u2,a+p,a>xui,a)) :
ax0

where ppx,q =Ny, + z/g,a,

8. PROOF OF THEOREM 3.3

In this section we prove Theorem 3.3. Since A is fixed, it suffices to
maximize

o) =40+ (<145 ) (o)

on the set Sy ,.

Lemma 8.1. Let u € A* and o = 0 be a positive root such that p+ o €
AT. Then we have

(op) < (p+o,p+a).
Proof. We have:
(H+o,pt+a) = (pp) =2(pa)+ ().

Now (p, &) > 0 since p is dominant and « is a positive root and (o, ) > 0
since (-,-) is positive definite. O

If v € I then v = A — o where o > 0. Since p — o(p) > 0, we have
1 =aX— o where yp € S, » and a > 0. It follows from the above lemma
that My , = aX is the unique maximizer of f(u).

Next, we compute the plethysm multiplicity m) ,. From Lemma 3.1

we have
artp—o(p)

mi =Y (=1)7m, °
oceW
)\+/’—Z(ﬂ)
=D (=1)7my
oceW
=1

since A + %(p) = A if %(”) € A,., with equality only when o = 1. This
concludes the proof of Theorem 3.3. O
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9. PROOF OF THEOREM 3.4

This section is devoted to the proof of Theorem 3.4, done by a case-
by-case analysis for a fixed simple Lie algebra g of rank 2. Let A\ =
miA1 +meoAs and pu = ui A +us Ao be dominant weights. Since A is fixed,
it suffices to minimize

70 = F) + (<1+5) )

on the set Sy ,. We use the following lemma and its consequence, Corol-
lary 9.2, in the proof of Theorem 3.4.

Lemma 9.1. ¢g*(u) > 0 with equality if and only if u = 0.

Proof. g*(u) is non-negative since (-,-) is a positive-definite form and
(s, p) > 0 since p is a dominant weight and p is a linear combination of
simple roots with positive coefficients. If g*(u) = 0 then (u, ) = 0 which
implies that p = 0. O

Corollary 9.2. If mgya # 0 then pyq, = 0 is the unique minimizer of
9" (1)

We give the proof of Theorem 3.4 in Section 9.1 below.
9.1. Theorem 3.4 for A,.

9.1.1. Plethysm multiplicities for As. There are two simple roots {ay, as}
of Ay and three positive roots {aq, a; + as, as} shown in Figure 2. The
Kostant function p(u,v) = p(uay + vas) is given by

p(u,v) =14 min(u,v).

> (X1

FIGURE 2. The two chambers of the Kostant partition
function of Ay. Kostant chambers from left to right: u <
v, U > 0.
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Let A = my1 A1 + mo)s denote a dominant weight and mq > mso. As-
suming g = ui A1 + ugAg € Iy, by Kostant’s formula we have

mh = (=1)7p(c(A+p) = pp— p)

oceW
_ (2m1 +mo  2ui+us my+2me  up+ 2u2)
AR 3 0 3 3
(2m1 =+ mo 2U1 + U2 M1 — Mo uy + 2U2 1)
P 3 3 3

1+ 2m13+m2 — 27“;“2 if mi —mo < up —ug
= 1+m1+32m2 7'[141*;2'[]42 ifu17u2§m17m2§u1+2u2+3 .

14+ mo if my —mo > uy +2us + 3

Lemma 3.1 gives

" - ptp—o(p)
My2 = E (=1)7my
oESs3
_ m%(“l;“?) . m%(u1+27u2*1) . m%(u1*17u2+2)
A A A
2 (u1,uz2+3) 2 (u1+3,u2) S (u142,u2+2)
+m; +m; —mj .

Let us consider ;¢ € Sy 2. There are four cases.
Case 1: uq,us are even.

(9.1)
ul U2 ug+2 ug+2 1 f 2 > 9 _
ity — ) 5 [1 2 2 2y o)
0 if uy + 2ug < 2(my — ma)
Case 2: u; even and us odd.
(9.2)
uy upt3 uj42 ug—1
m§2:m;2’ 2 )_mg\ 3 —)

—1 ifug —ue <2(my —ma2) < ug + 2us
0 if 2(mq —ma) < uy — ug or 2(my —ma) > uy + 2uy

Case 3: u; odd and usy even.

w143 ug
poo_ (M) (
My = My —my

Url;%%) _ -1 if 2(m1 — m2) < Ui — ug
10 if2(my —mo) > uy —uy

Case 4: u; and uy are odd.
m’;}Q =0.

Corollary 9.3. For Ao, if mf\LQ # 0 then uy + 2ug > 2(my — ma).
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If m; < mo we have a similar corollary:

Corollary 9.4. For Ay, if mk 5 # 0 then 2uy + ug > 2(mg — my).

9.1.2. The minimizer for As. ’

Case 1: a = 2. By Corollary 9.3 it suffices to minimize g*(u) over subset
{p € Sxz:ur,u2 € Nyus + 2us > 2(mqg —ma)} of Sy 2. We have

g*(n) = Z(Ha#) + (—1 + g) (1, p)

b b
= —(uf +uguy +u3) + (-1 + 5)(161 +uz)

6
b U 3u? b—2
b b—2 b b—2
Zguer I u1+5(m1—m2)2+7(m1—m2)
b b—2
> o (mi— ma)? + —5—(m1—m)

with equality if and only if u; = 0,uy = my — mo.
Next we show that py 2 = (m; — ma)As € Sy 2. Indeed,

1) If mi —mg =0 (mod 2) then uy2=2vr—(p—o € Sy where
(1) i, p—alp ,
v="15m2 ) €1l and 0 = 1.
2) If m;i —mo =1 (mod 2) then uyxo =2v—(p—0o € Sy.2 where
(2) i, p—alp ,
v= ”“%7"2"’3)\2 € I, and p such that p — o(p) = 3.

Note that from the formula for mY , in Equations (9.1) and (9.2) we have

m(;’nzl*m2)>‘2 = 1 which proves part (a). Part (b) is obvious. The case

my < mo is similar.
Case 2: a = 3. From Equation (3.6), we have

0 0 A A
myg =my + my't +my®.

Since the fundamental group for A consists of only three elements (namely,
0, A1, and Ag), at least one of the terms on the right hand side is greater
than zero. Therefore mgﬁg > 0 and it follows from Lemma 9.1 that
prs = 0 for all A. Therefore part (b) follows. Part (a) follows from
Corollary 9.2 and the fact that m?\’?) > 0.
Case 3: a > 4.

Claim. At most one term on the right hand side of Equation (3.5) is
nonzero.

Proof. Indeed, if there are 01,09 in the Weyl group for Ay such that
ptp—oq(p) ntp—oa(p) tp—o1(p) tp—oa(p)
my, # 0 and m, ° # 0 then F-A=L00  BIPO2P ¢ A,

a
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Equivalently, (0—o1(p)) — (p—o02(p)) € al,. This is a contradiction since

a >4 and by [13],
p—olp) = > a
aeAtic-1(a)eA~

which do not belong to aA, if a > 4. Here A™ is the set of positive roots

and A~ = —A*T. O

Case 3.1: A € A, i.e., m; —my = 0 mod 3. By the above claim we have
p—a(p)

mgﬂ =m, * for some o. It’s easy to see that the only o for which

p=o(p)

a

from Lemma 9.1 that uy , = 0. Therefore part (b) follows for this case.
Part (a) follows from Corollary 9.2 and the fact that m$ 5 > 0.

2 is a weight is when ¢ = 1 and therefore m(/)\)a =m8 > 0. It follows

Case 3.2: If A € A, or equivalently m; — my # 0 mod 3 then mf , =
m{ =0 so py,q # 0. By the above claim, we have
utp—o(p)
m’;’a =(-1)m, *
for some ¢. Furthermore, m:er“G(p) # 0 if and only if ’Hp%g(p) =v ell)
or equivalently, u = av — (p — o(p)). Let p — o(p) = sA1 + tA2, where

(s,t) |(0,0) (=1,2) (1,=2) (0,3) (3,0) (2,2)
(9:3) D7 1 1 —1 1 T -1

So if v = v1 A1 + vaAe then p = (av1 — s)A; + (ave — t)A2. Since p is a
positive weight, we have we have

avy —s >0
avyg —t >0

Since a > 4 and [s],|t| < 3, these inequalities imply that v1,vy > 0, i.e.,
v is also a positive weight. There are two possibilities for .

Case 3.2.1: )\ € II,, i.e.,, m; = mo + 1 mod 3. Then we can choose
vo = A1 and op to be the unique element in W such that p—og(p) = 3A;.
We will prove that py , = avp — (p — 00(p)) = (a — 3)A1 is the minimizer.
Indeed, let g =av — (p — o(p)) € Sx,o where v € I as above.

Case 3.2.1.1: If v = \; then for y to be a dominant weight we should
have, according to Table (9.3),

0 which gives p = a\;
p—o(p) =< A —2Xy which gives p = (a— 1)\ + 2X2
3\ which gives p = (a — 3)A1 = lrg
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It is easy to check that g*(u) > ¢*(pa,q) for the first two values of p.
Case 3.2.1.2: If v # A1, let v = v1 A1 + v Ay then we have vi,vy > 0
and vy 4+ vo > 3, since the only cases where v; + vo < 3 are v = Ay and
A1 + A2 but these weights donot belong in IIy. Let v = av — (p — o(p)) =
(avy — $)A\1 + (ave — t) Ay as before. We have

9" (p) = %(u,u) + (—1 + Z) (1, p)

b, 9 b
= — _1 J—
3a(u1+u1u2+u2)+( +a)(u1 + ug)

b
= %(aQ(U% +v1vp +v3) — 2a(vy +v2)(s + 1) + 5% + st +t?)

(14 )(alon +us) s 1)
It is easy to check that for all
(Sa t) € {(Oa 0)7 (713 2)a (17 72)’ (07 3)3 (37 0)7 (23 2)}

and (v1,v2) : v1,v9 > 0,01 + v2 > 3, we have

a?(v? 4+ vivg +v3) — 2a(vy + v2) (s +t) + 8% + st +t2 > (a — 3)?
a(vy +v2)—s—t>a—3

and therefore g* (1) > £(a —3)2 + (=1 + £)(a — 3) = g*(1ura) for all

WF At

The above argument showed that uy, = (@ — 3)A1 is the unique min-
imizer, and note that mE\‘T;m)‘l = mil # 0 since Ay € II,. This proves
parts (a) and (b) for Case 3.2.1.
Case 3.2.2: )\ € Il or equivalently, m; = mo 4+ 2 mod 3. The proof for
this is identical to the one above.

This completes the proof of Theorem 3.4 for A,. ]

9.2. Theorem 3.4 for By. There are two simple roots {a1, az} and four
positive roots {a1, as, a1 + as, a1 + 22} of By shown in Figure 3. The
Kostant partition function p(u, v) = p(ua; + vaz) is given by [18]

b(v) ifu>wv
(9.4) p(u,v) = b(v) — %;_“'H) ifu<v<2u,
w if 2u <w

where

2 1 if2
(9.5) b(n):+n+{3 if 2}n
4
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There are three Kostant chambers shown in Figure 3.

[eD)] )\2

u<ov<2u
A1
u > 2v

aq

FIGURE 3. The three chambers of the Kostant partition
function of By. Kostant chambers from left to right: v >
v, u <v < 2u, u>2v.

Let A = my A1 +mo A2 denote a dominant weight. In weight coordinates
we have

p—o(p) =5 1 +1tA

where
(9.6)

(S,t) (010) (27 _2) (_1a2) (_1’4) (37 _2) (370) (074) (272)
—1)° | 1 -1 -1 1 1 -1 -1 1

Lemma 3.1 implies that

—m§2 — m?\)‘z + mi‘\”"\Z if a=2
—my! if a=3
9.7 mS , =mS + 2
(97) A if a=4
0 if a>5

Case 1: a = 2. Equation (9.7) implies that

(9.8) m?\’Q =mf — m?\’b — miQ + mj\\1+A2 .

Case 1.1: \ € A,, i.e., mo = 0 mod 2. In this case, we have A\; + Ao,
A2 € A, and therefore mi"‘ = m§1+)‘2 = 0. Equation (9.8) becomes

mgyg =m{ — m?‘"‘ =1.
where the later equality comes from formula (9.4) and the Kostant mul-
tiplicity formula (3.4). It follows from Lemma 9.1 that py 2 = 0 which
proves part (b). Part (a) follows from Corollary 9.2 and the fact that
mg’z =1#0.

Case 1.2: A€ A, i.e., mo =1 mod 2. Since m?\ = mi)‘g = 0 we have

0 _ A1t Az
my o = mjy —my? =—1.
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If m; > 0 then choose v = A\ + A2 € II, and o such that p — o(p) =
21 +2X we obtain py 2 = 2v—(p—o(p)) = 2(A1+A2) — (2A1+2X2) = 0.
If otherwise my = 0 then we choose v = Ay € I, o such that p— o (p) =
—A1 +2Xg and get px 2 = 2A2 — (—A1 +2X2) = A1. This proves part (b).
Part (a) follows from Corollary 9.2 and the fact that m , = —1 # 0.
Case 2: a = 3. Consider two small cases.

Case 2.1: If A = m1A + maoAg € A, i.e., mg = 0 mod 2 then we have

(_1)m1+m2 + (_1)m1+m2+2
4

0 _ 0 /\1f1
Mmyg=my - my =gt

If m; = 0mod 2 then m§73 = 1. It follows from Lemma 9.1 that
3 = 0 and this completes part (b). Part (a) follows from Corollary 9.2
and the fact that m9\73 =1#0.

If m; = 1 mod 2 then mg73 = 0. By a similar argument to the one in
Case 3 for Ay it can be shown that py 3 = 2As is the unique minimizer
and parts (a) and (b) follow.

Case 2.2: If A = mi A1 +mads € A, ie., mo Z 0 mod 2 then by a similar
argument to the one in Case 3 for A, we have py 3 = Aj + Az is the unique
minimizer and mi? A2 £ () which completes the proof.
Case 3: a = 4. From Equation (3.6) we have

my 4 =m3 — m? .

If A = miA1 + mods € Ay, ie.,, my = 0mod 2 then we have m(/)\)4 =
m{ —m3? =m$ > 0, since 0 € II,.

IfA=mi A +mors € A, ie., mo Z£ 0 mod 2 then m&)A = mg —mﬁz =
—m§2 < 0, since Ay € II,.

It follows from Lemma 9.1 that w4 = 0, which completes part (b).
Part (a) follows from Corollary 9.2.

Case 4: a > 5. The only o for which p = %(p) is a weight is ¢ = 1 and
hence p = 0. So from Equation (3.6) we have m(/)\’a =m3.

If A = miA1 + mode € A, ie., mo = 0 mod 2 then m())\’a = mg > 0.
It follows from Lemma 9.1 that py , = 0, which completes part (b). Part
(a) follows from Corollary 9.2.

If A = mid + modo € A, ie.,, my # 0mod 2 then by a similar
argument to the one in Case 3 for Ay we have that py o = (a —4)\z is the
unique minimizer and mg\(f;4)’\2 = m§2 # 0. This completes both parts
(a) and (b).

This completes the proof of Theorem 3.4 for Bs. O
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9.3. Theorem 3.4 for G5. There are two simple roots {a1, @} and six
positive roots {a1, as, a1 + as, 21 + ag, 3o + e, 31 + 22} of Go shown
in Figure 4.

)\2 = 3&1 + 2[!2

as ar+ o | A\ =201 +as 3ag + ag

a1

FIGURE 4. The five chambers of the Kostant partition
function of G3. Kostant chambers from left to right: u <
v,vguggv, %v§u§2v,2v§u§3v,3v§u.

The Kostant partition function p(u, v) = p(ua; + vasg) is given by [18§]

(9.9)
g(u) if u<w
g(u) — h(u —v—1) if v<u<iv
p(u,v) = Sh(v) —gBv—u—1)+h2v—u—2) if 3v<u<
h(v) —g(Bv—u—1) if 2v<wu<3v
h(v) if 3v<u
where
53(n+6)(n® +14n? + 54n +72) if n=0mod 6
5 (n+5)2(n? + 10n + 13) if n=1mod6
9.10) g(n) = az(n+4)(n® +16n* + 74n 4+ 68) if n=2mod 6
’ g = #z(n+3)2(n+5)(n+9) if n=3mod6
#z(n+2)(n+8)(n* +10n +22) if n=4mod6
w3+ 1)(n+5)(n+7)? if n=5mod6
and
©11)  h(n) = =M +2)(n+4)(n*+6n+6) if n=0mod?2
’ =+ 1)(n+3)2(n+5) if n=1mod2 "
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From Lemma 3.1 we have

3a+az

_m)\
3a1+2as
_m)\

(9.12) m3, =m3 +

0

agtag

—my

_ o 2a1taz
my

STAVROS GAROUFALIDIS AND THAO VUONG

_ mialJr?Oéz + mia1+3a2

if a=2
if a=3
if a=4.
if a=5
if a>6

From now on, let us consider A\ = ua; +vag € AT, so %v <u < 2.
Case 1: a = 2. We have

(9.13)

0 o 3aq+as
m)\72 =mx — my

. 201 +2as
my

5041+30t2
+my .

Using the Kostant multiplicity formula we can calculate the weight mul-
tiplicities on the right hand side of Equation (9.13), we have, for example

mf =Y (=1)7p(e(A+ p) - p)

oceW

=p(u,v) —p(—u+3v—1,v) —plu,u —v—1)

+pBv—u—1,20—u—2)+pu—3v—4,u—v—1)

ut  29udv Tud 17Tu?e? n 20y 19u?  29uvd  ww? 43
= - — — — — - — U
9 36 36 8 3 24 12 2
v3 2102
+ot — 5~ 8 + c10(w)u + o1 (v)v + co0(u, v)
where
i if u =0 mod 3 % if w =0 mod 3
c10(u) = % if u =1 mod 3 co1(u) = % if u=1mod 3
% if u =2 mod 3 f% if u =2 mod 3
1 ifu=0mod6, v=0mod?2
% if u=1 mod 6, v =0 mod 2
5 ifu=2mod 6, v=0mod 2
coo(u,v) =497 .
g ifu=3mod 6, v=0mod 2
% if u =4 mod 6, v =0 mod 2
% if w =5 mod 6, v =0 mod 2
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% if u=0mod 6, v=1 mod 2
1—58 ifu=1mod 6, v=1mod 2
13 jfu=2mod 6, v=1mod 2
coo(u,v) =14 72 )
’ % if u=3 mod 6, v =1 mod 2
% ifu=4mod 6, v=1mod 2
% if u=>5mod 6, v =1 mod 2
miaﬁaz , mi‘“”o‘z , m§a1+3°‘2 can be computed similarly to show that

mgz = 1. This confirms part (b). Part (a) follows Corollary 9.2.
Case 2: a = 3. We have

m?\yg :mg\ — mE\B’Q]
Tuw  u v
I T P B
=—u’+ 5 +2 3v 2—|—c070(u,v)
where
1 ifu=0,v=0 mod 2
coo(u,v) =<3 fu=1v=0mod2 .
% if v=1mod 2

Notethatsince%” < u < 2v, 7u2+%+%73vzf%:(7u2+7“7”7
3v%) + “5% > 0 and therefore mg’)\ > 0 for all A. Part (a) follows from
Lemma 9.1 and part (b) follows from Corollary 9.2.
Case 3: a =4,5. The arguments are similar to that of Case 2.
Case 4: a > 6, can be done without computations. Indeed, we have
mY , = m3 > 0 since A € A,; see [12, §13.4,Lem.B|. Parts (a) and (b)
follow from Lemma 9.1 and Corollary 9.2.

This completes the proof of Theorem 3.4 for Gs. ]

10. EXAMPLES

10.1. The tail for A; and the T'(2,b) torus knots. In this section we
compute the tail of the c-stable sequence J?(ZQ b) n/\l(q) for b > 2 odd.
From Proposition 3.4 we have pi,x, 2 = nA2 so Equation (7.1) gives

~ 1 <
A _ A
JT(QQ,I)),n)\1 (q) - (1 — q)(l _ qn+1)(1 . qn+2) JT(ZQ,b),nA1 (Q)
where
7 b (ul4uius+u—n? b 1) (ui+us—n
J;“(22,b)7n)\1(q): Z c(ug, ug)ges Hrtrvetuzm )G =Dl =)
Ui A1+uzA2€Snx; 2
(11— (1 - g )

)
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and from Cases 1-4 of Section 9.1.1,

1 if uy + 2uo > 2n, uq, us are even
0 if uy + 2us < 2n, uq, us are even

uiAifusda _ 1

c(uy, uz) = MmNl if uy + 2us > 2n, uq even, us odd .

0 if uy + 2ug < 2n, uq even, us odd
0 if uy is odd

Lemma 10.1. If pp = ui A1 + u2Ag € Sy, 2 then ug + 2up < 2n.

Proof. By Lemma 6.1, we have u € Sy, 2 C Papy,. So by Inequality
(6.4) we have

(277)\1 — UIA] — Uz A, )\2) >0 ie., ui+2u<2n.

From Corollary 9.3 and Lemma 10.1 we have
Corollary 10.2. c(uy,us) # 0 if and only if uy + 2us = 2n.

10.2. Proof of Theorem 1.9. Set s = %' = n — uy, then u? + ujug +

u3 —n? = 3s% and we have

Z (_1)sq%52+(g—1)s(1 _ q25+1)(1 _ qn—s+1)(1 _ qn+s+2)

79 _
JT(2,b),n)\1 (q) - (1 _ q)(l — qn+1)(1 — qn_;’_g)

Replacing ¢™ by x and using Lemma 4.1 it follows that (j,ﬁé by (¢)) is
c-stable and its tail Gy(z, ¢) is given by

SO (~1)5g 5 HED3(1 — 2 (1 — 2! ) (1 — 2q°+2)
Gb(xaQ) = s=0 — — — 9
(1-q)(1 —gz)(1 - ¢%x)
1
T (19— q2)(1 - ¢%x)

. Z(_l)s(<q%s2+(g_1)s _ qgsz-}-(g-t,-l)s-i-l)(l + q3x2)
s=0
+ (qgs2+(g+2)s+3 _ qgs2+(g—z)s+1)x)
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Using s =t + 1, we have

Z(_l)s+1qgsz+(g+1)s+1 — Z (_1)—tqg(t+1)2—(%+1)(t+1)+1
s=0 t=—1
S 282 b S
= Z(_1) qz® t(E-Ds
s<—1
Therefore,
_1)\s %S2+(%71)S_ %sz+(%+1)s+1 _ _1)\s 352+(%71)5
(=1)°(¢ q ) (=1)’q
s=0 s=—00
:9573_1(Q)~
Similarly,
q%s2+(%+2)s+3 _qgsz+(%—2)s+1 _ Z (_1)sq%5~2+(%+2)s+3

s=0 §=—00

= q39b,g+2(Q) :
Thus,

Op,5_1(0) (1 + ¢*2%) + ¢°0, 1 5 (q)7
(1—q)(1—qz)(1 - ¢°x)

Note that by replacing s with s+1 or s by —s in Equation (1.4) it follows
that

Gb(xv Q) -

Oyo(0) = =42 Oppc(@),  Op—c(@) = Op(q).

To compute G3(z,q), use b= 3,¢ = % in the above equation and FEuler’s

Pentagonal Theorem (discussed in detail in [1]) to obtain that
0*03,7(q) = —03 1(q) = — ()0 -

This completes the proof of Theorem 1.9. O

10.3. The tail for A, and the T'(4,5) torus knots. In this section we

compute the tail for the c-stable sequence (J:,‘i‘(il b) np(@)) for b > 4 odd.

This example shows that c-stability is a necessary notion for Conjecture
1.5.
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Let

Auo@) = 3" Y (cutnalun, ug)gstrttm b (=D
(S,t) (ul 7“‘2)
(1= g )(1 = g H1)(1 = g et?))

Aalg)=Y 3 (68tql%<u§+u1u2+u§)+<§—1)<u1+uz>
(S’t) (u17u2)

(1= g ) (1= g +)(1 = g +2))

where the (s,t) summation is over the set

‘ ot | 1 1 1 1 TR—
and (uy,us) € N? satisfies u; = —s mod 4, u; — us =t — s mod 12 and

1fw ifu; +8>ug+t
1_% ifu; +s<ug+t

Cs,t(u1,u2) ={

Proposition 10.3. The tail of the c-stable sequence (J;}a bynp(@)) i
given by

T=20?( —a2g) Aeold T () -

Proof. We will use Theorem 7.2 and unravel its notation. To begin with,
for a = 4, we have

Lnpa = U dnp+o(p) — p+4A,

oeW

= U o(p) —p+4A,
oceW

= J{reAutp—oalp) €4A.}.
oeW

Since p = a1 + as € A,, we have L,,,4 = L, 4 for all natural numbers n.
Let p = ug A1 + ugA2 and p — o(p) = sA1 + tA where (s,t) are given in
(10.1) and (—1)7 = €5 as in (10.1). In weight coordinates we have
(10.2)
Loa= U {(u1,us) € Z% : uy = —s mod 4,u; —uy =t — s mod 12} .
(s,1)
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Next we compute the plethysm multiplicities. Equation (3.5) implies that

“ - ;Hrpza(p)
Mypa= E (_1) Mnp
ocW
“ BF2A] — Ao B=A142Ao BwF3AL B+3Arg BF2A1+200
:mép_ Mnp ‘4 — Mnp R + mnp4 + mnp4 — Mnpp *

Since np € A, my,, # 0 only if v € A,. Therefore at most one of the
terms in the above equation is non-zero. Equation (3.4) gives

" 1+ 2m1;-m2 _ 2u1?:i-u2 if g > us
mb = .
np 1 4 7n1—i:-))2m2 _ ul-lé2u2 lf Uy S Us
Therefore
1+n—% if uy = —s mod 4,
Uy —ug =t —smod 12,
U +s>ug +t
mgp 4 = Esit wy+2up+s+2t
’ 1+n— === if u; = —smod 4,
U —ug =t — smod 12,
up + s <wug+1
where €, is given from (10.1). Since fpinp4 = 0, we have L,,4 =

Lopa, Pnp = Prp, Snpa = Snpa. Theorem 7.2 concludes the proof of
Proposition 10.3. O

Exercise 10.4. Show that
(10.3) Ab 1 (Q) _ Z q4b(mf+3mlm2+3m§)+(b—4)(2ml+3m2)

mi1,m2€Z

% (1 _ q4m1+1)(1 _ q4m1+12m2+1)(1 _ q8m1+12m2+2) .

The above equation shows that Ay (g) is a sum of theta series of rank 2,
hence a modular form of weight 1; see [3].
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