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CLOPEN ULTRAFILTERS OF ω AND THE
CARDINALITY OF THE STONE SPACE S(ω) IN ZF

KYRIAKOS KEREMEDIS

Abstract. For X ∈ {ω,R} let 2X denote the Tychonoff product
of the discrete space 2 = {0, 1} and, ClX denote the set {O∩DX :
O is a clopen subset of 2X} where, DX = {dn : n ∈ ω} is a dense
subset of 2X .

We show:
(i) ω has a free ultrafilter iff every Clω - filter extends to an

ultrafilter of Dω iff every Clω - ultrafilter extends to an ultrafilter
of Dω .

(ii) Every filter of ω extends to an ultrafilter of ω iff every
ClR - filter extends to an ultrafilter of DR iff every ClR - filter
extends to a ClR - ultrafilter.

(iv) 2R is the continuous image of S(ω) iff every ClR - ultrafilter
extends to an ultrafilter of DR.

(v) If the Stone space S(ω) is countably compact then every
family A = {{Ai, Bi} ⊆ [R]ω : i ∈ ω} has a choice set.

(vi) “Every filter of R extends to an ultrafilter of R” implies
|S(ω)| = |2R|, “every filter of ω extends to an ultrafilter of ω” implies
“|2S(ω)| = |22R |” and, “ω has a free ultrafilter” implies |R| ≤ S(ω).

1. Notation and Terminology

Let X = (X,T ) be a topological space.
X is said to be compact iff every open cover U of X has a finite subcover

V.

X is said to be countably compact iff every countable open cover U of
X has a finite subcover V.
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Key words and phrases. Free ultrafilters on ω, Stone space, weak forms of the axiom

of choice.
I would like to thank the referee for his insightful comments which improved greatly
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Cl(X) will denote the family of all clopen (= closed and open simulta-
neously) subsets of X.

Let E ⊆ P(X). A non-empty collection F ⊆ E is an E-filter iff ∅ /∈ F ,
F is closed under finite intersections and, for every F ∈ F and O ∈ E if
F ⊆ O then O ∈ F . An E-filter F is called free if

∩
F = ∅. A maximal

with respect to inclusion E-filter is called E-ultrafilter. In case E = P(X),
then an E-filter (resp. E-ultrafilter) F is a filter on X (resp. ultrafilter on
X).

If E = T , then an E-filter F (resp. E-ultrafilter F) is called open filter
of X (resp. open ultrafilter of X). Analogously, we define the notions of
closed filter, clopen filter, closed ultrafilter and clopen ultrafilter.

B(X) will denote the Boolean algebra of all clopen subsets of X under
∪, ∩ and set theoretic complementation.

We remark here that in case E = Cl(X) and F ⊆ E then F is an E-
filter (resp. E-ultrafilter) iff F is a filter of B(X) (resp. F is an ultrafilter
of B(X)). In particular, if T is the discrete topology, then E = P(X)
and the notions of E-ultrafilter, ultrafilter, open ultrafilter and clopen
ultrafilter on X all coincide with the notion of the ultrafilter of B(X).

X is said to be ultrafilter compact iff every ultrafilter F on X converges
to some point x ∈ X. i.e., for every neighborhood V of x, there exists
F ∈ F with V ⊇ F . Given a filter F on X and a point x ∈ X, we say
that x is a limit point of F iff x ∈

∩
{F : F ∈ F}.

Let X be a set. 2X denotes the Tychonoff product of the discrete space
2 (2 = {0, 1} is taken with the discrete topology) whose standard (clopen)
base is the set BX = {[p] : p ∈ Fn(X, 2, ω)}, where

[p] = {f ∈ 2X : p ⊆ f},

and Fn(X, 2, ω) is the set of all finite partial functions from X to 2.
Let Dω be the family of all functions from ω into 2 such that |f−1(1)| <

ℵ0. It is easy to see that Dω is a countable dense subset of 2ω.
It is known, see [2], that 2R has a countable dense subset DR and

it is not hard to derive a proof of this result within the settings of the
Zermelo-Fraenkel set theory ZF which we shall adopt in this paper. For
the readers convenience we supply a proof of this result in the forthcoming
Lemma 1.

Clω (resp. ClR) will denote the set {O ∩ Dω : O ∈ Cl(2ω)} (resp.
{O ∩DR : O ∈ Cl(2R)}).

Let Dω, DR carry the topologies generated by Clω and ClR respec-
tively and ω carry the discrete topology. Clearly, B(Dω) and B(DR) are
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isomorphic to certain subalgebras of B(ω) but B(Dω) is countable and
B(DR) has cardinality c.

Let X be a set and A = {Ai : i ∈ I} be a family of subsets of X.

A is called independent if for every two disjoint finite non-empty subsets
S,Q of I,

∩
{As : s ∈ S} ∩

∩
{Ac

q : q ∈ Q} ̸= ∅. Clearly, the family
A = {Ax = [{(x, 1)}] ∩DR : x ∈ R} is an independent family of subsets
of DR.

A is called almost disjoint if for every i, j ∈ I, |Ai ∩ Aj | < ℵ0. As an
example of an almost disjoint family of subsets of Q of size |R| consider
the following: For every x ∈ R, via an easy induction, define a one-
to-one sequence (qxn)n∈ω of rational numbers converging to x. Clearly,
A = {Ax : x ∈ R} where, for every x ∈ R, Ax = {qxn : n ∈ ω} is an
almost disjoint family of Q of size |R|.

Given a Boolean algebra B, the Stone space of B is the set UB of all ul-
trafilters of B together with the topology T on UB generated by the family
{[b] : b ∈ B} where, for every b ∈ B, [b] = {F ∈ UB : b ∈ F}. In particular,
given a set X ̸= ∅, S(X) will denote the Stone space of the Boolean alge-
bra of all subsets of X. Clearly, if X,Y are any two infinite sets satisfying
|X| = |Y | then S(X) is homeomorphic to S(Y ). In particular, the spaces
S(ω), S(Dω) and S(DR) are pairwise homeomorphic.

For every n ∈ ω, Fn will denote the fixed ultrafilter on ω of all supersets
of {n}. Clearly, D = {Fn : n ∈ ω} is a countable dense subset of S(ω) (if
A ∈ P(ω) then [A] is a non-empty basic open set of S(ω) and for every
n ∈ A,Fn ∈ [A]).

Next we list the choice principles we shall deal with in this paper.

(1) UF(ω) : There is a free ultrafilter on ω.
(2) BPI(ω) : Every filter on ω extends to an ultrafilter on ω.
(3) BPI(R) : Every filter on R extends to an ultrafilter on R.
(4) BPI(Clω) : Every Clω-filter extends to a Clω-ultrafilter.
(5) BPI(Clω, Dω) : Every Clω-filter extends to an ultrafilter on Dω.
(6) UBPI(Clω, Dω) : Every Clω-ultrafilter extends to an ultrafilter

on Dω.
(7) BPI(ClR) : Every ClR-filter extends to a ClR-ultrafilter.
(8) BPI(ClR, DR) : Every ClR-filter extends to an ultrafilter on DR.
(9) UBPI(ClR, DR) : Every ClR-ultrafilter extends to an ultrafilter

on DR.
(10) CI(ω) : S(ω) can be mapped continuously onto 2P(ω).
(11) CCS(ω) : S(ω) is countably compact.
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2. The size of S(ω) in ZF

The famous Hewitt-Marczewski-Pondiczery theorem in general topol-
ogy is concerned with the density of product spaces and has some signif-
icant consequences not only in topology but in set theory also. The fact
that every infinite set X has an independent family of size |P(X)| is such
a consequence. As expected, its proof depends on the axiom of choice.
However, some special cases which we are going to use in the sequel are
choice free as the following well known lemma indicates.

Lemma 1. (ZF) (i) The Tychonoff product S(ω)2
R

has a dense subset G
of size |R|.
(ii) The Tychonoff product 2R is separable.
(iii) R has an independent family of size |2R|.
(iv) ω has an independent family of size |R|.
Proof. (i) Let BR = {[p] : p ∈ Fn(R, 2, ω)} be the canonical base for 2R

and let D = {Fn : n ∈ ω}. Clearly |BR| = |Fn(R, 2, ω)| and the latter
cardinal number is easily seen to be equal to |R|. Now define a subset
F ⊆ D2R by requiring:

(∗∗) f ∈ F iff there exists a finite non-empty subset Bf ⊆ BR of
pairwise disjoint sets such that f takes on the value F0 on 2R\

∪
Bf and

for every U ∈ Bf , f is constant on U .
For every pairwise disjoint B ∈ [BR]<ω let

GB = {f ∈ D2R : f satisfies (∗∗) with B in place of Bf}.
Clearly, |GB | = ℵ0 and we can construct a one-to-one and onto function
hB : GB → ℵ0. Since |[BR]<ω| = |R| it follows that |F | = |R|.

It remains to show that F is dense in S(ω)2
R
. Since D2R is clearly a

dense subspace of S(ω)2
R
, it suffices to show that F is dense in D2R . Let

g be a finite partial function from 2R to D; we need to show [g]∩F is non-
empty. Let {x0, . . . , xn} be the domain of g, and let {pi ∈ Fn(R, 2, ω) :
i ≤ n} be a pairwise incompatible family such that xi ∈ [pi] for all i ≤ n.
Let f ∈ F be the element satisfying: f([pi]) = g(xi) for all i ≤ n. Clearly,
f ∈ D ∩ [g] and F is dense as required.

(ii) This can be proved along the established lines of reasoning of part
(i).

(iii) Working as in the proof of part (i) we can show that the product 22
R

has a dense set D = {di : i ∈ R}. It is easy to see that A = {Ai : i ∈ 2R}
where for every i ∈ 2R, Ai = π−1

i (1) ∩ D is an independent family of
subsets of D.

(iv) See the example following the definition of an independent fami-
ly. �
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Remark 1. The referee has pointed out to us that Lemma 1 has a known
more general form. The same arguments for assertions (i) and (ii) can be
found in [1], Theorem 2.3.15, where it is proved without the use AC that
for every separable space X, the products XR and X2R have dense sets
of size ω and c respectively. Likewise, regarding the assertions (iii) and
(iv), another and more general form is the Hausdorff’s construction of an
independent family [Chapter VIII, Exercise A6, in [10]].

Clearly, for every f ∈ 2R the ClR-filter Ff generated by the family

(1) Hf = {[{(x, f(x))}] ∩DR : x ∈ R}

is a ClR-ultrafilter. Conversely, for every ClR-ultrafilter F (resp. every
ultrafilter F on ω) there exists a unique f ∈ 2R such that Ff = F (resp.
there exists a unique f ∈ 2R such that Ff ⊆ F). Indeed, for every x ∈ R,
exactly one of the sets [{(x, 1)}] ∩DR, [{(x, 0)}] ∩DR is a member of F .
Hence the mapping f : R→ 2 given by the rule: For every x ∈ R,

f(x) =

{
1 if [{(x, 1)}] ∩DR ∈ F
0 if [{(x, 0)}] ∩DR ∈ F

is a function such that F = Ff . Thus, the function

(2) H : 2R → UB(DR), H(f) = Ff

is one-to-one and onto meaning that |UB(DR)| = |2R|. Next we show that
H is more than one-to-one and onto function.

Proposition 2. (i) 2R is homeomorphic with the Stone space of B(DR).
(ii) UBPI(ClR, DR) iff for every f ∈ 2R, Ff extends to an ultrafilter on
DR where, Ff is the filter generated by Hf given by (1).

Proof. (i) It suffices, in view of the discussion before the statement of
the proposition, to show that the function H given by (2) maps ba-
sic open sets of 2R to basic open sets of UB(DR). To this end, fix p ∈
Fn(R, 2, ω). We have: H([p]) = {H(f) : p ⊆ f} = {F ∈ UB(DR) : ∀x ∈
Dom(p), [{(x, f(x))}] ∩DR ∈ F} = {F ∈ UB(DR) :

∩
{[{(x, f(x))}] ∩DR :

x ∈ Dom(p)} ∈ F} = [
∩
{[{(x, f(x))}] ∩DR : x ∈ Dom(p)}]. Hence, H is

as required.
(ii) This follows at once from the discussion preceding the statement

of the proposition. �

Regarding u = |S(ω)|, unlike UB(DR), the situation might be very com-
plicated. The reason is that given f ∈ 2R there might be more that one
members of S(ω) including Ff or, there might be no member of S(ω)
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including Ff . Let us scrutinize a little bit more on the last comment.
Working in ZF one can easily verify that:

(3) ℵ0 ≤ u ≤ |2R|.

Indeed, since S(ω) ⊆ P(P(ω)) it follows that u ≤ |P(P(ω))| = |2R|. On
the other hand, for every n ∈ ω, Fn ∈ S(ω) meaning that ℵ0 ≤ u.

It is well known that in ZFC (= ZF plus the axiom of choice AC)
u = |2R|. However, in ZF, u may not be equal to |2R|. Indeed, if UF(ω)
fails then u =ℵ0. Hence, “u = |2R|” and “u ̸= |2R|” are both consistent
with ZF. So, it is plausible to ask about the set theoretical strength of
“u = |2R|”. Clearly, “u = |2R|” implies UF(ω) and is a consequence of
the proposition “R is well-orderable”. To see the latter implication let, for
every i ∈ 2R, Hi be given by (1). Clearly,

(4) for every i, j ∈ 2R, i ̸= j there exist A ∈ Hi, B ∈ Hj with A∩B = ∅.

Since, “R is well-orderable” implies for every i ∈ 2R, Hi extends, via a
straightforward transfinite induction, to an ultrafilter Fi on DR, it follows
by (4), that {Fi : i ∈ 2R} is a list of distinct ultrafilters on DR. Since,
|ω| = |DR| implies |S(ω)| = |S(DR)|, we see that “u = |2R|” holds true as
required.

More generally, given any independent family, A = {Ai : i ∈ R} of
ω and S ∈ P(R), the family HS = {As : s ∈ S} ∪ {Ac

s : s ∈ Sc} has
the finite intersection property (fip for abbreviation). As before, “R is
well-orderable” implies HS extends constructively to an ultrafilter FS on
ω. Clearly, for every S,Q ∈ P(R) with S ̸= Q, HS ̸= HQ. Hence,
{FS : S ∈ P(R)} is a family of distinct ultrafilters of ω and “u = |2R|”
holds true.

Let

(5) C = {Ci : i ∈ 2R}

where, for every i ∈ 2R,

(6) Ci = {F ∈ S(DR) : Hi ⊆ F}

and Hi is given by (1). Clearly, in view of (1) and (4), C is partition of
S(DR) such that:

• For every i ∈ 2R and F ∈ DR,F ∈ Ci iff limF = i.
We observe that any weak choice principle implying |2R| ≤ |C| ≤ |S(ω)|,

also implies “u = |2R|”. Such a weak choice form for example is easily
seen to be the conjunction UBPI(ClR, DR) ∧ “C has a choice set” or, by
the argument following the proof of Lemma 1, the statement “R is well-
orderable”. We would like draw attention here that if X is a set and C is
a partition of X then |C| need not be less than or equal to |X|. Indeed,
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in [11] Monro constructs a ZF model N [F ] extending the Halpern-Levy
model N containing an amorphous partition C of R. i.e., C cannot be
partitioned into two infinite sets. Since infinite linearly ordered sets are
not amorphous, see e.g., [7], it follows that in N [F ], |C| 
 |R|.

As pointed out implicitly in the previous paragraph, UBPI(ClR, DR)
hence BPI(ω) also, implies for every i ∈ 2R, Ci ̸= ∅. However, it is
unknown to us whether BPI(ω) implies any one of the statements “C has
a choice set” and “ |C| ≤ |S(ω)|” in order to infer “u = |2R|”.

Next we show that the higher cardinal analogue BPI(R) of BPI(ω)
which, by the way, is independent from the statement “R is well-orderable”
(in the basic Cohen modelM1 in [7] BPI(R) holds true but R is not well-
orderable and, in [8] there is a ZF model N where “R is well-orderable”
holds true but BPI(R) fails), implies both statements “ |2R| ≤ |C| ≤
|S(ω)|” and “C has a choice set”.

Theorem 3. (i) BPI(R) → “u = |2R|”. The converse fails in ZF.
(ii) BPI(ω) → “|2u| = |22R |” → UF(ω).
(iii) UF(ω) → “u ≥ |R|” and BPI(ω) → “u > |R|”.
(iv) The conjunction UBPI(ClR, DR) and “every partition of S(ω) has
size ≤ |S(ω)|” implies “u = |2R|”.

Proof. (i) It suffices, in view of (3) to show that u ≥ |2R|. Let C be given
by (5). Since BPI(R) clearly implies BPI(ω) we see that C is a disjoint
family of non-empty sets. We claim that for every i ∈ 2R, Ci is closed.
To see this fix W ∈ S(DR)\Ci. Clearly, there exist H ∈ Hi, W ∈ W with
H ∩W = ∅. Hence, [W ] is a neighborhood of W such that [W ] ∩ Ci = ∅
meaning that Ci is closed.

It is easy to see that G = {Gi : i ∈ 2R} where, for every i ∈ 2R,

Gi = π−1
i (Ci) is a family of closed sets of S(DR)

2R with the fip. Hence,
by the following claim

Claim 1. BPI(R) implies the Tychonoff product S(ω)2
R

is compact.

Proof of Claim 1. This follows from Lemma 1 and the following
results:

(A) [4] S(Dω) is ultrafilter compact.
(B) [3] Products of T2 ultrafilter compact spaces are ultrafilter compact.
(C) [5] BPI(R) implies every ultrafilter compact T3 space Y with a

dense subset D of size |R| is compact.

we have
∩
G ≠ ∅. Clearly, any member g of the latter intersection is a

choice set of C and the function H : 2R → S(DR), H(i) = g(i) is one-to-
one. Thus, |2R| ≤ |S(DR)| = |S(ω)| as required.
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The second assertion is known. The ZF model N in [8] satisfies the
negation of BPI(R) and “R is well-orderable”. Hence, it satisfies “u =
|2R|” also.

(ii) BPI(ω) → “|2u| = |22R |”. By (3) u ≤ |2R|. Hence, |2u| ≤ |22R |. To
see the other direction of the latter inequality we note that the function
H : P(2R)→ P(S(DR)) given by

H(X) =
∪
{Ci : i ∈ X}

where, for every i ∈ 2R, Ci is given by (6) is one-to-one. Indeed, if
X,Y ∈ P(2R), X ̸= Y then X\Y ̸= ∅ or Y \X ̸= ∅. Assume that
X\Y ̸= ∅ and fix i0 ∈ X\Y . Since BPI(ω) implies C = {Ci : i ∈ 2R}
is a partition of S(DR) into non-empty sets it follows that ∅ ̸= Ci0 ⊆
H(X) and Ci0 ∩H(Y ) = ∅. Hence H(X) ̸= H(Y ) and H is one-to-one as
required. Thus, |22R | = |P(2R)| ≤ |P(S(DR))| = |P(u)| = |2u|.

“|2u| = |22R |” → UF(ω). |2u| = |22R | clearly implies u > ℵ0. Hence, ω
has uncountably many ultrafilters and UF(ω) holds true.

(iii) Fix A = {Ai : i ∈ R} an almost disjoint family of infinite subsets
of ω and let, by UF(ω), F be a free ultrafilter on ω. For every i ∈ R, let
fi : ω → Ai be the function given by:

f(n) =

{
min(Ai) if n = 0

min(Ai\{f(j) : j ∈ n}) if n > 0
.

Clearly, fi is a one-to-one and onto function. Hence, for every i ∈ R,Hi =
{fi(F ) : F ∈ F} is a free ultrafilter on Ai and the filter Fi on ω generated
by Hi is a free ultrafilter on ω such that Ai ∈ Fi.

Let f : R → S(ω) be the function given by the rule: f(i) = Fi, i ∈ R.
We claim that f is one-to-one. Assume on the contrary and fix i1, i2 ∈ R,
i1 ̸= i2 such that f(i1) = f(i2). Since, Ai1 ∈ Fi1 , Ai2 ∈ Fi2 ,Fi1 =
Fi2 , Ai1 ∩Ai2 ∈ Fi1 is finite and Fi1 is ultrafilter on ω, it follows that Fi1

is fixed. Contradiction! Thus f is one-to-one and |R| ≤ |S(ω)| = u as
required.

The second assertion is straightforward. From the equality |2u| = |22R |
it follows that 2u > 2R. Hence, u � |R|.

(iv) See the discussion before the statement of the theorem. �

As a corollary to the proof of Theorem 3 (i) we get that BPI(R) implies
that S(ω) is a Loeb space. i.e., the family of all non-empty closed subsets
of S(ω) has a choice function.

Corollary 4. (i) BPI(R) implies that the family G of all non-empty
closed subsets of S(ω) has a choice function.
(ii) BPI(ω) and “S(ω) is a Loeb space” together imply “u = |2R|”.
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Proof. (i) Let G be as in the statement of the corollary. It suffices, in view
of the proof of Theorem 3, to show that |G| ≤ |2R|. The latter inequality
follows at once from the observation that B = {[A] : A ∈ P(ω)} is a base
for the closed sets of S(ω).

(ii) This follows from the discussion before Theorem 3. �

3. Clopen ultrafilters of ω

Proposition 5. (i) Cl(2ω) is countable. In particular, Clω is countable.
(ii) |Cl(2R)| = |R|. In particular, |ClR| = |R|.

Proof. (i) Let B = {Bn : n ∈ ω} be an enumeration of the standard clopen
base of 2ω. Clearly, |[B]<ω| = ℵ0. Since 2ω is compact, it follows that
every clopen set of 2ω, being compact, can be expressed as a finite union
of members of B. Hence, Cl(2ω) is countable. Indeed, if {Qn : n ∈ ω}
is an enumeration of [B]<ω, then the function H : Cl(2ω)\{∅} → ω given
by: H(O) = QnO where, nO = min{n ∈ ω : O =

∪
Qn} is easily seen to

be one-to-one.
The second assertion follows at once from the first part of (i) and the

fact that for every U, V ∈ Cl(2ω) and every dense subset D={Dn : n ∈ ω}
of 2ω if U ̸= V then U ∩D ̸= V ∩D.

(ii) Let B = {[p] : p ∈ Fn(R, 2, ω)} denote the standard clopen base of
2R. Since, |R| ≤ |B| ≤ |Cl(2R)| is clear, it suffices to show that |Cl(2R)| ≤
|R|. Let H : Cl(2R)→ P(DR) be the function given by: H(O) = O∩DR.
Clearly, if U, V ∈ Cl(2R), U ̸= V then U ∩ DR ̸= V ∩ DR. Hence, H

is one-to-one and |Cl(2R)| ≤ |P(DR)| ≤ |R|. Thus, |Cl(2R)| = |R| and
|ClR| = |R| as required. �

For every filter H of B(2R) (resp. every filter F of B(DR)) let FH =
H(H) = {O ∩ DR : O ∈ H} (resp. HF = H−1(F ) = {O ∈ Cl(2R) :
O ∩DR ∈ F}), where H : B(2R) → B(DR) is the mapping given by the
rule: H(O) = O∩DR. Likewise, for every f ∈ 2R, let Hf = {O ∈ Cl(2R) :
f ∈ O} and Ff = FHf

.

Proposition 6. Let H,FH,HF ,Hf and Ff be as in the last paragraph
preceding this proposition. Then:
(i) H is an isomorphism.
(ii) For every filter H of B(2R) (resp. ultrafilter H of B(2R)), FH is
a filter of B(DR) (resp. ultrafilter of B(DR)). In particular, for every
f ∈ 2R, Ff = FHf

is a free ultrafilter of B(DR).
(iii) For every filter F of B(DR) (resp. ultrafilter F of B(DR)), HF is a
filter of B(2R) (resp. ultrafilter of B(2R)).
(iv) Every ClR-ultrafilter has a limit point in 2R.
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Proof. (i) Clearly, H(∅) = ∅, H(2R) = DR and H is onto.
H is one-to-one. Indeed, for every, O,Q ∈ B(2R) with O ̸= Q, O\Q ̸=

∅ or, Q\O ̸= ∅. Assume that O\Q ̸= ∅. Then ∅ ̸= (O\Q) ∩ DR ⊆
(O ∩DR)\(Q ∩DR). Hence, H(O) ̸= H(Q).

To see the rest of the requirements for an isomorphism we note that:
H(O ∪Q) = (O ∪Q) ∩DR = O ∩DR ∪Q ∩DR = H(O) ∪H(Q),
H(O ∩Q) = O ∩Q ∩DR = O ∩DR ∩Q ∩DR = H(O) ∩H(Q),
H(Oc) = DR\O = DR\(O ∩DR) = DR\H(O) = H(O)c.
(ii) Since, by part (i), H is an isomorphism, it follows easily that H

maps filters (resp. ultrafilters) of B(2R) onto filters (resp. ultrafilters of
B(DR)).

The second assertion of (ii) follows from the first part and fact that for
every f ∈ 2R, Hf = {O ∈ Cl(2R) : f ∈ O} is a clopen ultrafilter of 2R

such that
∩
Ff =

∩
{O ∩DR : O ∈ Hf} = ∅.

(iii) This is follows at once from the observation that H−1 : B(DR)→
B(2R),H−1(O ∩DR) = O is also an isomorphism.

(iv) Fix a ClR-ultrafilter W. By part (iii)

(7) R = {O ∈ Cl(2R) : O ∩DR ∈ W}.

is an ultrafilter of B(2R). Since for every x ∈ R, [{(x, 1)}], [{(x, 0)}] ∈
Cl(2R), [{(x, 1)}] ∩ [{(x, 0)}] = ∅, [{(x, 1)}] ∪ [{(x, 0)}] = 2R, it follows
that [{(x, 1)}] ∈ R or [{(x, 0)}] ∈ R but not both. Hence, R converges to
the element f ∈ 2R given by the rule:

(8) f(x) =

{
1 if [{(x, 1)}] ∈ R
0 if [{(x, 0)}] ∈ R , x ∈ R.

Clearly, {f} =
∩
{W : W ∈ W} and consequently f is the unique limit

point of W as required. �

The following implications are obvious:
• BPI(ω)→ BPI(Clω, Dω)→ UBPI(Clω, Dω)→ BPI(Clω);
• BPI(ω)→ BPI(ClR, DR)→ BPI(ClR)→ UBPI(ClR, DR).

Regarding the remaining implications or, non-implications, in Propo-
sition 7 we show:

• BPI(Clω, Dω) and UBPI(Clω, Dω) are equivalent to UF(ω),
• BPI(Clω) is provable in ZF and,
• UBPI(ClR, DR)→ UBPI(Clω, Dω).

In Theorem 8 we show that:
• Both BPI(ClR) and BPI(ClR, DR) are equivalent to BPI(ω).
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Since UF(ω) 9 BPI(ω), (in the model N [Γ] of Theorem 5.2 in [6],
UF(ω) holds true but BPI(ω) fails) and, UF(ω) is unprovable in ZF, it
follows that:

• BPI(Clω, Dω) 9 BPI(ClR, DR) and
BPI(Clω) 9 UBPI(Clω, Dω).

In Theorem 9 we show that:
• UBPI(ClR, DR) is equivalent to CI(ω).

Proposition 7. The following holds:
(i) BPI(Clω).
(ii) BPI(ω) → BPI(ClR, DR) → UBPI(ClR, DR) → UF(ω).
(iii) UF(ω) ↔ BPI(Clω, Dω) ↔ UBPI(Clω, Dω).

Proof. (i) By Proposition 5, Clω is countable. Therefore, given any Clω-
filter, we can extend it via a straightforward induction to a Clω-ultrafilter.

(ii) The implications BPI(ω)→ BPI(ClR, DR)→UBPI(ClR, DR) are
straightforward.

UBPI(ClR, DR) → UF(ω) It suffices to show that there exists a free
ultrafilter on DR. By Proposition 6, for every f ∈ 2R, Ff = {O ∩ DR :
f ∈ O,O is a clopen subset of 2R} is a free ClR-ultrafilter on DR. Hence,
by UBPI(ClR, DR), Ff extends to a free ultrafilter F on DR.

(iii)UBPI(Clω, Dω)→UF(ω) This can be proved as in UBPI(ClR,DR)
→ UF(ω).

UF(ω) → BPI(Clω, Dω) Fix H a Clω-filter. Since, by Proposition 5,
Cl(2ω) is countable, it follows that H is countable. It is straightforward
to verify that there exists an infinite subset S of ω such that |S\H| < ℵ0
for every H ∈ H. By our hypothesis S has a free ultrafilter W. Hence,
the filter F on ω generated byW is the required ultrafilter on ω extending
H.

BPI(Clω, Dω)→ UBPI(Clω, Dω). This is obvious. �

Theorem 8. The following are equivalent: (i) BPI(ClR, DR).
(ii) BPI(ClR) (: Every ClR-filter extends to a ClR-ultrafilter).
(iii) BPI(ω).
(iv) The Tychonoff product 2R is compact.
(v) Every closed filter of 2R is included in a closed ultrafilter.
(vi) Every filter of B(2R) is included in an ultrafilter of B(2R).
(vii) Every open filter of 2R is included in an open ultrafilter.
(viii) S(ω) is compact.
(ix) For every countable dense set D of 2R every D-filter has a limit point.
(x) Every ClR-filter has a limit point.
Consequently, UF(ω) does not imply BPI(ClR, DR).
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Proof. (iv) ↔ (v) ↔ (vi) ↔ (vii). These have been established in [9].
(iii) ↔ (iv) has been established in [8].
(iii) ↔ (viii) is well known. See, e.g., [5].
(iii) → (i), (iv) → (ix), (ix) → (x) These are straightforward.
(i) → (ii) Fix H an ClR-filter and let, by our hypothesis, F be an

ultrafilter on DR extending H. It is easy to see that W = F ∩ ClR is a
ClR-ultrafilter extending H.

(ii)→ (iii) It suffices in view of (iii)→ (i) and (iii)↔ (iv) to show that
(ii) → (iv). Let U = {[pi] : i ∈ I, pi ∈ Fn(R, 2, ω)} be a basic open cover
of 2R. Assume, aiming for a contradiction, that U has no finite subcover.
Clearly, the family G = {[pi]c ∩ DR : i ∈ I} ⊆ ClR has the fip. Let, by
our hypothesis, F be a ClR-ultrafilter extending the ClR-filter generated
by G. Since

[pi]
c =

∪
{[{(x, 1− pi(x))}] : x ∈ Dom(pi)},

it follows easily that for every i ∈ I there exists x ∈ Dom(pi) such that
[{(x, 1− pi(x))}] ∩DR ∈ F . Let h ∈ 2R be the element given by the rule:
h(x) = j ∈ 2 provided [{(x, j)}] ∩ DR ∈ F . It is straightforward to see
that h ∈

∩
{[pi]c : i ∈ I}. Hence, U is not a cover of 2R. Contradiction!

(x)→ (iv) Fix U as in the proof of (ii)→ (iii). If U has no finite subcover
then the ClR-filter F generated by G = {[pi]c ∩ DR : i ∈ I} has, by our
hypothesis, a limit point f . Since for all i ∈ I, f ∈ [pi]c ∩DR = [pi]c ∩
DR = [pi]

c it follows that f ∈
∩
{[pi]c : i ∈ I}. Hence, f /∈

∪
{[pi] : i ∈ I}

and U is not a cover of 2R. Contradiction!
The second assertion follows from the fact that in the Model N [Γ] in [6]

there exists a free ultrafilter on ω but the product 2R is not compact. �

Theorem 9. The following are equivalent: (i) CI(ω) (: 2R is the con-
tinuous image of S(ω)).
(ii) Every ClR-filter with a limit point extends to an ultrafilter on DR.
(iii) UBPI(ClR, DR).

Proof. (i) → (ii) Fix a continuous onto function H : S(ω) → 2R and
let D = {hn : n ∈ ω} where for every n ∈ ω, hn = H(Fn). Since
D = {Fn : n ∈ ω} is dense in S(ω) and H is continuous, it follows that
D is a countably infinite dense subset of 2R. Without loss of generality
we may assume that D = DR.

Fix a ClR-filter W with a limit point f . Clearly, W extends to a
ClR-ultrafilter. So, we may assume that W is a ClR-ultrafilter. Let R
be given by (7). We show that W extends to an ultrafilter U on DR.
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Clearly, for every O ∈ R, f ∈ O. Since H is onto 2R, there is F ∈ S(ω)
with H(F) = f . It is easy to see that

Q = {{Fn : n ∈ F} : F ∈ F}

is an ultrafilter of D. Let UF be the ultrafilter of S(ω) generated by
Q. We claim that UF converges to F . Indeed, if [F ], F ∈ F is a basic
neigborhood of F then {Fn : n ∈ F} ∈ UF . Since, {Fn : n ∈ F} ⊆ [F ] it
follows that [F ] ∈ UF . Hence, limUF = F as required. Since H is onto we
have that H(UF ) is an ultrafilter of 2R. Furthermore, by the continuity
of H we infer that

limH(UF ) = H(limUF ) = H(F) = f .

Hence, the neighborhood base Vf of all open neighborhoods of f is in-
cluded in H(UF ). In particular, R ⊆ H(UF ). Since DR ∈ H(UF ) (ω ∈ F
implies D ∈ UF and consequently DR = H(D) ∈ H(UF )), it follows that
U = P(DR)∩H(UF ) is an ultrafilter on DR. Since,W = {O∩DR : O ∈ R}
andR ⊆ H(UF ), we have that for every O ∈ R, O∩DR ∈ H(UF )∩P(DR).
Hence, W ⊆ U and UBPI(Clω, ω) holds true as required.

(ii)→ (iii) This is straightforward. (Every ClR-ultrafilterW converges
to a point f of 2R. Hence, f is a limit point of W. Therefore, by (ii) W
extends to an ultrafilter on DR).

(iii)→ (i) Fix {dn : n ∈ ω} an enumeration of DR. Since 2R is ultrafilter
compact and T2 it follows easily that every ultrafilter H on DR converges
to a unique point gH ∈ 2R. Since, for every F ∈ S(ω), HF = {{dn :
n ∈ F} : F ∈ F} is an ultrafilter on DR, HF converges to a unique point
gF ∈ 2R. Let f : S(ω)→ 2R be the function given by the rule: f(F) = gF
where,

(9) {gF} =
∩
{{dn : n ∈ F} : F ∈ F}.

Clearly, for every n ∈ ω,

(10) f(Fn) = dn.

We claim that f is continuous. To see this, fix W a filter of S(ω) such
that limW = FW . Clearly,

(11) Q = {[F ] : F ∈ FW} ⊆ W

is a filterbase of S(ω). Since, for every F ∈ FW , {Fn : n ∈ F} ⊆ [F ] we
conclude in view of (10) that

(12) {dn : n ∈ F} = {f(Fn) : n ∈ F} ⊆ f([F ]).

On the other hand if h ∈ f([F ]) then, by (9), {h} =
∩
{{dn : n ∈ H} :

H ∈ H} for some H ∈ [F ]. Since F ∈ H we see that h ∈ {dn : n ∈ F}
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and consequently

(13) f([F ]) ⊆ {dn : n ∈ F}.

From (12) and (13) we conclude that for every F ∈ FW ,

(14) f([F ]) = {dn : n ∈ F}.

From (9) and (14), it follows that
∩
{f([F ]) : F ∈ FW} =

∩
{{dn : n ∈ F} :

F ∈ FW} = {gFW}. Thus, lim f(Q) = gFW = f(Fw). From (11) it fol-
lows that lim f(W) = lim f(Q) = f(Fw) = f(limW) meaning that f is
continuous.

To complete the proof we need to show that f is onto. Fix g ∈ 2R

and let, by our hypothesis, F be an ultrafilter on DR extending the ClR-
ultrafilter

W = {O ∩DR : O ∈ cl(2R) and g ∈ O}.

Since F is an ultrafilter on DR, it follows easily that

Ug = {UF : F ∈ F} where for every F ∈ F , UF = {n ∈ ω : dn ∈ F}

is an ultrafilter on ω. Since {[p] ∩ DR : p ∈ [g]<ω} ⊆ W ⊆ F and
[p] ∩DR = [p] we have:

f(Ug) =
∩
{{dn : n ∈ UF } : F ∈ F} =

∩
{F : F ∈ F} ⊆

∩
{[p] ∩DR :

p ∈ [g]<ω} =
∩
{[p] : p ∈ [g]<ω} = {g}. Thus, f(F) = g and f is onto as

required. �

Corollary 10. (i) UBPI(ClR, DR) implies “S(ω) is countably compact
with respect to the base Cω = {[A] : A ∈ P(ω)} of closed subsets of S(ω)”.
(ii) UBPI(ClR, DR) and CCS(ω) together imply “2R is countably com-
pact”.

Proof. (i) Fix A = {[An] : n ∈ ω} a family of members of Cω with the fip.
Without loss of generality we may assume that A is strictly descending.
We show that

∩
{[An] : n ∈ ω} ̸= ∅. Clearly, for every n ∈ ω,An ⊇

An+1 and An ̸= An+1. If not then there exists m ∈ An+1\An and the
fixed ultrafilter Fm of all supersets of {m} satisfies Fm ∈ [An+1]\[An]
contradicting the fact that [An] ⊇ [An+1]. Let A = {an : n ∈ ω} where
for all n ∈ ω, an ∈ An\An+1. Fix, by our hypothesis and Proposition 7, a
free ultrafilter F on A. Clearly, for every n ∈ ω, An ∈ F and consequently
F ∈

∩
{[An] : n ∈ ω} ̸= ∅ as required.

(ii) Since, S(ω) is countably compact and, by UBPI(ClR, DR) and
Theorem 9, 2R is a continuous image of S(ω), it follows that 2R is count-
ably compact as well. �
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Remark 2. (i) In the model N [Γ] of Theorem 5.2 in [6], ω has a free
ultrafilter but there is a family A = {{Ai, Bi} : Ai, Bi ∈ P(R), i ∈ ω}
without a choice set. Hence, by Corollary 10 and the following result
from [9],

Theorem 11. [9] “2R is countably compact” implies “every family A =
{{Ai, Bi} ⊆ P(R)\{∅} : i ∈ ω} has a choice set”.

in N [Γ] at least one of the statements: CCS(ω) and UBPI(ClR, DR)
fails.

(ii) Unlike the statement UBPI(ClR, DR) its analogue “every ultrafilter
H of E = {[X]∩D : X ∈ P(ω)} extends to an ultrafilter of D” holds true
in ZF. Indeed, if H is an E-ultrafilter, then for every X ∈ P(ω), either
[X]∩D ∈ H or [Xc]∩D = [X]c∩D ∈ H. Hence,W = {X ∈ P(ω) : [X]∩
D ∈ H} is an ultrafilter on ω and consequently H = {[X] ∩D : X ∈ W}
is an ultrafilter of D.

(iii) It is known, see e.g., [5] that S(ω) embeds as a closed subspace
of 2R. The function T : S(ω) → 2P(ω) given by: T (F) = XF where, XF
denotes the characteristic function of F is such an embedding. Hence,
“2R is countably compact” implies CCS(ω).

Next we show that the conjunction UBPI(ClR, DR) and CCS(ω) im-
plies “every family A = {{Ai, Bi} : Ai, Bi ∈ P(R), i ∈ ω} has a choice
set” and, the second part of the latter conjunction implies the weaker
statement “every family A = {{Ai, Bi} ⊆ [R]ω : i ∈ ω} has a choice set”.

Theorem 12. (i) CCS(ω) implies “every family A = {{Ai, Bi} ⊆ [R]ω :
i ∈ ω} has a choice set”.
(ii) The conjunction UBPI(ClR, DR) and CCS(ω) implies “every family
A = {{Ai, Bi} : Ai, Bi ∈ P(R), i ∈ ω} has a choice set”.

Proof. (i) Fix a family A = {{Ai, Bi} ⊆ [R]ω : i ∈ ω}. Without loss of
generality we may assume that for all i ∈ ω, Ai ∩ Bi = ∅ and, for all
i, j ∈ ω, i ̸= j, (Ai ∪ Bi) ∩ (Aj ∪ Bj) = ∅. For every i ∈ ω let Si = {F ∈
S(DR) : (∀x ∈ Ai)([{(x, 1)}]∩DR) ∈ F ∧ (∀x ∈ Bi)([{(x, 0)}]∩DR) ∈ F},
Qi = {F ∈ S(DR) : (∀x ∈ Ai)([{(x, 0)}]∩DR) ∈ F∧(∀x ∈ Bi)([{(x, 1)}]∩
DR) ∈ F}. Since {[{(x, 1)}] ∩ DR : x ∈ Ai}∪ {[{(x, 0)}] ∩ DR : x ∈ Bi}
has the fip it follows that {[[{(x, 1)}]∩DR] : x ∈ Ai}∪ {[[{(x, 0)}] ∩DR] :
x ∈ Bi} has the fip. Since Ai∪Bi is countable it follows by CCS(ω) that
Si =

∩
{[[{(x, 1)}] ∩ DR] : x ∈ Ai} ∩

∩
{[[{(x, 0)}] ∩ DR] : x ∈ Bi} ̸= ∅.
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Similarly Qi, is a non-empty subset of S(DR). We show that Si is a
closed subset of S(ω). To see this, fix H ∈ S(ω)\Si. By the definition
of Si, there exists x ∈ Ai such that [{(x, 1)}] ∩DR) /∈ H or, there exists
x ∈ Bi with [{(x, 0)}] ∩ DR) /∈ H. Assume that the former is the case.
Thus, (DR ∩ [{(x, 0)}]) ∈ H and [DR ∩ [{(x, 0)}]] is a neigborhood of H
avoiding Si. Hence, Si is closed as required. Similarly, for every i ∈ ω,
Qi is non-empty and closed. Hence, for every i ∈ ω, Gi = Si ∪ Qi

is a closed non-empty subset of S(ω). Put G = {Gi : i ∈ ω}. We
claim that G has the fip. To this end, it suffices to show that for every
n ∈ N,

∩
{Si : i ≤ n} ̸= ∅. Fix n ∈ N and let A =

∪
{Ai : i ≤ n} and

B =
∪
{Bi : i ≤ n}. Since A ∪ B is countable it follows by CCS(ω)

and the above argument that
∩
{Si : i ≤ n} ⊇ {F ∈ S(DR) : (∀x ∈

A)([{(x, 1)}]∩DR) ∈ F∧(∀x ∈ B)([{(x, 0)}]∩DR) ∈ F} ̸= ∅. By CCS(ω)
again it follows that

∩
G ̸= ∅. Fix F ∈

∩
G. Clearly, the function f given

by the rule:

f(i) =

{
Ai if F ∈ Si

Bi if F ∈ Qi

is a choice function for the family A finishing the proof of (i).

(ii) Fix a family A = {{Ai, Bi} ⊆ P(R) : i ∈ ω}. Mimic the proof of
part (i) and use the extra hypothesis UBPI(ClR, DR) to show that the
sets Si, Qi are non-empty. We leave the details as an easy exercise for
the reader.

For an indirect proof, combine part (ii) of Corollary 10 with the fol-
lowing result from [9]: “2R is countably compact” implies “every family
A = {{Ai, Bi} ⊆ P(R)\{∅} : i ∈ ω} has a choice set”. �

4. Summary

• UF(ω)↔ BPI(Clω, Dω)↔ UBPI(Clω, Dω) (Proposition 7).
• BPI(ω) ↔ BPI(ClR, DR) ↔ BPI(ClR) ↔ S(ω) is compact ↔
2R is compact (Theorem 8).
• UBPI(ClR, DR)↔ CI(ω) (Theorem 9).

The following diagram records some of the implications and
non-implications between the statements UF(ω), BPI(ω), BPI(R),
BPI(Clω), BPI(Clω, Dω), UBPI(Clω, Dω), BPI(ClR), BPI(ClR, DR),

UBPI(ClR, DR), “u = |2R|”, “|2u| = |22R |”, CI(ω) and CCS(ω) as well
as, the implications which remain open.
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UF(ω)

↗
(?↙)

↑ ̸↓ ↖
(↘?)

|2u| = |22R | ←
(→?)

BPI(ω)
→
(?←)

CI(ω)

↑ (↓?) (↗?)(↙?) ↑ ̸↓ ↘ (↖?) (↓?)(↑?)

u = |2R| ←
9 BPI(R) →

(?←)
CCS(ω)

Diagram 1
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