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REMARKS ON POINTED DIGITAL HOMOTOPY

LAURENCE BOXER AND P. CHRISTOPHER STAECKER

Abstract. We present and explore in detail a pair of digital im-
ages with cu-adjacencies that are homotopic but not pointed ho-
motopic. For two digital loops f, g : [0,m]Z → X with the same
basepoint, we introduce the notion of tight at the basepoint (TAB)
pointed homotopy, which is more restrictive than ordinary pointed
homotopy and yields some different results.

We present a variant form of the digital fundamental group.
Based on what we call eventually constant loops, this version of the
fundamental group is equivalent to that of [2], but offers advantages
that we discuss.

We show that homotopy equivalent digital images have isomor-
phic fundamental groups, even when the homotopy equivalence
does not preserve the basepoint. This assertion appeared in [3],
but there was an error in the proof; here, we correct the error.

1. Introduction

Digital topology adapts tools from geometric and algebraic topology to
the study of digital images. Fundamental questions concerning the form
and motion of a digital image are considered using tools of this field. The
following appears in the abstract of [18].

Digital topology deals with the topological properties of
digital images.... It provides the theoretical foundations
for important image processing operations such as con-
nected component labeling and counting, border follow-
ing, contour filling, and thinning - and their generaliza-
tions to three- (or higher-) dimensional “images.”
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20 LAURENCE BOXER AND P. CHRISTOPHER STAECKER

Concerning the digital fundamental group (although it’s a somewhat dif-
ferent version of the fundamental group than used in the current paper),
we find in [17]:

... the digital fundamental group has an immediate ap-
plication to the theory of 3-d image thinning algorithms.
For in order to preserve “tunnels” a 3-d thinning algorithm
must preserve the digital fundamental groups of the input
binary picture.

Relations between other image processing operations and digital topology
are explored in papers such as [11, 12, 6, 8].

In this paper, we consider questions of pointed homotopy in digital
topology. Homotopy can be thought of as a body of mathematics un-
derlying continuous motion and continuous deformation. Thus, digital
homotopy underlies a great deal of digital animation and can help answer
questions in object recognition of the form could object A be a match to
object B? Pointed homotopy is concerned with questions of continuous
deformations in which some point must be held fixed.

We give an example showing that homotopy equivalence between dig-
ital images (X, cu) and (Y, cv) does not imply pointed homotopy equiv-
alence between these images. This can be interpreted as showing that
there are images X and Y that have the same form such that X cannot
be continuously deformed to match Y unless every point of X is disturbed
by the deforming transformation. This example is then used to illustrate
a new variant on the pointed homotopy of digital loops. We present an
alternate version of the digital fundamental group that is equivalent to,
but has advantages over, the version introduced in [2]. We correct the ar-
gument of [3] for the assertion that homotopy equivalent connected digital
images (X,κ) and (Y, λ) have isomorphic fundamental groups Πκ

1 (X,x0)
and Πλ

1 (Y, y0).

2. Preliminaries

Much of the material in this section is quoted or paraphrased from [7].

2.1. General properties. Let Z be the set of integers. A (binary) digital
image is a pair (X,κ), where X ⊂ Zn for some positive integer n, and κ
is some adjacency relation for the members of X.

Adjacency relations commonly used in the study of digital images in
Zn include the following [14]. For an integer u such that 1 ≤ u ≤ n, we
define an adjacency relation as follows. Points

p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn)

are cu-adjacent [4] if



REMARKS ON POINTED DIGITAL HOMOTOPY 21

• p 6= q, and
• there are at most u distinct indices i for which |pi − qi| = 1, and
• for all indices i, if |pi − qi| 6= 1 then pi = qi.

We often denote a cu-adjacency in Zn by the number of points that
are cu-adjacent to a given point in Zn. E.g.,

• in Z1, c1-adjacency is 2-adjacency;
• in Z2, c1-adjacency is 4-adjacency and c2-adjacency is 8-adjacency.
• in Z3, c1-adjacency is 6-adjacency, c2-adjacency is 18-adjacency,

and c3-adjacency is 26-adjacency.
More general adjacency relations appear in [15]. The work in [13] treats

digital images as abstract sets of points with arbitrary adjacencies with-
out regard for their embeddings in Zn.

Definition 2.1. [1] Let a, b ∈ Z, a < b. A digital interval is a set of the
form

[a, b]Z = {z ∈ Z | a ≤ z ≤ b}
in which c1-adjacency is assumed. �

The following generalizes an earlier definition of [21].

Definition 2.2. [2] Let (X,κ) and (Y, λ) be digital images. Then the
function f : X → Y is (κ, λ)-continuous if and only if for every pair of
κ−adjacent points x0, x1 ∈ X, either f(x0) = f(x1), or f(x0) and f(x1)
are λ−adjacent. �

See also [9, 10], where similar concepts are named immersion, gradually
varied operator, or gradually varied mapping.

A path from p to q in (X,κ) is a (2, κ)-continuous function F : [0,m]Z →
X such that F (0) = p and F (m) = q. For a given path F , we define the
reverse path, F−1 : [0,m]Z → X defined by F−1(t) = F (m− t). A loop is
a path F : [0,m]Z → X such that F (0) = F (m).

2.2. Digital homotopy. Intuitively, a homotopy between continuous func-
tions f, g : X → Y is a continuous deformation of, say, f over a time
period until the result of the deformation coincides with g.

Definition 2.3. ([2]; see also [16]) Let X and Y be digital images. Let
f, g : X → Y be (κ, λ)−continuous functions and suppose there is a
positive integer m and a function

F : X × [0,m]Z → Y

such that
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• for all x ∈ X, F (x, 0) = f(x) and F (x,m) = g(x);
• for all x ∈ X, the induced function Fx : [0,m]Z → Y defined by

Fx(t) = F (x, t) for all t ∈ [0,m]Z,

is (c1, λ)−continuous;
• for all t ∈ [0,m]Z, the induced function Ft : X → Y defined by

Ft(x) = F (x, t) for all x ∈ X,

is (κ, λ)−continuous.
Then F is a digital (κ, λ)−homotopy between f and g, and f and g are
(κ, λ)-homotopic in Y . If m = 1, then f and g are homotopic in 1 step.

If, further, there exists x0 ∈ X such that F (x0, t) = F (x0, 0) for all
t ∈ [0,m]Z, we say F is a pointed homotopy. If g is a constant function,
we say F is a nullhomotopy, and f is nullhomotopic. �

The notation f '(κ,λ) g indicates that functions f and g are digitally
(κ, λ)−homotopic in Y . If κ = λ, we abbreviate this as f 'κ g. When
the adjacencies are understood we simply write f ' g.

Digital homotopy is an equivalence relation among digitally continuous
functions [16, 2].

Let H : [0,m]Z × [0, n]Z → X be a homotopy between paths f, g :
[0,m]Z → X. We say H holds the endpoints fixed if f(0) = H(0, t) = g(0)
and f(m) = H(m, t) = g(m) for all t ∈ [0, n]Z. If f and g are loops, we
say H is loop preserving if H(0, t) = H(m, t) for all t ∈ [0, n]Z. Notice
that if f and g are loops and H holds the endpoints fixed, then H is a
loop preserving pointed homotopy between f and g.

As in classical topology, we say two digital images (X,κ) and (Y, λ)
are homotopy equivalent when there are continuous functions f : X → Y
and g : Y → X such that g ◦ f '(κ,λ) 1X and f ◦ g '(λ,κ) 1Y .

2.3. Digital fundamental group. The fundamental group is an invari-
ant of the (unpointed) homotopy type of a digital image (Theorem 5.3),
and it is often easier to compute the fundamental groups of images X and
Y than to decide directly whether these images have the same homotopy
type. Thus, the fundamental group is a useful tool in studying the form
of a digital image.

If f and g are paths in X such that g starts where f ends, the product
(see [16]) of f and g, written f ∗ g, is, intuitively, the path obtained by
following f , then following g. Formally, if f : [0,m1]Z → X, g : [0,m2]Z →
X, and f(m1) = g(0), then (f ∗ g) : [0,m1 +m2]Z → X is defined by

(f ∗ g)(t) =

{
f(t) if t ∈ [0,m1]Z;
g(t−m1) if t ∈ [m1,m1 +m2]Z.
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Restriction of loop classes to loops defined on the same digital interval
would be undesirable. The following notion of trivial extension to permit a
loop to “stretch” within the same pointed homotopy class. In section 4, we
will introduce a different method of “stretching” a loop within its pointed
homotopy class. Intuitively, f ′ is a trivial extension of f if f ′ follows the
same path as f , but more slowly, with pauses for rest (subintervals of the
domain on which f ′ is constant).

Definition 2.4. [2] Let f and f ′ be loops in a pointed digital image
(X,x0). We say f ′ is a trivial extension of f if there are sets of paths
{f1, f2, . . . , fk} and {F1, F2, . . . , Fp} in X such that

(1) 0 < k ≤ p;
(2) f = f1 ∗ f2 ∗ . . . ∗ fk;
(3) f ′ = F1 ∗ F2 ∗ . . . ∗ Fp;
(4) there are indices 1 ≤ i1 < i2 < . . . < ik ≤ p such that

• Fij = fj , 1 ≤ j ≤ k, and
• i 6∈ {i1, i2, . . . , ik} implies Fi is a trivial loop. �

This notion lets us compare the digital homotopy properties of loops
whose domains may have differing cardinality, since if m1 ≤ m2, we can
obtain [2] a trivial extension of a loop f : [0,m1]Z → X to f ′ : [0,m2]Z →
X via

f ′(t) =

{
f(t) if 0 ≤ t ≤ m1;
f(m1) if m1 ≤ t ≤ m2.

Observe that every digital loop f is a trivial extension of itself.

Definition 2.5. ([14], correcting an earlier definition in [3]). Two loops
f0, f1 with the same base point p ∈ X belong to the same loop class [f ]X
if they have trivial extensions that can be joined by a homotopy H that
keeps the endpoints fixed. �

When X is understood, we will often use the notation [f ] for [f ]X .
It was incorrectly asserted as Proposition 3.1 of [3] that the assumption

in Definition 2.5, that the homotopy keeps the endpoints fixed, could be
replaced by the weaker assumption that the homotopy is loop-preserving;
the error was pointed out in [5].

Membership in the same loop class in (X,x0) is an equivalence relation
among loops [2].

The digital fundamental group is derived from a classical notion of al-
gebraic topology (see [19, 20, 22]). The version discussed in this section
is that developed in [2]. The next result is used in [2] to show the product
operation of our digital fundamental group is well defined.
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Proposition 2.6. [2, 16] Let f1, f2, g1, g2 be digital loops based at x0 in
a pointed digital image (X,x0), with f2 ∈ [f1]X and g2 ∈ [g1]X . Then
f2 ∗ g2 ∈ [f1 ∗ g1]X . �

Let (X,x0) be a pointed digital image; i.e., X is a digital image, and
x0 ∈ X. Define Π1(X,x0) to be the set of loop classes [f ]X in X with
base point x0. When we wish to emphasize an adjacency relation κ, we
denote this set by Πκ

1 (X,x0). By Proposition 2.6, the product operation

[f ]X · [g]X = [f ∗ g]X

is well defined on Π1(X,x0); further, the operation · is associative on
Π1(X,x0) [16].

Lemma 2.7. [2] Let (X,x0) be a pointed digital image. Let x0 : [0,m]Z →
X be a constant loop with image {x0}. Then [x0]X is an identity element
for Π1(X,x0). �

Lemma 2.8. [2] If f : [0,m]Z → X represents an element of Π1(X,x0),
then the reverse loop f−1 is an element of [f ]−1X in Π1(X,x0). �

Theorem 2.9. [2] Π1(X,x0) is a group under the · product operation,
the fundamental group of (X,x0). �

Theorem 2.10. [2] Suppose F : (X,κ, x0)→ (Y, λ, y0) is a pointed con-
tinuous function. Then F induces a homomorphism F∗ : Πκ

1 (X,x0) →
Πλ

1 (Y, y0) defined by F∗([f ]) = [F ◦ f ]. �

3. Homotopy Equivalent Images that Aren’t Pointed
Homotopy Equivalent

In [3], it was asked if, given digital images (X,κ) and (Y, λ) that are
homotopy equivalent, must (X,x0, κ) and (Y, y0, λ) be pointed homotopy
equivalent for arbitrary base points x0 ∈ X, y0 ∈ Y ? The paper [13]
gives an example, not using any of the cu-adjacencies, that answers this
question in the negative. It is desirable to have an example that uses
cu-adjacencies. In this section, we give such an example by modifying
that of [13].

Example 3.1. Let X = {xi}10i=0 ⊂ Z2 where x0 = (2, 0), x1 = (1, 1),
x2 = (0, 2), x3 = (−1, 2), x4 = (−2, 1), x5 = (−2, 0), x6 = (−2,−1),
x7 = (−1,−2), x8 = (0,−2), x9 = (1,−1), x10 = (0, 0). Let Y =
X \ {x0} = {xi}10i=1. We consider both X and Y as digital images with
c2-adjacency. See Figure 1. �
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Figure 1. A figure X = {xi}10i=0 and its subset Y =
X \ {x0} that are homotopy equivalent but not pointed
homotopy equivalent as images in Z2 with c2-adjacency

Proposition 3.2. Let X and Y be the images of Example 3.1. Then X
and Y are (c2, c2)-homotopy equivalent.

Proof. Let f : X → Y be defined by

f(xi) =

{
xi+1 if 0 ≤ i ≤ 9;
x1 if i = 10.

Let g : Y → X be the inclusion map. Clearly, both f and g are (c2, c2)-
continuous. The function H : X × [0, 1]Z → X defined by

H(xi, t) =

{
f(xi) = g ◦ f(xi) if t = 0;
xi if t = 1,

is clearly a (c2, c2)-homotopy between g ◦ f and 1X . The function K :
Y × [0, 1]Z → Y defined by

K(xi, t) =

{
f(xi) = f ◦ g(xi) if t = 0 and 1 ≤ i ≤ 10;
xi if t = 1 and 1 ≤ i ≤ 10,

is clearly a (c2, c2)-homotopy between f ◦ g and 1Y . Thus, (X, c2) and
(Y, c2) are homotopy equivalent. �

Proposition 3.3. Let Y = {xi}10i=1 be as above. Let h : (Y, c2)→ (Y, c2)
be a continuous map such that h(x) = x for some x ∈ Y and h is (c2, c2)-
homotopic to 1Y in 1 step. Then h = 1Y .

Proof. For convenience, we prove the statement in the case where x = x1.
Since (Y, c2) is a simple cycle of 10 points, the same argument will work
for any other value of x.
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Since h is (c2, c2)-homotopic to 1Y in 1 step, h(xi) and xi are c2-
adjacent or equal for all i. Suppose h 6= 1Y . Since h(x1) = x1, by
c2-continuity, h(xi) ∈ {xi−1, xi} for 2 ≤ i ≤ 10, and since h 6= 1Y , there
is a j0 such that 2 ≤ j0 ≤ 10 and h(xj) = xj−1 for j0 ≤ j ≤ 10. In
particular, h(x10) = x9, so we have a discontinuity since the c2-adjacent
points x1 and x10 do not have c2-adjacent images under h. Since h was as-
sumed continuous, the contradiction leads us to conclude that h = 1Y . �

A similar argument shows the following.

Corollary 3.4. Let X = {xi}10i=0 be as above. Let h : (X, c2) → (X, c2)
be a continuous map such that h(x0) = x0 and h is homotopic in 1 step
to 1X . Then h = 1X . �

Proposition 3.5. Let X = {xi}10i=0 and Y = X \ {x0} be as above. Then
for any x ∈ X and y ∈ Y , (X,x) and (Y, y) are not pointed (c2, c2)-
homotopy equivalent.

Proof. Suppose otherwise. Then for some x ∈ X and y ∈ Y , there are
(c2, c2)-continuous pointed maps f : (X,x) → (Y, y) and g : (Y, y) →
(X,x) such that f ◦ g is pointed homotopic to 1X and g ◦ f is pointed
homotopic to 1Y .

First we argue that g ◦ f must in fact equal 1X . Since f and g are
pointed maps we have g ◦ f(x) = x, and our pointed homotopy from g ◦ f
to 1X will fix x at all stages. If g ◦ f were not 1X , then there would be
some final stage h of the pointed homotopy from g ◦ f to 1X for which
h 6= 1X but h is pointed homotopic to 1X in one step. This is impossible
by Proposition 3.3, and so we conclude that g ◦ f = 1X . Similarly, using
Corollary 3.4, we have f ◦ g = 1Y .

Since f ◦ g = 1Y and g ◦ f = 1X , it follows that X and Y are (c2, c2)-
isomorphic images, which is impossible, as X and Y have different cardi-
nalities. The assertion follows. �

Example 3.1 is an image in Z2 with c2-adjacency that exhibits inter-
esting pointed homotopy properties. We remark that images exist in Z2

with c1-adjacency with similar properties. The image in Figure 2 exhibits
the same behavior as that of Example 3.1.

Let X be the digital image in Example 3.1, and define two loops f, g :
[0, 10]Z → X as follows:

f = (x1, x2, . . . , x9, x10, x1)

g = (x1, x2, . . . , x9, x0, x1).
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Figure 2. An image in Z2 with c1-adjacency having the
same properties as in Example 3.1.

These loops are equivalent in Π1(X,x1): consider the following trivial
extensions

f ′ = (x1, x2, x3, . . . , x9, x10, x1, x1)

g′ = (x1, x1, x2, . . . , x8, x9, x0, x1).

These loops f ′ and g′ are homotopic in one step, and so f and g are
equivalent in Π1(X,x1). Notice that the one-step equivalence above uses
trivial extensions at the base point x1. That is, there is some t with
f ′(t) = f ′(t + 1) = x1, and likewise for g′. In fact this is necessary for
any equivalence between f and g, as the following proposition shows.

Proposition 3.6. Let X be as in Example 3.1. Let f and g be the loops
described above. Let f ′, g′ : [0, k]Z → X be trivial extensions of f and
g that are homotopic by H(t, s) : [0, k]Z × [0, n]Z → X. Then there is
some time p ∈ [0, n]Z and intermediate stage of the homotopy H, i.e.,
h : [0, k]Z → X defined by h(t) = H(t, p), such that h(k− 1) = h(k) = x1.
Similarly there is some q ∈ [0, n]Z and intermediate stage of the ho-
motopy H, i.e., l : [0, k]Z → X defined by l(t) = H(t, q), such that
l(0) = l(1) = x1.

Proof. We will prove the first statement; the second follows similarly.
Suppose that no intermediate loop h obeys h(k−1) = h(k) = x1. Then we
have H(k−1, s) 6= x1 for all s. We must in particular have f ′(k−1) 6= x1,
and so f ′(k − 1) = x10 since f ′ is a trivial extension of f .

Thus, considering H(k − 1, s) for various s gives a path from
H(k − 1, 0) = f ′(k − 1) = x10 to g′(k − 1) = x0 which never passes
through x1. Because of the structure of our image X, this path must at
some point pass through x9. Thus there is some r with H(k− 1, r) = x9.
But H(k, r) = x1 since all stages of H are loops at x1. This contradicts
continuity of H from H(k− 1, r) to H(k, r) since x9 is not adjacent to x1
in X. �
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Thus we see that f and g are equivalent as loops in Π1(X,x1), but this
equivalence requires trivial extensions at the base point. This suggests a
finer equivalence relation than the one used for the fundamental group,
one in which loops are equivalent only by homotopies that do not extend
the base point. Specifically, we call a loop f tight at the basepoint (TAB)
x0 when there is no t with f(t) = f(t + 1) = x0. Two TAB loops are
called TAB equivalent when there are TAB trivial extensions that are
homotopic by a homotopy that is TAB in each stage.

Thus our example loops f and g above are equivalent in Π1(X,x1), but
not TAB equivalent, because any homotopy of trivial extensions must have
a non-TAB intermediate stage. The equivalence classes using the TAB
relation seem to have interesting and subtle structure, but they do not
naturally form a group with respect to the product operation, as we show
below.

Consider the product of f and the reverse of g, which has the form:

f ∗ g−1 = (x1, x2, . . . , x9, x10, x1, x0, x9, . . . , x2, x1).

Note that f ∗ g−1 is nullhomotopic, using only TAB loops as interme-
diate steps. The first step of the nullhomotopy is as follows:

(x1, x2, . . . , x9, x10, x1, x0, x9, . . . , x2, x1) to
(x1, x2, . . . , x9, x9, x0, x0, x9, . . . , x2, x1),

and then the loop deforms continuously to a constant map (x1, x1, . . . , x1)
in an obvious way.

Since f and g are not TAB equivalent, but f ∗ g−1 is pointed null-
homotopic, the TAB relation, which is finer than the equivalence used
in Π1(X,x1), cannot be used to define a group. Nevertheless the TAB
equivalence provides subtle and interesting information about loops in our
space.

4. A new formulation of the Fundamental Group

The equivalence relation of Definition 2.5 used to define the funda-
mental group relies on trivial extensions, which are often cumbersome to
handle. In this section we give an equivalent definition of the fundamental
group which does not require trivial extensions. Our construction instead
is based on eventually constant paths. Let N = {1, 2, . . . } denote the nat-
ural numbers, and N∗ = {0} ∪ N. We consider N∗ to be a digital image
with 2-adjacency.

Definition 4.1. Given a digital image X, a continuous function f : N∗ →
X is called an eventually constant path or EC path if there is some point
c ∈ X and some N ≥ 0 such that f(x) = c whenever x ≥ N . When
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convenient we abbreviate the latter by f(∞) = c. The endpoints of an
EC path f are the two points f(0) and f(∞). If f is an EC path and
f(0) = f(∞), we say f is an EC loop, and f(0) is called the basepoint. �

We say that a homotopyH between EC paths is an EC homotopy when
the function Ht : N∗ → X defined by Ht(s) = H(s, t) is an EC path for all
t ∈ [0, k]Z. To indicate an EC homotopy, we write f 'EC g, or f 'ECκ g if
it is desirable to state the adjacency κ of X. We say an EC homotopy H
holds the endpoints fixed when Ht(0) = f(0) = g(0) and there is a c ∈ N∗
such that n ≥ c implies Ht(n) = f(n) = g(n) for all t. �

Not all homotopies of EC paths are EC homotopies, as the following
example shows.

Example 4.2. Let f, g : N∗ → [0, 1]Z be defined by f(0) = g(0) = 0,
f(n) = g(n) = 1 for n > 0. Let H : N∗ × [0, 2]Z → [0, 1]Z be defined by
H0 = H2 = f = g, H1(s) = 0 if s is even, H1(s) = 1 if s is odd. Then H
is a homotopy from f to g that is not an EC homotopy.
Proof. It is easy to see that H is a homotopy. However, H1 is not an EC
path. The assertion follows. �

A familiar argument shows that EC homotopy is an equivalence rela-
tion.

Proposition 4.3. EC homotopy and EC homotopy holding the endpoints
fixed are equivalence relations among EC paths.

Proof. We give a proof without the assumption of endpoints being held
fixed. The same argument can be used with obvious modifications to
obtain the assertion for endpoints held fixed.

Reflexive: Given an EC path f : N∗ → X, clearly the function H :
N∗ × {0} → X given by H(x, 0) = f(x) shows f 'EC f .

Symmetric: If H : N∗ × [0,m]Z → X is an EC homotopy from f to g,
then it is easy to see that the function H ′ : N∗ × [0,m]Z → X defined by

H ′(x, t) = H(x,m− t),
shows g 'EC f .

Transitive: Suppose H : N∗ × [0,m1]Z → X is an EC homotopy from
f to g, and K : N∗× [0,m2]Z → X is an EC homotopy from g to h. Then
the function L : N∗ × [0,m1 +m2]Z → X defined by

L(x, t) =

{
H(x, t) if 0 ≤ t ≤ m1;
K(x, t−m1) if m1 ≤ t ≤ m2,

is an EC homotopy from f to h. �
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Homotopy of trivial extensions of loops can be easily stated in terms
of EC homotopy of the corresponding EC loops. The latter formulation
is preferable since it does not require trivial extensions, which obviates
the need for several technical lemmas. For example the proof given below
for Proposition 4.13 is much easier than the corresponding statement for
trivial extensions (see [1, Proposition 4.8], which has only a sketch of a
proof from [16]); and the proof given below for Theorem 5.3 is somewhat
simpler, being based on EC homotopy, than it would have been had we
had to construct trivial extensions.

Given a path f : [0,m]Z → X, we denote by f∞ : N∗ → X the function
defined by

f∞(n) =

{
f(n) if 0 ≤ n ≤ m;
f(m) if n ≥ m.

Given an EC path g : N∗ → X, let

Ng = min{m ∈ N∗ |n ≥ m implies g(n) = g(m)}
and let g− : [0, Ng]Z = g|[0,Ng ]Z . We have the following.

Proposition 4.4. Let X be a digital image.
a) Let f : N∗ → X be an EC path. Then (f−)∞ = f .
b) Let f : [0,m]Z → X be a path in X. Then f is a trivial extension

of (f∞)−. We have f = (f∞)− if and only if either m = 0 or m > 0 and
f(m− 1) 6= f(m).

Proof. These assertions are immediate consequences of the definitions
above. �

Lemma 4.5. Let f, g : [0,m]Z → X be paths with f ' g. Then f∞ 'EC
g∞. If the homotopy from f to g holds the endpoints fixed, then so does
the induced EC homotopy from f∞ to g∞.

Proof. Let H : [0,m]Z × [0, k]Z → X be a homotopy of f to g. Consider
G : N∗ × [0, k]Z → X, defined as follows:

G(s, t) =

{
H(s, t) if s ≤ m
H(m, t) if s > m.

Clearly G is an EC homotopy of f∞ to g∞. Further, G holds the end-
points fixed if H does so. �

Lemma 4.6. Let f and g be EC homotopic EC paths in X. Then f−
and g− have homotopic trivial extensions. If f and g are homotopic hold-
ing the endpoints fixed, then f− and g− have trivial extensions that are
homotopic holding the endpoints fixed.
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Proof. Let Nf , Ng be as defined above. Without loss of generality, Nf ≤
Ng. Let H : N × [0,m]Z → X be a homotopy from f to g. Let H ′ :
[0, Ng] × [0,m]Z → X be the restriction of H to [0, Ng] × [0,m]Z. It is
easily seen that H ′ is a homotopy between a trivial restriction f ′ of f−
and the function g−, where f ′ : [0, Ng]Z → X is defined by

f ′(n) =

{
f(n) = f−(n) if 0 ≤ n ≤ Nf ;
f(Nf ) if Nf ≤ n ≤ Ng.

Further, if H holds the endpoints fixed, then so does H ′. �

Lemma 4.7. Let f : [0,m]Z → X be a loop based at x0 ∈ X and
f̄ : [0, n]Z → X be a trivial extension of f . Then f∞ and f̄∞ are EC
homotopic with fixed endpoints.

Proof. We will prove the Lemma in the case that f̄ is obtained from f
by inserting a single trivial loop. The full result follows by induction.
Specifically, let f = f1 ∗ f2 and f̄ = f1 ∗ c ∗ f2, where c is a trivial loop.
Say that f1 : [0,m]Z → X and f2 : [0, n]Z → X and c : [0, k]Z → X. Then
consider H : N∗ × [0, k]Z → X given by:

H(s, t) =


f1(s) if 0 ≤ s ≤ m;

c(s−m) if m ≤ s ≤ m+ t;

f2(s− (m+ t)) if m+ t ≤ s ≤ m+ t+ n;

x0 if m+ t+ n ≤ s.

At time stage t we have Ht = (f1 ∗ c|[0,t]Z ∗ f2)∞, so H is an EC ho-
motopy of f∞ to f̄∞ as desired. Further, H fixes the endpoints, since
H(0, t) = f1(0) for all t and H(x, t) = f2(n) for all x ≥ m+ t+ n and all
t. �

Theorem 4.8. Let f and g be loops in X having some common basepoint
p. Then there are trivial extensions f̄ , ḡ of f, g respectively with f̄ ' ḡ
with fixed endpoints if and only if f∞ and g∞ are EC homotopic with fixed
endpoints.

Proof. First we assume that there are trivial extensions f̄ , ḡ with f̄ ' ḡ
fixing endpoints. Then by Lemmas 4.7 and 4.5 we have f∞ 'EC f̄∞ 'EC
ḡ∞ 'EC g∞ and all homotopies fix the endpoints as desired.

For the converse assume that f∞ 'EC g∞ with fixed endpoints. Let
H : N∗ × [0, k]Z → X be the EC homotopy. Since H fixes the endpoints
(at p) and has only finitely many stages, there must be someM such that
H(s, t) = p for all s ≥M and for all t.
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Let f̄ , ḡ : [0,M ]Z → X be the restrictions of f∞, g∞ respectively to
[0,M ]Z. Then f̄ = f ∗ c is a trivial extension of f , where c is a trivial loop
at p. Similarly ḡ is a trivial extension of g.

Let H̄ : [0,M ]Z×[0, k]Z → X be the restriction of H to [0,M ]Z×[0, k]Z.
Then H is a homotopy of f̄ to ḡ fixing the endpoints as desired. �

It is natural to overload the ∗ notation as follows.

Definition 4.9. For x0 ∈ X, let f0, f1 : N∗ → X be x0-based EC loops
in X. Define f0 ∗ f1 : N∗ → X by

f0 ∗ f1(n) =

{
f0(n) if 0 ≤ n ≤ Nf0 ;
f1(n−Nf0) if Nf0 ≤ n. �

It is easily seen that f0 ∗ f1 is well defined and is an EC loop in X.
The ∗ operator on EC loops has the following properties.

Proposition 4.10.

• Let f, g : N∗ → X be x0-based EC loops, for some x0 ∈ X. Then
f− ∗ g− = (f ∗ g)−.

• Let f : [0,m]Z → X, g : [0, n]Z → X be x0-based EC loops, for
some x0 ∈ X. Then f∞ ∗ g∞ = (f ∗ g)∞.

Proof. These properties are simple consequences of Definition 4.9. �

Lemma 4.11. Let f, g, g′ be EC loops in X at a common basepoint, with
g 'EC g′ holding the endpoints fixed. Then f ∗ g 'EC f ∗ g′ holding the
endpoints fixed.

Proof. Let H : N∗ × [0,m] → X be the EC homotopy from g to g′, and
let L : N∗ × [0,m]→ X be given by

L(s, t) = (f ∗Ht)(s).

Then L is a EC homotopy from f ∗ g to f ∗ g′ holding the endpoints
fixed. �

In order to prove Proposition 4.13 below, we must take care in how we
mimic the proof of Lemma 4.11 on the first factors of the * products, as
shown by the following.
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Example 4.12. Let f, g : N∗ → [0, 1]Z be defined by

f(n) = g(n) =

 n if n ∈ {0, 1, 2};
1 if n = 3;
0 if n > 3.

Then there is an EC homotopy H : N∗ × [0, 2]Z → [0, 1]Z from f to f
such that the function K : N∗ × [0, 2]Z → [0, 1]Z defined by K(n, t) =
Ht(n) ∗ g(n) is not continuous in t, where Ht : N∗ → [0, 1]Z is the induced
function Ht(n) = H(n, t).

Proof. Define H(n, t) by H(n, 0) = f(n) = g(n) = H(n, 2),

H(n, 1) =

{
f(n) if n 6= 5;
1 if n = 5.

It is easy to see that H is a homotopy. However, K = H0 ∗ g = H2 ∗ g
and L = H1 ∗ g are represented respectively by the sequences

(K(0),K(1),K(2), . . .) = (0, 1, 2, 1, 0, 1, 2, 1, 0, 0, . . .)

(L(0), L(1), L(2), . . .) = (0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 0, . . .) .

In particular, H0 ∗ g(6) = 2 and H1 ∗ g(6) = 0, so at n = 6, Ht ∗ g is not
continuous in t. �

Proposition 4.13. Let f, f ′, g, g′ be EC loops in X at a common base-
point such that f 'EC f ′ and g 'EC g′ with both homotopies holding the
endpoints fixed. Then we have f ∗g 'EC f ′∗g′ holding the endpoints fixed.

Proof. By Lemma 4.11 we have f ∗ g 'EC f ∗ g′ holding the endpoints
fixed.

By an argument similar to that of the proof of Lemma 4.11 we will show
that f ∗g′ 'EC f ′∗g′. Example 4.12 shows that Ht∗g′ will not necessarily
be continuous in t; however, this is easily fixed by inserting an extra
constant segment in the first factor. In particular, let H : N∗ × [0,m]Z →
X be an EC homotopy from f to f ′ that holds the endpoints fixed. Let
M = max{NHt

| t ∈ [0,m]Z}. For each t ∈ [0,m]Z, let ct : [0,M−NHt
]Z →

{x0} be a constant function. Then the function K : N∗ × [0,m]Z → X
defined by K(n, t) = (Ht ∗ ct ∗ g′)(n) is an EC homotopy from f ∗ g′ to
f ′ ∗ g′ that holds the endpoints fixed.

Thus by transitivity of EC homotopy we have f ∗g 'EC f ′ ∗g′, holding
endpoints fixed. �

Let G(X,x0) be the set of all EC homotopy classes of EC loops in X
based at x0.
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Proposition 4.14. G(X,x0) with the · operation defined by [f ] · [g] =
[f ∗ g] is a group.

Proof. By Proposition 4.13, the · operation is closed and well defined on
G(X,x0). Clearly, the EC pointed homotopy class of the constant map
c(n) = x0 for all n ∈ N∗ is the identity element. Given an x0-based EC
loop f : N∗ → X, the function g : N∗ → X defined by

g(n) =

{
f(Nf − n) if 0 ≤ n ≤ Nf ;
x0 if n ≥ Nf ,

gives an inverse for [f ]. �

We have the following analog of Theorem 2.10.

Theorem 4.15. Suppose F : (X,κ, x0)→ (Y, λ, y0) is a pointed continu-
ous function. Then F induces a homomorphism F∗ : G(X,x0)→ G(Y, y0)
defined by F∗([f ]) = [F ◦ f ].

Proof. Given x0-based EC loops f, g : N→ X, we have, by using Propo-
sitions 4.4 and 4.10,

F ([f ∗ g]) = [F ◦ (f ∗ g)] = [F ◦ ((f ∗ g)−)∞] = [((F ◦ f−) ∗ (F ◦ g−))∞]

= [(F ◦ f−)∞ ∗ (F ◦ g−)∞] = [(F ◦ f) ∗ (F ◦ g)].

The assertion follows. �

The main result of this section is the following.
Theorem 4.16. Given a digital image X and a point x0 ∈ X, the groups
G(X,x0) and Π1(X,x0) are isomorphic.

Proof. Let F : Π1(X,x0) → G(X,x0) be defined by F ([f ]X) = [f∞]X ,
where [f∞]X is the set of EC loops that are x0-based in X and are EC
homotopic in X to f∞ holding the endpoints fixed.

From Lemma 4.6, F is one-to-one. Also, F is onto, since given an
x0-based EC loop f , we have [f ] = F ([f−]). From Proposition 4.13, F is
a homomorphism. The assertion follows. �

5. Homotopy Equivalence and Fundamental Groups

In the paper [3], it is asserted that digital images that are (unpointed)
homotopy equivalent have isomorphic fundamental groups. However, the
proof of this assertion is incorrect. Roughly, the flaw in the argument
given in [3] is that insufficient care was given to making sure that a certain
homotopy between two loops holds the endpoints fixed. In this section,
we give a correction.
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Theorem 5.1. [2] Let (X,κ) be a digital image and let p, r be points of the
same κ-component of X. Let q be a κ-path in X from p to r. Then the in-
duced function q# : Πκ

1 (X, p)→ Πκ
1 (X, r) defined by q#([f ]) = [q−1 ∗f ∗q]

is an isomorphism. �

Theorem 5.1 was proven in [2] for the version of the fundamental group
based on finite loops. However, essentially the same argument makes The-
orem 5.1 valid for the version of the fundamental group based on EC loops,
stated below.

Corollary 5.2. Let (X,κ) be a digital image and let p, r be points of the
same κ-component of X. Let q be a κ-path in X from p to r. Then the
induced function q# : Πκ

1 (X, p)→ Πκ
1 (X, r) defined for a p-based EC loop

f in X by q#([f ]) = [(q−1)∞ ∗ f ∗ q∞], is an isomorphism. �

Theorem 5.3. Suppose (X,κ) and (Y, λ) are (not necessarily pointed)
homotopy equivalent digital images. Let F : X → Y , G : Y → X be
homotopy inverses. Let p ∈ X. Then Πκ

1 (X, p) and Πλ
1 (Y, F (p)) are iso-

morphic groups.

Proof. Let F∗ : Πκ
1 (X, p) → Πλ

1 (Y, F (p)) be the homomorphism in-
duced by F according to Theorem 4.15. Let r = (G ◦ F )(p). Let
G∗ : Πλ

1 (Y, F (p)) → Πκ
1 (X, r) be the homomorphism induced by G ac-

cording to Theorem 4.15. Let H : X × [0,m]Z → X be a homotopy from
1X to G ◦ F . Let q be the path from p to r defined by q(t) = H(p, t).

For s ∈ [0,m]Z, let qs : [0,m]Z → X be the path from q(0) = p to
q(s) = H(p, s) given by qs(t) = q(min{s, t}). For a p-based EC loop f in
X, let K : N∗ × [0,m]Z → X be defined by

K(n, t) = (qt ∗ (Ht ◦ f−) ∗ (qt)
−1)∞(n).

Since qt is a path from r to q(t) = H(p, t) = Ht(f(0)) = Ht(f−(Nf )) =
(qt)
−1(0), K is well defined and, for each t, the induced function Kt is a

EC loop based at p. Also, if we let p denote the constant EC loop at p,
then

K(n, 0) = ((q0) ∗ (H0 ◦ f−) ∗ (q0)−1)∞(n) =

(p ∗ f− ∗ p)∞(n) = f(n)

and
K(n,m) = (qm ∗ (Hm ◦ f−) ∗ (qm)−1))∞(n) =

(q ∗ (G ◦ F ◦ f−) ∗ q−1)∞(n).
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Therefore, K is a EC homotopy from f to

(q ∗ (G ◦ F ◦ f−) ∗ q−1)∞ = q∞ ∗ (G ◦ F ◦ f−)∞ ∗ (q−1)∞ =

q∞ ∗ (G ◦ F ◦ f) ∗ (q∞)−1

that keeps the endpoints fixed.
Let q# : Πκ

1 (X, p)→ Πκ
1 (X, r) be defined by q#([f ]) = [q∞∗f ∗(q∞)−1].

By the conclusion of the previous paragraph, the function q# ◦G∗ ◦F∗ is
the identity map on Πκ

1 (X, p). We know from Corollary 5.2 that q# is an
isomorphism. It follows that F∗ is onto and G∗ is one-to-one. A similar
argument shows that G∗ is onto and F∗ is one-to-one. Therefore, F∗ is
an isomorphism. �

6. Further Remarks

We have given the first example of two digital images with cu-adjacen-
cies that are homotopy equivalent but not pointed homotopy equivalent.
We have introduced a variant of the loop equivalence, based on the no-
tion of tight at the basepoint (TAB) pointed homotopy, and have explored
properties of this notion. We have given an alternate but equivalent ap-
proach to the digital fundamental group based on EC loops that offers the
advantage of avoiding the often-clumsy use of trivial extensions. We have
provided a correction to the faulty proof of [3] that (unpointed) homotopy
equivalent digital images have isomorphic fundamental groups.
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