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DENSITY OF THE OPEN-POINT, BI-POINT-OPEN, AND
BI-COMPACT-OPEN TOPOLOGIES ON C(X)

ANUBHA JINDAL, R. A. McCOY, AND S. KUNDU

Abstract. This paper studies the density of the space C(X),
the space of all real-valued continuous function on a Tychonoff
space X, equipped with the open-point, bi-point-open, and bi-
compact-open topologies introduced by Anubha Jindal, R. A. Mc-
Coy, and S. Kundu in The open-point and bi-point-open topolo-
gies on C(X) (Topology Appl. 18 (2015), 62–74) and in The bi-
compact-open topology on C(X) (Boll. Unione Mat. Ital. (2016).
doi:10.1007/s40574-016-0095-8).

1. Introduction

The set C(X) of all real-valued continuous functions on a Tychonoff
space X has a number of natural topologies. One important type of
topology on C(X) is the set-open topology, introduced by Richard Arens
and James Dugundji [1]. In the definition of a set-open topology on
C(X), we use a certain family of subsets of X and open subsets of R.
Two important set-open topologies on C(X) are the point-open topology
p and the compact-open topology k. In [3] and [5], by adopting a radically
different approach, we have defined three new kinds of topologies on C(X):
the open-point, bi-point-open, and bi-compact-open topologies. One main
reason for adopting such a different approach is to ensure that both X
and R play equally significant roles in the construction of topologies on
C(X). This gives a function space where the functions get more involved
in the behavior of the topology defined on C(X).

2010 Mathematics Subject Classification. Primary 54C35; Secondary 54A25,
54D65.

Key words and phrases. bi-compact-open topology, bi-point-open topology, density,
open-point topology, R-set.

c©2017 Topology Proceedings.
249



250 A. JINDAL, R. A. McCOY, AND S. KUNDU

The open-point topology on C(X) has a subbase consisting of sets of
the form

[U, r]− = {f ∈ C(X) : f−1(r) ∩ U 6= ∅},
where U is an open subset of X and r ∈ R. The open-point topology on
C(X) is denoted by h and the space C(X) equipped with the open-point
topology h is denoted by Ch(X). The term “h” comes from the word
“horizontal” because a subbasic open set in Ch(R) can be viewed as the
set of functions in C(R) whose graphs pass through some given horizontal
open segment in R×R, as opposed to a subbasic open set in Cp(R) which
consists of the set of functions in C(R) whose graphs pass through some
given vertical open segment in R× R.

The bi-point-open topology on C(X) is the join of the point-open topol-
ogy p and the open-point topology h. In other words, it is the topology
having subbasic open sets of both kinds: [x, V ]+ = {f ∈ C(X) : f(x) ∈
V } and [U, r]−, where x ∈ X and V is an open subset of R, while U
is an open subset of X and r ∈ R. The bi-point-open topology on the
space C(X) is denoted by ph and the space C(X) equipped with the
bi-point-open topology ph is denoted by Cph(X). One can also view the
bi-point-open topology on C(X) as the weak topology on C(X) generated
by the identity maps id1 : C(X)→ Cp(X) and id2 : C(X)→ Ch(X).

Similarly, the bi-compact-open topology on C(X) is defined as the join
of the compact-open topology k and the open-point topology h. In
other words, it is the topology having subbasic open sets of both kinds:
[A, V ]+ = {f ∈ C(X) : f(A) ⊆ V } and [U, r]−, where A is a compact
subset of X and V is open in R, while U is an open subset of X and
r ∈ R. The bi-compact-open topology on C(X) is denoted by kh and
the space C(X) equipped with the bi-compact-open topology kh is de-
noted by Ckh(X). One can also view the bi-compact-open topology on
C(X) as the weak topology on C(X) generated by the identity maps
id1 : C(X)→ Ck(X) and id2 : C(X)→ Ch(X).

The separability of the spaces Ch(X) and Cph(X) has been studied in
[3], [8], and [9]. In [5], the authors studied the separability of the space
Ckh(X). One necessary condition for the separability of the spaces Ch(X),
Cph(X), and Ckh(X) is that X must be uncountable without having any
isolated point.

The separability of the spaces Ch(X), Cph(X), and Ckh(X) is not well
understood except in some particular cases. In order to understand the
separability of these spaces in a broader perspective, in this paper, we
look at the density of these spaces.

Throughout this paper the following conventions are used. The sym-
bols R, Q, Z, and N denote the space of real numbers, rational numbers,
integers, and natural numbers, respectively. For a space X, the symbol



OPEN-POINT, BI-POINT-OPEN, AND BI-COMPACT-OPEN TOPOLOGIES 251

X0 denotes the set of all isolated points in X, |X| denotes the cardinality
of the space X, A denotes the closure of A in X, Ac denotes the com-
plement of A in X, and 0X denotes the constant zero-function in C(X).
Also, for any two topological spaces X and Y that have the same underly-
ing set, X = Y means that the topology of X is the same as the topology
of Y , X ≤ Y means that the topology of X is weaker than or equal to
the topology of Y , and X < Y means that the topology of X is strictly
weaker than the topology of Y . For other basic topological notions, refer
to [2].

2. Density of Cτ (X), τ = h, ph, kh

In order to study the density of the spaces Ch(X), Cph(X), and Ckh(X),
we first need to study the concepts of R-set, R-dense collection, and R-
density. In [3, Theorem 5.2], the authors prove that if {fn : n ∈ N} is a
countable dense subset of Ch(X), then for any nonempty open set U in
X, we have ∪n∈Nfn(U) = R.

Definition 2.1. A subset B of a space X is said to be an R-set if there
exists a countable collection T = {fn : n ∈ N} of real-valued continuous
functions on X such that

⋃
n∈N fn(B) = R.

We define a collection C of nonempty subsets of X to be R-dense if
every member of C is an R-set in X and every nonempty open set in X
contains some member of the collection C. So an R-dense collection is a
π-network consisting of R-sets.

A space may not have any R-sets. An R-set, by definition, is uncount-
able. Hence, a countable space cannot have any R-sets. Now we define
the R-density of a space X, provided it has an R-dense collection.

If X has an R-dense collection, then we define the R-density of X,
denoted by Rd(X), as follows:

Rd(X) = ℵ0 + min{|C| : C is an R-dense collection in X}.
If Rd(X) = ℵ0, then we call X an R-separable space.

In [8], the author uses the concept of an I-set to study the separability
of the spaces Ch(X) and Cph(X). A subset A of a space X is called an
I-set if there is a continuous function f ∈ C(X) such that f(A) contains
an interval I = [a, b] ⊆ R.

In our next result we prove that the concept of an I-set is equivalent
to that of an R-set. But first we need the following definition. A subset
B of R is called a Bernstein set if no uncountable closed subset of R is
contained in either B or R \B.

Proposition 2.2. A subset A of a space X is an R-set if and only if it
is an I-set.
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Proof. Let {fn : n ∈ N} be a countable collection in C(X) such that
∪n∈Nfn(A) = R. Suppose that A is not an I-set. Therefore, for all
f ∈ C(X), f(A) does not contains an interval. If, for every Cantor set
C, C is not a subset of R \ f1(A), then f1(A) is a Bernstein set. By [8,
Lemma 2.2], there exists a continuous function g ∈ C(f1(A)) such that
g(f1(A)) contains an interval. This contradicts our assumption. Thus,
there exists a Cantor set C1 such that C1 ∩ f1(A) = ∅. Similarly, for the
set f2(A), we have a Cantor set C2 such that C2 ⊆ C1 and C2∩f2(A) = ∅.
By proceeding inductively, we obtain a countable family of Cantor sets
{Ci}i such that Ci+1 ⊆ Ci for each i ∈ N. Choose r ∈ ∩n∈NCn; we have
r /∈ ∪n∈Nfn(A), which contradicts our assumption.

Conversely, suppose there exists f ∈ C(X) such that [a, b] ⊆ f(A). For
each n ∈ N, let fn : R → [−n, n] be a continuous function such that fn,
when restricted to [a, b], is a homeomorphism. Then ∪n∈Nfn ◦ f(A) = R.
Hence, A is an R-set. �

It is easy to see that any set containing an R-set is an R-set. Con-
sequently, if X has an R-dense collection, then any base or π-base of X
forms an R-dense collection.

Also recall that a space X is called perfect if it has no isolated point.
The following propositions are immediate.

Proposition 2.3. If X has an R-dense collection, then every nonempty
open subset of X is uncountable, and hence X is a perfect space.

Proposition 2.4. If X has an R-dense collection, then d(X) ≤ Rd(X) ≤
πw(X).

Note that a countable, second-countable space X does not have any
R-dense collection, and hence X is not R-separable. So the second count-
ability of a space does not ensure that it will be R-separable.

Recall that a space is said to be a perfect Polish space if it is a separable
completely metrizable space without isolated points. A Cantor subset of
X is a subset of X which is homeomorphic to the Cantor set. It is easy
to see that every Cantor set is an R-set.

Proposition 2.5 ([5, Proposition 4.1]). Every perfect Polish space is R-
separable.

Proposition 2.6. Every nontrivial connected subset of X is an R-set.

Proof. Let S be a nontrivial connected subset of X and let xS and yS be
distinct elements of S. Since X is a Tychonoff space and S is a connected
subset of X, for each n ∈ N, there exists fn ∈ C(X) such that [−n, n] ⊆
fn(S). Therefore, ∪n∈Nfn(S) = R, and hence S is an R-set. �
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Corollary 2.7. If X is a locally connected space without isolated points,
then X has an R-dense collection.

Corollary 2.8. If X is a space having a countable π-base consisting of
nontrivial connected sets, then X is R-separable.

The following theorem gives a necessary condition for the separability
of the spaces Ch(X), Cph(X), and Ckh(X).

Theorem 2.9. If Cτ (X) is separable, where τ = h, ph, kh, then every
nonempty open set in X is an R-set, and hence X has an R-dense col-
lection.

Proof. Let D = {fn : n ∈ N} be a countable dense set in Cτ (X) and
U be any nonempty open set in X. Suppose that there exists a y ∈
R \

⋃
n∈N fn(U). So [U, y]− is a nonempty open set in Cτ (X) which does

not intersect D. Therefore, U must be an R-set, and hence X has an
R-dense collection. �

Corollary 2.10. If X has a countable π-base and the space Cτ (X) is
separable, where τ = h, ph, kh, then X is R-separable.

Now we relate the density of the spaces Ch(X), Cph(X), and Ckh(X)
with the R-density of X.

Theorem 2.11. If X has an R-dense collection, then d(Ch(X)) ≤ Rd(X).

Proof. Let K be an R-dense collection in X such that |K| = Rd(X), and
let S = {(S1, . . . , Sm) : m ∈ N, for each 1 ≤ i ≤ m,Si ∈ K, and Si, Sj
are completely separated sets for 1 ≤ i 6= j ≤ m}. Since X is a Tychonoff
space, the collection S is nonempty. For each S ∈ K, there exists a
countable set FS in C(X) such that ∪{f(S) : f ∈ FS} = R. Consider
F = {(fS1

, . . . , fSn
) : n ∈ N, (S1, . . . , Sn) ∈ S, fSi

∈ FSi
}.

For each T = (fS1 , . . . , fSn) ∈ F , define a continuous function fT :
X → R such that fT (x) = fSi(x) for x ∈ Si.

Finally, we prove that the collection F ′ = {fT : T ∈ F} is dense in
Ch(X). Clearly, |F ′| = |F| = |S| ≤ |K| = Rd(X).

Let [U1, t1]−∩ [U2, t2]−∩ . . .∩ [Un, tn]− be any basic open set in Ch(X),
where Ui is an open set in X and ti ∈ R, for each i ∈ {1, 2, . . . , n},
and Ui ∩ Uj = ∅ for i 6= j. Since X is Tychonoff and has an R-dense
collection, for each i ∈ {1, . . . , n}, there exists Si ∈ K such that Si ⊆ Ui
and (S1, . . . , Sn) ∈ S. For each i = {1, . . . , n}, there exists fSi ∈ FSi such
that ti ∈ fSi

(Si). So T = (fS1
, . . . , fSn

) ∈ F and fT ∈ [U1, t1]− ∩ . . . ∩
[Un, tn]−. Hence, F ′ is a dense subset of Ch(X). �

Corollary 2.12 ([3, Theorem 5.5]). If X has a countable π-base consist-
ing of nontrivial connected sets, then Ch(X) is separable.
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Corollary 2.13 ([8, Corollary 2.5]). Let X be a space with a countable
π-base. Then the following are equivalent:

(a) Ch(X) is separable.
(b) X is R-separable.

If X = ⊕{Xα : α ∈ Γ}, where for each α ∈ Γ, Xα is R-separable,
then Theorem 2.11 implies that for each α ∈ Γ, Ch(Xα) is separable. If
the cardinality of Γ ≤ c (the cardinality of R), then Π{Ch(Xα) : α ∈
Γ} is also separable. Consequently, [4, Proposition 2.11] implies that
Ch(⊕{Xα : α ∈ Γ}) is separable. So we have the following result.

Corollary 2.14. If X is the topological sum of c or fewer R-separable
spaces, then Ch(X) is separable.

In order to study the density of the space Cph(X), recall that the
i-weight of a space X is defined by

iw(X) = ℵ0+

min{w(Y ) : ∃ a continuous bijection from X to a Tychonoff space Y }.

Theorem 2.15. If X has an R-dense collection, then iw(X) ≤ d(Cph(X))
≤ Rd(X) · iw(X).

Proof. Since d(Cp(X)) ≤ d(Cph(X) and d(Cp(X)) = iw(X) (see [7]), we
have iw(X) ≤ d(Cph(X)). Now we prove that d(Cph(X)) ≤ Rd(X) ·
iw(X). Let K be an R-dense collection in X such that |K| = Rd(X), and
let S = {{S1, . . . , Sm} : m ∈ N, for each 1 ≤ i ≤ m,Si ∈ K}. Also, for
each S ∈ K, there exists a countable subset FS of C(X) such that ∪{f(S) :
f ∈ FS} = R. Let V be a countable base for R and U be a base for a
coarser topology on X such that |U| = iw(X). Let G be the collection of
finite families of members of U×V. For eachG = {(W1, V1), . . . , (Wn, Vn)}
in G, let G1 = {W1, . . . ,Wn}. Let H = {(S,G) ∈ S × G : members of S ∪
G1 are pairwise completely separated sets in X}. Since X is a Tychonoff
space, H is nonempty. For each S = {S1, . . . , Sm} ∈ S, let TS =
{(fS1

, . . . , fSm
) : fSi

∈ FSi
for 1 ≤ i ≤ m}. Clearly, TS is countable

for each S ∈ S and |H| ≤ Rd(X) · iw(X).
For each H = (S,G) ∈ H and T ∈ TS , where G = {(W1, V1), . . . ,

(Wn, Vn)}, S = {S1, . . . , Sm} and T = (fS1 , . . . , fSm). Fix vj ∈ Vj for
each j ∈ {1, . . . , n} and define a continuous function fH,T : X → R such
that

fH,T (x) =

{
fSi

(x) x ∈ Si and 1 ≤ i ≤ m
vj x ∈Wj and 1 ≤ j ≤ n.

Take D to be the collection {fH,T : H = (S,G) ∈ H, T ∈ TS}. Clearly,
|D| ≤ Rd(X) · iw(X), and we now prove that D is dense in Cph(X).
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Let Z be any nonempty open set in Cph(X). Then [3, Proposition 2.2]
implies that there is a basic open set B = [x1, V1]+ ∩ . . . ∩ [xm, Vm]+ ∩
[U1, t1]− ∩ [U2, t2]− ∩ . . . ∩ [Un, tn]− in Cph(X) contained in Z, where
xi 6= xj for i 6= j and Ui ∩ Uj = ∅ for i 6= j. Since X contains
no isolated point, we can choose yj ∈ Uj for 1 ≤ j ≤ n such that
{x1, . . . , xm, y1, . . . , yn} is a collection of distinct points in X. Also,
for 1 ≤ i ≤ m and 1 ≤ j ≤ n, there exist Wi,Kj ∈ U such that
xi ∈ Wi, yj ∈ Kj , and {W1, . . . ,Wm,K1, . . . ,Kn} is a collection of pair-
wise completely separated sets in X. For each j ∈ {1, . . . , n}, Uj ∩ Kj

is an open set in X containing yj and there exists SKj
∈ K such that

SKj
⊆ Uj ∩ Kj . So {W1, . . . ,Wm, SK1

, . . . , SKn
} is a collection of pair-

wise completely separated sets in X. Take S = {SK1
, . . . , SKn

} and
G = ((W1, V1), . . . , (Wm, Vm)); then H = (S,G) is in H. For each
j ∈ {1, . . . , n}, there exists fSKj

∈ FSKj
such that tj ∈ fSKj

(SKj ). So
T = (fSK1

, . . . , fSKn
) ∈ TS and fH,T ∈ D∩B. Hence, D is a dense subset

of Cph(X). �

Corollary 2.16. If X is the topological sum of c or fewer R-separable
submetrizable spaces, then Cph(X) is separable.

Corollary 2.17 ([3, Theorem 5.10]). If X has a countable π-base con-
sisting of nontrivial connected sets and a coarser metrizable topology, then
Cph(X) is separable.

Corollary 2.18 ([8, Theorem 2.4]). Let X be a space with a countable
π-base. Then the following are equivalent:

(a) Cph(X) is separable.
(b) X is an R-separable submetrizable space.

If the space Cph(X) is separable, then obviously Ch(X) and Cp(X) are
also separable. Now we give an example of a space for which Ch(X) is
separable, but neither Cp(X) nor Cph(X) is separable.

Example 2.19 ([10, Example 107]). Let X be the Helly space; that is, X
is a subspace of II (where I is the closed unit interval in R) consisting of
all nondecreasing functions. Then X is a locally connected space without
isolated points. It is a separable first countable space, so it has a countable
π-base. This space is pseudocompact but not metrizable, so it is not
submetrizable. Therefore, the space Ch(X) is separable by Corollary 2.8
and Theorem 2.11, but neither Cp(X) nor Cph(X) is separable (see [6,
Corollary 4.2.2] and Corollary 2.18).

In Theorem 2.11, we have given a bound on the density of the space
Ch(X), when the space X has an R-dense collection. By Proposition 2.7,
if a space X has a π-base consisting of nontrivial connected sets, then X
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has an R-dense collection. Now we study the density of the space Ch(X)
whenever X has a π-base consisting of nontrivial connected sets. We first
need the following definition from [8].

Definition 2.20. For a space X, define a cardinal function ξ on X by
ξ(X) = ℵ0+min{|γ| : for every finite family of pairwise disjoint nonempty
open subsets {Vi}ki=1 of X, there is a family of pairwise disjoint nonempty
zero sets γ′ = {Zi}ki=1 ⊆ γ such that Vi ∩ Zi 6= ∅ for i = 1, . . . , k}.

Theorem 2.21. If X has a π-base consisting of nontrivial connected sets,
then

d(Ch(X)) = ξ(X).

Proof. In order to show that ξ(X) ≤ d(Ch(X)), let A be a dense subset
of Ch(X) such that |A| = d(Ch(X)), and let V be a countable base for R
consisting of bounded open intervals. Consider γ = {f−1(B) : f ∈ A, B ∈
V}. Let {Vi}ki=1 be a finite family of pairwise disjoint nonempty open
subsets of X. Since X has no isolated point, W = [V1, 1]− ∩ . . .∩ [Vk, k]−

is a nonempty open set in Ch(X). Then there exist f ∈ A ∩ W and
the family {Bjs : s ∈ Bjs for s = 1, . . . , k and Bjs′ ∩ Bjs′′ = ∅ for
1 ≤ s′ 6= s′′ ≤ k} such that γ′ = {f−1(Bjs)}ks=1 is a required subfamily
of γ. Hence, ξ(X) ≤ d(Ch(X)).

Now we prove the inequality d(Ch(X)) ≤ ξ(X). Let γ be the family of
zero sets in X such that |γ| = ξ(X). We can assume that γ is closed under
the finite union of its elements. Consider the collection D = {fi,j,p,q ∈
C(X) : fi,j,p,q(Fi) = p and fi,j,p,q(Fj) = q for Fi, Fj ∈ γ such that
Fi ∩ Fj = ∅ and p, q ∈ Q}. We prove that D is dense in Ch(X). Clearly,
|D| ≤ |γ|.

Let W = [U1, r1]− ∩ . . . ∩ [Un, rn]− be any nonempty basic open set in
Ch(X) and let B be a π-base for X consisting of nontrivial open connected
sets. Then there exists a nontrivial open connected set Bj in B such that
Bj ⊆ Uj for each 1 ≤ j ≤ n. Choose the different points aj , bj ∈ Bj
for each 1 ≤ j ≤ n. Let {Oj}nj=1 and {Pj}nj=1 be families of pairwise
disjoint open subsets of X such that aj ∈ Oj ⊆ Bj , bj ∈ Pj ⊆ Bj ,
and (∪nj=1Oj)∩ (∪nj=1Pj) = ∅. There exists a family γ′ = {Fk}2nk=1 ⊆ γ of
pairwise disjoint nonempty zero sets such that Fj∩Oj 6= ∅ and Fj+n∩Pj 6=
∅ for j = 1, . . . , n. Take p, q ∈ Q such that p ≤ min{rj : j = 1, . . . , n}
and q ≥ max{rj : j = 1, . . . , n}. Consider f = fi′,j′,p,q ∈ C(X) such that
f(Fi′) = p and f(Fj′) = q, where Fi′ = ∪nk=1Fk and Fj′ = ∪2nk=n+1Fk.
Then f ∈ D ∩W . �

Corollary 2.22 ([8, Theorem 2.10]). If X is a locally connected space
without isolated points, then the following are equivalent:

(a) Ch(X) is a separable space.
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(b) ξ(X) = ℵ0.

In Theorem 2.15, we have given a bound on the density of the space
Cph(X), when the space X has an R-dense collection. By Proposition
2.7, if a space X has a π-network consisting of nontrivial connected sets,
then X has an R-dense collection. Now we study the density of the space
Cph(X) whenever X has a π-network consisting of nontrivial connected
sets. Our next result is a generalization of [9, Theorem 2.2].

Theorem 2.23. If X has a π-network consisting of nontrivial connected
sets, then

d(Cph(X)) = iw(X).

Proof. Since d(Cp(X)) ≤ d(Cph(X) and d(Cp(X)) = iw(X), we have
iw(X) ≤ d(Cph(X)). Now we prove that d(Cph(X)) ≤ iw(X). Let W
be a base for the coarser topology on X such that |W| = iw(X), and let
G′ be the collection of all finite subfamilies of subsets of W. Consider
G = {G ∈ G′ : members of G are pairwise completely separated sets}.
Then for each G ∈ G, where G = {W1, . . . ,Wm} and p = (p1, . . . , pm) ∈
Qm, define a continuous function fG,p : X → R such that fG,p(x) = pi if
x ∈Wi for 1 ≤ i ≤ m.

Take D = {fG,p : G ∈ G, p ∈ Qm,m ∈ N}. We now prove that D is
dense in Cph(X). Clearly, |D| ≤ iw(X).

Let Z be any nonempty open set in Cph(X). Then [3, Proposition 2.3]
implies that there exists an open set B = [x1, V1]+ ∩ . . . ∩ [xm, Vm]+ ∩
[U1, t1]− ∩ . . . ∩ [Un, tn]− in Cph(X) contained in Z, where m,n ∈ N,
and for 1 ≤ i ≤ m, each xi ∈ X and Vi is open in R, and for 1 ≤
j ≤ n, each Uj is open in X and tj ∈ R, and for i 6= j, xi 6= xj
and Ui ∩ Uj = ∅, and xi /∈ Uj . Since X has a π-network consist-
ing of nontrivial connected sets, there exists a nontrivial connected set
Bj in X such that Bj ⊆ Uj for each 1 ≤ j ≤ n, and we can choose
yj , zj ∈ Bj such that {x1, . . . , xm, y1, . . . , yn, z1, . . . , zn} is a collection of
distinct points in X. So for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, there
exist Wi, Gj , Hj ∈ W such that xi ∈ Wi, yj ∈ Gj , zj ∈ Hj , and
{W1, . . . ,Wm, G1, . . . , Gn, H1, . . . ,Hn} is a collection of pairwise com-
pletely separated sets in X. For each 1 ≤ i ≤ m, fix vi ∈ Vi ∩ Q,
and for each 1 ≤ j ≤ n, choose pj , qj ∈ Q such that pj ≤ tj and
qj ≥ tj . Consider G = (W1, . . . ,Wm, G1, . . . , Gn, H1, . . . ,Hn) and p =
(v1, . . . , vm, p1, . . . , pn, q1, . . . , qn) ∈ Qm+2n. Since for each j ∈ {1, . . . , n},
Bj is connected, fG,p ∈ B ⊆ Z. �

Corollary 2.24 ([8, Theorem 2.8]). If X is a locally connected space
without isolated points, then the following are equivalent:

(a) Cph(X) is a separable space.
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(b) X has a coarser separable and metrizable topology.

The next theorem gives bounds on the density of the space Ckh(X).

Theorem 2.25. If X has an R-dense collection, then

iw(X) ≤ d(Ckh(X)) ≤ iw(X) · πw(X).

Proof. Since d(Ck(X)) ≤ d(Ckh(X)) and d(Ck(X)) = iw(X) (see [6,
Theorem 4.4.1]), we have iw(X) ≤ d(Ckh(X)). Now we prove that
d(Ckh(X)) ≤ iw(X) · πw(X). Suppose that K is an R-dense collec-
tion in X such that |K| = Rd(X). Let U be a π-base for X such that
|U| = πw(X) and V be a countable base for R consisting of bounded
open intervals. For convenience of notation, for each n ∈ N, let Ûn
be the set of (U1, . . . , Un) ∈ Un such that {U1, . . . , Un} is a collection
of pairwise disjoint sets. Let F be a dense subset of Ck(X) such that
|F| = d(Ck(X)) = iw(X).

For each f ∈ F and n ∈ N, let

T nf = {((U1, . . . , Un), (V1, . . . , Vn)) ∈ Ûn×Vn : f(Ui) ⊆ Vi for 1 ≤ i ≤ n}.

We prove that for each n ∈ N, the set T nf 6= ∅. Let {x1, . . . , xn} be
a collection of distinct points in X, and f(xi) ∈ Vi ∈ V. Since f is
continuous and X is Hausdorff, there exists Ui ∈ U such that f(Ui) ⊆ Vi
for 1 ≤ i ≤ n, and Ui ∩Uj = ∅ for i 6= j. So ((U1, . . . , Un), (V1, . . . , Vn)) ∈
T nf . Take Tf = ∪n∈NT nf and, clearly, |Tf | ≤ πw(X).

Let T ∈ Tf , say T = ((U1, . . . , Un), (V1, . . . , Vn)). Since K is an R-
dense collection in X and X is Tychonoff, for each i = 1, . . . , n, there
exist Ei ∈ U , Si ∈ K, and a countable collection FSi

in C(X) such that
Si ⊆ Ei ⊆ Ui, Ui \ Ei, and Si are completely separated sets in X and
∪{g(Si) : g ∈ FSi

} = R. For each i = 1, . . . , n, take Li = {fSi
∈ FSi

:
(fSi)

−1(Vi) ∩ Si 6= ∅}; then for each fSi ∈ Li, there exists a continuous
function fSi,i : X → Vi such that fSi,i(x) = fSi(x) for x ∈ (fSi)

−1(Vi)∩Si
and fSi,i(x) = f(x) for each x ∈ Ui \ Ei. Take ST = {S1, . . . , Sn} ∈ S
and let HST

= {(fS1,1, . . . , fSn,n) : fSi ∈ Li, 1 ≤ i ≤ n}.
Then for each T ∈ Tf and H ∈ HST

, where

T = ((U1, . . . , Um), (V1, . . . , Vm)) and H = {fS1,1, . . . , fSm,m},

define a continuous function fT,H : X → R as follows:

fT,H(x) =

{
fSi,i(x) x ∈ Ui and 1 ≤ i ≤ m
f(x) x ∈ X \ Ui and 1 ≤ i ≤ m.

Take F ′ to be the collection {fT,H : f ∈ F , T ∈ Tf , H ∈ HST
}. We

now prove that F ′ is dense in Ckh(X). Since Rd(X) ≤ πw(X), we have
|F ′| ≤ iw(X) · πw(X).
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Let Z be any nonempty open set in Ckh(X), then [5, Proposition
2.2] implies that Z contains a nonempty open set B = [A1, G1]+ ∩ . . . ∩
[Am, Gm]+ ∩ [U1, r1]− ∩ . . . ∩ [Un, rn]− such that, for each j = 1, . . . , n,
either Uj ∩ Ai = ∅ for all i = 1, . . . ,m, or Uj ⊆ ∪{Ai : rj ∈ Gi},
and Uj ∩ (∪{Ai : rj /∈ Gi}) = ∅; and Ai is a compact subset of X,
Gi ∈ V whenever i ∈ {1, . . . ,m}, and Ui ∩ Uj = ∅ for i 6= j. Let
f ∈ F ∩ [A1, G1]+ ∩ . . . ∩ [Am, Gm]+ and let Ij = {1 ≤ i ≤ m : rj ∈
Gi, Uj ∩Ai 6= ∅}. We can assume that Ij 6= ∅ and |Ij | = tj for 1 ≤ j ≤ k,
where k ≤ n and Ij = ∅ for k + 1 ≤ j ≤ n.

If Ij 6= ∅, then, for each i ∈ Ij , rj ∈ Gi and Uj∩Ai∩f−1(Gi) 6= ∅. Since
X is a perfect space, for each i ∈ Ij , we can choose xji ∈ f−1(Gi) ∩ Uj
such that {xji : i ∈ Ij}, is a collection of distinct points. Also there exists
V ji ∈ V such that f(xji ), rj ∈ V ji ⊆ V ji ⊆ Gi. Since X is a Hausdorff
space, there exists {Bji : i ∈ Ij} a collection of disjoint open sets in X

such that xji ∈ B
j
i ⊆ Bji ⊆ f−1(V ji ) ∩ Uj . Then this implies that there

exists (U j1 , . . . , U
j
tj ) ∈ Û tj such that U ji ⊆ U ji ⊆ Bji ⊆ f−1(V ji ) ∩ Uj for

each i ∈ Ij . Now for each i ∈ Ij , f(U ji ) ⊆ V ji . Also, there exist Sji ∈ K,
fSj

i
∈ FSj

i
, and Eji ∈ U such that Sji ⊆ Eji ⊆ U ji , U

j
i \ E

j
i , and Sji are

completely separated in X, and rj ∈ fSj
i
(Sji ) for each i ∈ Ij .

If Ij = ∅, take any x ∈ Uj and let Vj be any neighborhood of f(x)

containing rj . Since f is continuous, there exists U
′

j ∈ U such that U
′

j ⊆
U

′
j ⊆ Uj and f(U

′
j) ⊆ Vj . And also there exist Sj ∈ K, fSj ∈ FSj , and

E
′

j ∈ U such that Sj ⊆ E
′

j ⊆ U
′

j , U
′
j \E

′

j , and Sj are completely separated
in X, and rj ∈ fSj

(Sj). Consider

U = (U1
1 , . . . , U

1
t1 , U

2
1 , . . . , U

2
t2 , . . . , U

k
1 , . . . , U

k
tk
, U

′

k+1, . . . , U
′

n),

V = (V 1
1 , . . . , V

1
t1 , V

2
1 , . . . , V

2
t2 , . . . , V

k
1 , . . . , V

k
tk
, Vk+1, . . . , Vn).

Since Ui ∩ Uj = ∅ for i 6= j, we have T = (U, V ) ∈ Tf . Take H =
(fS1

1 ,1
, . . . , fS1

t1
,t1 , fS2

1 ,1
, . . . , fS2

t2
,t2 , . . . , fSk

1 ,1
, . . . , fSk

tk
,tk
, fSk+1,k+1, . . . ,

fSn,n). Then it is easy to see that fT,H ∈ F ′ ∩B. �

The next result can be proved by using Corollary 2.18 and the same
technique as in the proof of Theorem 2.25.

Corollary 2.26 ([5, Theorem 4.3]). Let X be a space with a countable
π-base. Then the following are equivalent:

(a) Ckh(X) is separable.
(b) Cph(X) is separable.
(c) X is an R-separable submetrizable space.
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Corollary 2.27. If X is the topological sum of c or fewer R-separable
submetrizable spaces each having a countable π-base, then Ckh(X) is sep-
arable.

Example 2.28. Let X = S be the Sorgenfrey line. Then X is an R-
separable submetrizable space having a countable π-base, and hence, by
Corollary 2.26, the spaces Ch(X), Cph(X), and Ckh(X) are separable.

Example 2.29. LetX be the Niemytzki plane. ThenX is an R-separable
submetrizable space having a countable π-base, and hence, Corollary 2.26
implies that the spaces Ch(X), Cph(X), and Ckh(X) are separable.

Now Proposition 2.5 and Corollary 2.26 imply the following result.

Corollary 2.30 ([5, Corollary 4.6]). If X is a perfect Polish space, then
the spaces Ch(X), Cph(X), and Ckh(X) are separable.

Remark 2.31. Since the set of irrationals with the usual topology is a
perfect Polish space, [3, Theorem 5.1] is an immediate consequence of
Corollary 2.30.

Example 2.32. If X = NN (so X is homeomorphic to the space of
irrationals), then the spaces Ch(X), Cph(X), and Ckh(X) are separable.

References

[1] Richard Arens and James Dugundji, Topologies for function spaces, Pacific J.
Math. 1 (1951), 5–31.

[2] Ryszard Engelking, General Topology. Translated from the Polish by the author.
2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.

[3] Anubha Jindal, R. A. McCoy, and S. Kundu, The open-point and bi-point-open
topologies on C(X), Topology Appl. 18 (2015), 62–74.

[4] Anubha Jindal, R. A. McCoy, and S. Kundu, The open-point and bi-point-open
topologies on C(X): Submetrizability and cardinal functions, Topology Appl. 196
(2015), part A, 229–240.

[5] Anubha Jindal, R. A. McCoy, and S. Kundu, The bi-compact-open topology on
C(X), Boll. Unione Mat. Ital. (in press); (2016). doi:10.1007/s40574-016-0095-8.

[6] Robert A. McCoy and Ibula Ntantu, Topological Properties of Spaces of Con-
tinuous Functions. Lecture Notes in Mathematics, 1315. Berlin: Springer-Verlag,
1988.

[7] N. Noble, The density character of function spaces, Proc. Amer. Math. Soc. 42
(1974), 228–233.

[8] Alexander V. Osipov, On separability of the functional space with the open-point
and bi-point-open topologies. Available at arXiv:1602.02374 [math.GN].

[9] Alexander V. Osipov, On separability of the functional space with the open-point
and bi-point-open topologies, II. Available at arXiv:1604.04609v1 [math.GN].



OPEN-POINT, BI-POINT-OPEN, AND BI-COMPACT-OPEN TOPOLOGIES 261

[10] Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology.
Reprint of the 2nd (1978) ed. Mineola, NY: Dover Publications, Inc., 1995.

(Jindal) Department of Mathematics; Indian Institute of Technology
Delhi; New Delhi 110016 India

E-mail address: jindalanubha217@gmail.com

(McCoy) Department of Mathematics; Virginia Tech; Blacksburg, VA
24061-0123 USA

E-mail address: mccoy@math.vt.edu

(Kundu) Department Of Mathematics; Indian Institute of Technology
Delhi; New Delhi 110016 India

E-mail address: skundu@maths.iitd.ac.in




