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ON PARACOMPACT REMAINDERS

HEIKKI JUNNILA

Abstract. We study Tihonov spaces X which are paracompact at
infinity (i.e., βX \ X is paracompact). We characterize paracom-
pactness at infinity of a nowhere locally compact Tihonov space,
and we give several examples relating to paracompactness at in-
finity. We also consider strong paracompactness at infinity. We
construct a space which is strongly paracompact at infinity but
which also has a non-strongly paracompact remainder. We use
this space to solve a problem on “paracompactly placed” sets posed
by V.I. Ponomarev in 1962.

1. Introduction and notation

A space in this paper means a Tihonov space.
The remainder of a space X in a compactification K of X is the sub-

space K\X of K. We say that a space Z is a remainder of X provided that
Z is the remainder of X in some compactification of X. The Čech-Stone
remainder of X is the remainder of X in the Čech-Stone compactification
βX of X; this remainder of X is denoted by X∗.

According to terminology introduced by Henriksen and Isbell in [16], a
space X has property P at infinity if X∗ has property P . The paper [16]
contains the following characterization of Lindelöfness at infinity: X is
Lindelöf at infinity if, and only if, every compact set K ⊂ X is contained
in a compact set C ⊂ X such that C has a countable outer neighborhood
base in X. As a consequence, every metrizable space is Lindelöf at infinity.

2010 Mathematics Subject Classification. Primary 54D40, 54D20.
Key words and phrases. Remainder, paracompactness at infinity, strongly

paracompact.
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Any remainder of X is the image of X∗ under a perfect mapping. It
follows that if X has property P at infinity and if P is preserved by perfect
mappings, then every remainder of X has P . On the other hand, X has
property P at infinity provided that some remainder of X has P and P
is inversely preserved by perfect mappings.

The previous observations apply best to those properties which are
both preserved and inversely preserved under perfect mappings. Many
covering properties, such as (countable) compactness, Lindelöfness, para-
compactness and metacompactness are preserved both ways under perfect
mappings. Thus we see, for instance, that all remainders of X are para-
compact provided that some remainder of X is paracompact

With some other properties, we have to be more careful. For example,
it is well known and easy to see that strong paracompactness is inversely
preserved by perfect mappings. It follows that X is strongly paracompact
at infinity if some remainder of X is strongly paracompact. However,
strong paracompactness is not preserved by perfect mappings, and it is
not obvious whether strong paracompactness of infinity of X is enough to
make all remainders of X strongly paracompact. We shall consider this
question below.

Many of our results deal with spaces in which no point has a compact
neighborhood. Previous work on remainders has shown that “nowhere
locally compact” spaces are often easier to handle than general spaces.
The main reason for this is that the remainder of a nowhere locally com-
pact space in a compactification is dense in the compactification. As a
consequence of this we see, for example, that a nowhere locally compact
space X is ccc if, and only if, X is ccc at infinity.

In Section 2, we consider the property of paracompactness at infinity.
We give an internal characterization of this property for nowhere locally
compact spaces. We consider the preservation of paracompactness at
infinity under topological operations. In Section 3, we give examples of
spaces which are paracompact at infinity and of spaces which lack this
property. In Section 4, we consider strong paracompactness of remainders.
We construct an example of a space X which is strongly paracompact at
infinity but which also has a non-strongly paracompact remainder. We
use this example to solve a problem of Ponomarev [24] on sets which are
“paracompactly placed” in compactifications.

Notation and terminology. In the terminology of Arhangel’skii ([1]) a
space X is of countable type provided that every compact subset of X is
contained in a compact subset which has a countable outer neighborhood
base in X, and X is of pointwise countable type provided that every point
of X belongs to a compact subset which has a countable outer neighbor-
hood base in X. With this terminology, a result of Henriksen and Isbell
mentioned above can be stated as follows: a space is Lindelöf at infinity
if, and only if, the space is of countable type.
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A family L of sets is a partial refinement of a family N provided that,
for every L ∈ L, there exists N ∈ N such that L ⊂ N .

For the definition of a “stratifiable” space, see [11] (where these spaces
are called “M3-spaces”) and [8]. For definitions of other undefined terms,
see [13], [10] and [15].

2. Paracompactness at infinity

In this section, we study paracompactness at infinity. The stronger
property of Lindelöfness at infinity has been extensively studied after
Henriksen and Isbell characterized the property in 1958. We note here
that in many circumstances paracompactness at infinity implies Lindelöf-
ness at infinity. For example, Arhangel’skii and Tokgoz observed in [7]
that if X is a ccc nowhere locally compact space, which is paracompact
at infinity, then X is Lindelöf at infinity.

In our first result, we give a sufficient condition for paracompactness
at infinity.

Let L be a family of subsets of a space X, and let F ⊂ X. We write
L ↪→ F provided that, for every open set G with F ⊂ G, we have L ⊂ G
for all but finitely many L ∈ L. The condition L ↪→ F is trivial if L is
finite, but if L is an infinite family of open sets, then L ↪→ F if, and only
if, every infinite subfamily of L is a π-network at F . When L is an infinite
family of open sets, then L ↪→ F if, and only if, L is a “strong π-base at
F ”, in the terminology introduced by Arhangel’skii in [4].

Lemma 2.1. Assume that, for every compact subset K of X, there exists
a compact subset C of X such that K ⊂ C and a cover H of X \ C such
that H ↪→ C and H ∩K = ∅ for every H ∈ H. Then X is paracompact
at infinity.

Proof. In the following proof, A denotes the closure of a set A ⊂ βX in
the space βX. To show that X∗ is paracompact, let N be an open cover
of X∗. By regularity, there exists an open cover L of X∗ such that the
family {ClX∗(L) : L ∈ L} refines N . For each L ∈ L, let UL be an open
subset of βX with UL ∩ X∗ = L. Note that K = βX \

∪
L∈L UL is a

compact subset of X. By our assumption, there exists a compact subset
C of X with K ⊂ C and a cover H of X \ C such that H ↪→ C and, for
every H ∈ H, we have ClX(H) ∩ K = ∅. Note that, since K ⊂ X, we
have H ∩K = ∅ for each H ∈ H.

The family H is locally finite at every point of βX \C. To see this, let
z ∈ βX \ C. The point z has an open neighborhood V in βX such that
V ∩ C = ∅. Since H ↪→ C, the family {H ∈ H : H ̸⊂ βX \ V } is finite.
This shows that H is locally finite at z.
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By the foregoing, the family H = {H : H ∈ H} is locally finite, and
hence closure-preserving, at every point of βX \ C. It follows that H
covers βX \ C, because for every z ∈ βX \ C, we have that

z ∈ βX \ C ⊂ X \ C =
∪

H =
∪

H .

For every H ∈ H, we have H ⊂ βX \K. It follows that every F ∈ H is
contained in the set βX \K =

∪
L∈L UL. Since each F ∈ H is closed and

each UL, L ∈ L, is open (in βX), it follows that every F ∈ H is covered
by finitely many sets UL, L ∈ L.

The family J = {F ∩X∗ : F ∈ H} is a locally finite closed cover of X∗

and for every J ∈ J , there exists a finite subfamily LJ of L such that J⊂∪
LJ . It is easy to see that the family {J ∩ ClX∗(L) : J ∈J and L∈LJ}

is a locally finite and closed (in X∗) refinement of N .
We have shown that every open cover of X∗ has a locally finite closed

refinement. By [20, Lemma 1], the space X∗ is paracompact. �

Remark. If the space X in the lemma has ccc, then the proof shows that
X∗ is Lindelöf: the locally finite closed cover {H \ C : H ∈ H} of the
open subspace X \ C of X has a countable subcover.

It has been remarked in [3] and [7] that there does not exist an internal
characterization of paracompactness at infinity in the literature. We shall
now give such a characterization for those spaces in which no point has a
compact neighborhood.

Theorem 2.2. The following are equivalent for a nowhere locally compact
space X:

(1) X is paracompact at infinity.
(2) For every compact K ⊂ X, there exists a compact C ⊂ X such

that K ⊂ C and an open cover H of X \C such that H ↪→ C and
H ∩K = ∅ for every H ∈ H.

(3) For every compact K ⊂ X, there exists a compact C ⊂ X such
that K ⊂ C and a cover H of X \ C such that H ↪→ C and
H ∩K = ∅ for every H ∈ H.

Proof. We have (3)⇒(1) by Lemma 2.1. To prove that (1)⇒(2), let X be
a nowhere locally compact space which is paracompact at infinity. It is a
consequence of nowhere local compactness of X that X∗ is dense in βX.
Let K be a compact subset of X. For every z ∈ X∗, there exists an open
neighborhood Uz of z in βX such that Uz∩K = ∅. Let U = {Uz : z ∈ X∗}.
Since X∗ is a paracompact and dense subspace of βX, [28, Theorem 2.8]
shows that there exists an open (in βX) partial refinement V of U such
that V covers X∗ and V is locally finite at every point of

∪
V.
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Let C = βX \
∪

V, and note that C is a closed subset of βX contained
in X. Hence C is a compact subset of X. Also note that K ⊂ C. We
show that V ↪→ C in βX. Let G be an open subset of βX with C ⊂ G.
Let F = βX \ G, and note that F is closed, and hence compact, and
F ⊂

∪
V. The family V is locally finite at every point of F , and it

follows by compactness that F meets only finitely many sets of V. As a
consequence, we have V ⊂ G for all but finitely many V ∈ V. We have
shown that V ↪→ C in βX. From this it follows that we have W ↪→ C in
X, where W = {V ∩X : V ∈ V}. Moreover, W is an open cover of X \C
and we have ClX(W ) ∩K = ∅ for every W ∈ W. We have shown that X
satisfies condition (2). �

Example 3.4 below shows that the theorem does not hold with “nowhere
locally compact” omitted.

Since a non-locally compact topological group is nowhere locally com-
pact, Theorem 2.2 provides one solution to [3, Problem 4.16].

We close this section with some remarks on the preservation of para-
compactness at infinity in topological operations. The following three
preservation results are special cases of [16, Theorems 2.7, 2.8 and 3.10]:
If a space is paracompact at infinity, then every closed subspace of the
space shares this property; If Y is the image of X under a perfect map-
ping, then X is paracompact at infinity if, and only if, Y is paracompact
at infinity; A direct sum of spaces is paracompact at infinity provided
that each summand has this property.

In their study of Lindelöfness at infinity, Henriksen and Isbell showed
that the product of countably many Lindelöf at infinity spaces is Lindelöf
at infinity. For paracompactness at infinity, the corresponding result fails,
even with products of two factors.

We denote by H the subspace {0}∪{ 1
n+

1
k : n, k ∈ N and k > n2} of R.

Note that the subspace K = H ∪ { 1
n : n ∈ N} of R is a compactification

of H.

Proposition 2.3. Assume that Y ×H is paracompact at infinity. Then
Y is Lindelöf at infinity.

Proof. Let K be the compactification of H mentioned above, and denote
by L the (paracompact) remainder of Y × H in βY × K. The closed
subspace Y ∗ × {0} of L is homeomorphic with Y ∗. As a consequence,
Y ∗ is paracompact. To show that Y is Lindelöf at infinity, assume on
the contrary that Y ∗ is not Lindelöf. Since Y ∗ is paracompact and non-
Lindelöf, Y ∗ has an uncountable closed discrete subset D. The set D×{0}
is closed and discrete in L and it follows, since L is paracompact, that
there exists a discrete family {Gd : d ∈ D} of open subsets of L such that
d ∈ Gd for each d ∈ D. For every d ∈ D, there exists ℓd ∈ N such that
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(d, 1
ℓd
) ∈ Gd. Since D is uncountable, there exists ℓ ∈ N such that the set

E = {d ∈ D : ℓd = ℓ} is infinite. The infinite set M = {(e, 1
ℓ ) : e ∈ E} is

a closed and discrete subset of L, but this is a contradiction, since M is
contained in the compact subset βY × { 1

ℓ } of L. �
In Example 3.4 below, we construct a separable stratifiable space X

such that X is strongly paracompact at infinity but not Lindelöf at infin-
ity. It is a consequence of Proposition 2.3 that the product X×H fails to
be paracompact at infinity even though both factors have this property.

For nowhere locally compact spaces, we can obtain some sufficient con-
ditions for the preservation of paracompactness at infinity in finite and
countable products.

Recall that a space X is σ-metacompact if every open cover of X has
a σ-point finite open refinement.
Proposition 2.4. Let I be a finite (a countable) set and let X =

∏
i∈I Xi,

where each Xi is a nowhere locally compact space which is paracompact
at infinity. Then X is (σ-)metacompact at infinity. If X is normal (and
countably paracompact) at infinity, then X is paracompact at infinity.
Proof. For each i ∈ I, let Ci be a Hausdorff compactification of Xi, and
denote by Zi the paracompact remainder Ci \Xi; note that, by nowhere
local compactness of Xi, the remainder Zi is dense in Ci. For all i, j ∈ I,
let Yi,j = Ci if i ̸= j and Yi,j = Zi if i = j. Note that, for each j ∈ I, the
subspace Wj =

∏
i∈I Yi,j of

∏
i∈I Xi is paracompact and dense. Moreover,

the remainder of
∏

i∈I Xi in the compactification
∏

i∈I Ci can be written
as

∪
j∈I Wj . The desired conclusions now follow from [6, Theorems 2.1,

2.2, 2.3 and 2.5] (note that [6, proof of Theorem 2.3] actually establishes
σ-metacompactness of X instead of meta-Lindelöfness). �

3. Examples

In this section, we indicate (classes of) spaces which are paracompact
at infinity and spaces which fail to have this property.
Theorem 3.1. ([7]) Every space with a point-countable base and every
p-space is Lindelöf at infinity.

These results, due to Arhangel’skii and Tokgoz, generalize earlier re-
sults of Henriksen and Isbell: in [16] it was shown that metrizable spaces,
and their perfect preimages (i.e., paracompact p-spaces), are Lindelöf at
infinity.

Henriksen and Isbell showed in [16] that every first countable linearly
orderable space is paracompact at infinity. By modifying the proof given
in [16] and applying a deep result of M.E. Rudin, Junnila and Nyikos
established the following strengthening of Henriksen’s and Isbell’s result.
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Theorem 3.2. ([19]) Let X be a space of pointwise countable type. If
X has a monotonically normal compactification, then X is strongly para-
compact at infinity.

Every suborderable space has a linearly orderable compactification,
and such a compactification is monotonically normal. It follows that every
suborderable space of pointwise countable type is strongly paracompact
at infinity.

With the help of an important theorem of Balogh and Rudin, Junnila
and Nyikos extended the result of Theorem 3.2, with “strongly” omitted,
to all spaces which have a monotonically normal remainder.

Theorem 3.3. ([19]) Let X be a space of pointwise countable type. Then
every monotonically normal closed subspace of a remainder of X is para-
compact. In particular, if X has a monotonically normal remainder, then
X is paracompact at infinity.

Theorem 2.2 above characterized paracompactness at infinity of a no-
where locally compact space. We now give an example to show that the
assumption of nowhere local compactness cannot be omitted in Theorem
2.2.

Example 3.4. There exists a separable first countable stratifiable space
which is strongly paracompact at infinity but not Lindelöf at infinity.

Construction. Topologize R as follows. Make every q ∈ Q isolated. For
every x in the set P = R \ Q, choose a sequence ⟨qn(x)⟩∞n=1 from Q
converging to x and let S(x) = {qn(x) : n ∈ N}; basic neighborhoods of
x are the sets G \ S(x) where G is a usual Euclidean neighborhood of x.

Denote the above space by X, and note that X is a separable first
countable stratifiable space (see [17, Example 4.6]).

Let P′ = {x′ : x ∈ P} be a disjoint “copy” of P, and for each A ⊂ R,
let A′ = {x′ : x ∈ A ∩ P}. Topologize Z = X ∪ P′ so that every q ∈ Q is
isolated, basic neighborhoods of x ∈ P are the sets V ∪

(
V ′ \ {x′}

)
, where

V is a neighborhood of x in X, and a point x′ ∈ P′ has a neighborhood
base by sets {x′} ∪ {qn(x) : n ≥ k}, where k ∈ N.

The mapping φ : Z → R, which is the identity on X and sends each x′

to x, is a perfect mapping from Z onto the rational extension of R. Hence
Z is a Lindelöf p-space, and the Henriksen-Isbell result shows that Z∗ is
Lindelöf. The space βZ is a compactification of X and the remainder
βZ \ X is the subspace Z∗ ∪ P′ of βZ. Every point of P′ is isolated in
Z∗∪P′ since the point has a compact neighborhood in Z. It follows, since
Z∗ is Lindelöf, that the remainder Z∗ ∪ P′ of X is strongly paracompact.
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To see that X is not Lindelöf at infinity, let C be an uncountable
compact subset of P. Then the set C ∪C ′ is compact in Z and it follows
that C ′ is an uncountable closed discrete subset of the remainder βZ \X.

Since X is separable but not Lindelöf at infinity, the remark made after
the proof of Lemma 2.1 shows that X does not satisfy the condition of the
lemma. This shows that the assumption of nowhere local compactness of
the space is essential in Theorem 2.2. �

Next we give some examples of spaces which fail to be paracompact at
infinity. The first examples are stratifiable spaces.

Example 3.5. The following countable spaces are non-paracompact at
infinity:

(1) For every p ∈ N∗, the subspace {p} ∪ N of βN. (see [16])
(2) The quotient of Q obtained by identifying the points of the subset

N. (see [7])
(3) The “sequential fan” S(ω). (see Example 3.9 below)

Example 3.6. There exist stratifiable topological groups which are non-
metacompact at infinity.

Proof. Let G be a topological group. Arhangelskii showed in [3] that G is
a paracompact p-space provided that G has a Lindelöf remainder. In [4],
he showed that G has either a Lindelöf remainder or a pseudocompact
remainder. Recall that a stratifiable p-space is metrizable (see [8, Section
8]) and a pseudocompact metacompact space is compact ([25] and [27]).
It follows from the stated results that whenever G is a non-metrizable
stratifiable topological group, then G is not metacompact at infinity. For
examples of non-metrizable stratifiable topological groups and topological
linear spaces, see [9] and [26]; in [14] it is shown that the (non-metrizable)
topological linear space Ck(P) is stratifiable. �

Example 3.7. A separable first countable stratifiable space which is not
paracompact at infinity.

Proof. We consider the “bow-tie” space X (see [13, Exercise 3.1.I]), and
we note that X is separable. In [23], it is shown that X is first countable
and stratifiable (see also [11, Example 9.2]). The ground-set of X is the
plane, the points off the x-axis have their usual Euclidean neighborhoods,
and a point (x, 0) has a neighborhood base by “bow-tie” sets

Gr(x, 0) = {(x, 0)} ∪
[
B((x, 0), r) \

(
B̄((x, 1

r ),
1
r ) ∪ B̄((x,−1

r ),
1
r )
)]

,

where r > 0, and B(·, ·) and B̄(·, ·) denote open and closed circular disks,
respectively.
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We let Y = {(z, u) ∈ X : u ∈ Q}, and we note that Y is nowhere
locally compact. We show that Y is not Lindelöf at infinity. Assume on
the contrary that Y ∗ is Lindelöf. Then the compact subset K = [0, 1]×{0}
is contained in a compact subset C of Y such that C has a countable outer
base in Y . Since Y is stratifiable, the compact subspace C is metrizable.
It follows, by [1, Proposition 3.3], that K has a countable outer base
{Gn : n ∈ N} in Y . For every n ∈ N, let Un be the interior of Gn in the
Euclidean topology of Y , and note that Un ∩ K is dense in K. By the
Baire Category Theorem, there exists a point (a, 0) ∈

∩
n∈N Un∩K. Now

every Un is a Euclidean neighborhood of (a, 0), but this is a contradiction,
since one of the sets U1, U2, . . . must be contained in the neighborhood
G2(a, 0) of the set K.

By the foregoing, Y fails to be Lindelöf at infinity. Since Y is separable
and nowhere locally compact, [7, Proposition 2.1] shows that Y is not
paracompact at infinity.

Another example of a separable first countable stratifiable space which
is not paracompact at infinity is indicated after Example 4.3 below. �

In Example 3.6 above, the reason for non-metacompactness at infinity
was pseudocompactness at infinity. We can obtain more examples of non-
metacompactness at infinity when we recall other situations indicated in
the literature where remainders are pseudocompact, or even ω-bounded.
Recall that a space is ω-bounded if the closure of every countable subset
is compact; this is a strong form of countable compactness.

Assume that a space X has a closed subspace T which is not locally
compact but is countably compact at infinity. Let R be a remainder of X
in some compactification. Then R contains a closed copy of a remainder
of T , and hence R has a closed countably compact non-compact sub-
space. As a consequence, R fails to have many familiar covering proper-
ties, such as paracompactness, metacompactness, weak submetaLindelöf-
ness,... Also, R fails to be a D-space, in the sense of van Douwen [12].

Let Y be a non-locally compact space which is countably compact at
infinity. By [2, Theorem 2.17], Y is not first countable; the same proof
shows that Y is not of pointwise countable type. The paper [2] also gives
sufficient conditions for extremally disconnected spaces to be countably
compact at infinity.

A point y of a space X is a P -point of X provided that any intersection
of countably many neighborhoods of y is a neighborhood of y.

Arhangel’skii and Bella have made the following observation in [5].

Proposition 3.8. Assume that every point of X either is a P -point or
has a compact neighborhood. Then X is ω-bounded at infinity.
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Note that every non-metrizable ωµ-metrizable space satisfies the con-
dition above. Hence such a space is ω-bounded at infinity. As a particular
case, we see that L(ω1), the one-point Lindelöfication of ω1 with discrete
topology, is ω-bounded at infinity. The last fact also follows from the
observation that L(ω1) is homeomorphic with the subspace of the com-
pact ordinal space ω1 + 1 which consists of all successor ordinals and the
ordinal ω1; the remainder of this subspace in ω1 + 1 is the subspace of
the ordinal space ω1 consisting of all limit ordinals; moreover, the latter
subspace is homeomorphic with the ω-bounded ordinal space ω1.

The above observation on L(ω1) shows that this space is suborderable,
and a simple modification of the order on ω1 shows that L(ω1) is actually
linearly orderable. Hence we see that first countability is an essential
assumption in the result of [16] that linearly ordered first countable spaces
are paracompact at infinity.

Since a linearly orderable space has a linearly orderable compactifica-
tion, L(ω1) is an example of a space which is not metacompact at infinity
even though it has a monotonically normal and orthocompact remainder.

Yet another instance of ω-boundedness at infinity is provided by the
“sequential fan” S(ω). The space S(ω) is the quotient of the direct sum
Z of countably many copies of the convergent sequence ω + 1, obtained
by identifying all non-isolated points of Z. This is a well-known example
of a countable space which is not first countable.

Here we represent S(ω) as the space ω×ω ∪ {∞}, where each point of
ω×ω is isolated, and the point ∞ has a neighborhood base {Uf : f ∈ ωω},
where Uf = {∞} ∪ {(n, k) ∈ ω × ω : k > f(n) for every n ∈ ω}.
Example 3.9. The space S(ω) is ω-bounded at infinity.
Proof. Every p ∈ S(ω)\{∞} is isolated in βS(ω), and hence ω-boundedness
of S(ω)∗ follows when we show that ∞ is a P -point in the subspace
S(ω)∗ ∪ {∞} of βS(ω).

Let Vn be a neighborhood of ∞ in S(ω)∗ ∪ {∞} for every n ∈ ω. For
every n ∈ ω, there exists fn ∈ ωω such that ClβS(ω)(Ufn)\S(ω) ⊂ Vn. Let
f ∈ ωω be such that fn ≺ f for every n ∈ ω. It is easy to see that the set
W =

(
ClβS(ω)(Uf ) \S(ω)

)
∪{∞} is a neighborhood of ∞ in S(ω)∗ ∪{∞}

and W ⊂
∩

n∈ω Vn. �

4. Strong paracompactnes at infinity and
Ponomarev’s problem

The conditions for paracompactness at infinity appearing in Theo-
rem 2.2 are essentially weaker than the Henriksen-Isbell condition for
Lindelöfness at infinity. To see this, let C ⊃ K be a compact set
with a countable outer neighborhood base. Then C has an outer neigh-
borhood base {Vn : n = 1, 2, . . .} such that Vn+1 ⊂ Vn for each n.
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If we set V0 = X, then the family H = {Vn \ Vn+2 : n = 0, 1, 2, . . .} is an
open cover of X \C, and it is easy to see that H ↪→ C. Moreover, we have
H ∩C = ∅ for each H ∈ H. This raises the question whether it would be
possible to strengthen “H ∩K = ∅” to “H ∩ C = ∅” also in Conditions B
and C of Theorem 2.2. However, this is not possible: we shall see below
that the strengthened conditions hold exactly in the situation where the
remainders of X are “paracompactly placed” in the compactifications.

In the terminology introduced by Ponomarev in [24], a subset A of a
space Z is paracompactly placed in Z provided that every open subset of
Z containing A contains a paracompact open set containing A.

Proposition 4.1. The following conditions are mutually equivalent for a
space X:

(1) For every compactification T of X, the remainder T \X is para-
compactly placed in T .

(2) There exists a compactification T of X such that T \X is para-
compactly placed in T .

(3) For every compact subset K of X, there exists a compact subset
C of X such that K ⊂ C and an open cover H of X \C such that
H ↪→ C and H ∩ C = ∅ for every H ∈ H.

(4) For every compact subset K of X, there exists a compact subset C
of X such that K ⊂ C and a cover H of X \C such that H ↪→ C
and H ∩ C = ∅ for every H ∈ H.

Proof. (2)⇒(3): Assume that (2) holds. To show that (3) holds, let
K ⊂ X be compact. Then the set O = T \ K is an open subset of T
containing T \X. Since T \X is paracompactly placed in T , there exists
a paracompact open subspace U of T such that T \ X ⊂ U ⊂ O. Let
C = T \ U , and note that C is a compact subset of X and K ⊂ C.
By paracompactness of U and regularity of T , there exists a locally finite
open cover J of U such that ClTJ ⊂ U for every J ∈ J . Let H = {J∩X :
J ∈ J }, and note that H is an open cover of X \ C and ClXH ∩ C = ∅
for each H ∈ H. To show that H ↪→ C, let G be open subset of X such
that C ⊂ G. Let Ĝ be an open subset of T such that Ĝ ∩X = G. Then
T \ Ĝ is a compact subset of U and it follows, since J is locally finite in
U , that the family J ′ = {J ∈ J : J ∩ (T \ Ĝ) ̸= ∅} is finite. For every
J ∈ J \ J ′, we have J ⊂ Ĝ and hence J ∩ X ⊂ G. As a consequence,
H ⊂ G for all but finitely many H ∈ H.

(4)⇒(1): Assume that X satisfies Condition (4). To show that (1) holds,
let T be a compactification of X. We show that the set T \X is paracom-
pactly placed in T . Let G be an open subset of T such that T \X ⊂ G.
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Then K = T \ G is a compact subset of X and hence there exists a
compact subset C of X and a cover H of X \ C such that H ↪→ C and
ClXH ∩ C = ∅ for every H ∈ H. Since C ⊂ X, we have ClTH ∩ C = ∅
for each H ∈ H.

Let H = {ClTH : H ∈ H}. Since
∪
H ⊂ T \ C, arguments from

the proof of Lemma 2.1 (with T substituted for βX) show that H is a
locally finite cover of the subspace T \C. Hence T \C has a locally finite
cover by compact closed sets, and it follows by [20, Lemma 1] that T \C is
paracompact. The set T \C is a paracompact open subset of T containing
T \X and contained in the set G. �

Morita has shown in [22] that every locally compact paracompact space
is strongly paracompact. Hence, as observed by Ponomarev in [24], every
paracompactly placed subset of a compact space is strongly paracompact.
We therefore have the following consequence of Proposition 4.1.
Corollary 4.2. Assume that some remainder of X is paracompactly
placed in the respective compactification. Then every remainder of X
is strongly paracompact.

As noted in the introduction, a space is strongly paracompact at in-
finity whenever the space has some compactification with strongly para-
compact remainder. We shall next give an example to show that strong
paracompactness at infinity does not imply that all remainders would have
to be strongly paracompact. It turns out that our example, together with
the previous results, gives the solution to a problem raised by Ponomarev.
He showed in [24] that a strongly paracompact space Y is paracompactly
placed in βY , and he asked whether βY can be replaced by an arbitary
compactification of Y .

Before giving the promised example, we present a “non-example”:

Example 4.3. A space X with a strongly paracompact remainder C \X
which is not paracompactly placed in the compactification C of X.
Proof. In Example 3.4, we constructed a stratifiable space X and a com-
pactification βZ of X such that the remainder βZ \X is strongly para-
compact. We also showed that X does not satisfy the condition of Lemma
2.1. As a consequence, X does not satisfy Condition C of Proposition 4.1;
hence remainders are not paracompactly placed in compactifications of X.

Note that, even though the strongly paracompact remainder βZ \ X
of X is not paracompactly placed in βZ, this does not solve Ponomarev’s
problem, because βZ is not a compactification of βZ \X. The closure of
βZ \X in βZ is the subset βZ \Q, and βZ \X is paracompactly placed
in βZ \Q. This follows once we observe that the points of P′ are isolated
in βZ \ Q and that the set A \ P′ = Z∗ ∪ (A ∩ P) is Lindelöf whenever
βZ \X ⊂ A ⊂ βZ \Q. �
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The problem with the space X above is that it has isolated points. We
could try to modify X to get a nowhere locally compact example. We
could, for instance, replace each isolated point by a copy of Q; unfortu-
nately, the resulting space is not strongly paracompact (or even meta-
compact) at infinity. Instead, we consider a completely different space.

Example 4.4. A space which is strongly paracompact at infinity but which
has a non-strongly paracompact remainder in some compactification.

Construction. Let D be an uncountable discrete space, and let L be
the product D × I× I. Define an equivalence relation ∼ on L by setting
(e, r, s) ∼ (f, t, u) if either (e, r, s) = (f, t, u) or r = 0 = t and s = u. For
every (e, r, s) ∈ L, denote by (e, r, s) the ∼-equivalence class of (e, r, s).
Denote by K the quotient L/∼= {(e, r, s) : (e, r, s) ∈ L}.

The formula

d
(
(e, r, s), (f, t, u)

)
=

{
|r − t|+ |s− u| if e = f

r + t + |s− u| if e ̸= f

defines a metric d on K. The metric space (K, d ) is a two-dimensional
analogue of a standard metric hedgehog (see, e.g., [13, Example 4.1.5]): in-
stead of a hedgehog with one-dimensional spines, we have a book with two-
dimensional pages. Note that the subset K0 = {(e, 0, s) : e ∈ D and s ∈ I}
(the spine of the book), with the relative d-metric, is isometric with I with
its standard metric.

Let g be a point of D. We shall topologize K by modifying the
metric topology τd of K. The other points of K shall retain their τd-
neighborhoods, but we change neighborhoods of points (g, r, s) ∈ K,
where r ̸= 0. New basic neighborhoods of the point (g, r, s) have the form∪

e∈D\F Bd

(
(e, r, s), ϵ

)
, where ϵ > 0 and F is a finite subset of D \ {g}.

We denote by τ this new topology of K and from now on, we consider K
as a topological space, equipped with the topology τ . Note that K is a
compact Hausdorff space.

Consider the subspaces Y =
{
(e, r, s) ∈ K : e ̸=g and r or s is rational

}
and X = K \Y of K. Note that both X and Y are dense in K. Moreover,
Y is a non-separable connected metrizable space, and hence Y is not
strongly paracompact. As a consequence, the space X has a remainder,
which fails to be strongly paracompact.

Even though X has a non-strongly paracompact remainder, it turns out
that X is strongly paracompact at infinity. Since strong paracompactness
is inversely preserved under perfect mappings, strong paracompactness at
infinity of X follows once we show that some remainder of X is strongly
paracompact.
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For every n ∈ N, let An = {(e, r, s) ∈ K : e ̸= g and r = 1
n}, and let

A =
∪∞

n=1 An. We shall modify the space K by “splitting” each point
(e, r, s) of A into two new points (e, r, s)ℓ and (e, r, s)u. For every B ⊂ A,
we set Bℓ = {(e, r, s)ℓ : (e, r, s) ∈ B} and Bu = {(e, r, s)u : (e, r, s) ∈ B}.
We let C = (K \ A) ∪ Aℓ ∪ Au, and we define a mapping φ : C → K

by setting φ(p) = p for each p ∈ K \ A and φ((e, r, s)ℓ) = (e, r, s) =

φ((e, r, s)u) for every (e, r, s) ∈ A.
For every n ∈ N, set Ln = {(e, r, s)) ∈ K : e ̸= g and r < 1

n} and
Un = {(e, r, s)) ∈ K : e ̸= g and r > 1

n}; further, let L̂n = φ−1(Ln) ∪ Aℓ
n

and Ûn = φ−1(Un)∪Au
n. Let π be the topology of C which has the family

{φ−1(G) : G ∈ τ} ∪ {L̂n : n ∈ N} ∪ {Ûn : n ∈ N} as a subbase. We
consider C as a topological space, equipped with the topology π. Note
that the mapping φ : C → K is continuous, closed and finite-to-one. As a
consequence, C is compact. It is easy to see that C is a Hausdorff space.

Note that X ⊂ C and the relative topology of X in C is the same as
the relative topology of X in K. Moreover, X is dense in C, and hence C
is a compactification of X. Denote by Z the remainder C \X. To prove
that Z is strongly paracompact, we show first that Z is metrizable. Note
that φ(Z) = Y and φ−1(Y ) = Z. The metrizable space Y has a σ-locally
finite base B. The definition of the topology π shows that the family
E = {φ−1(B)∩L̂n : B ∈ B and n ∈ N}∪{φ−1(B)∩Ûn : B ∈ B and n ∈ N}
is a base of Z. It is easy to see that the family E is σ-locally finite in Z.
As a consequence, Z is metrizable. A similar base argument shows that,
for each e ∈ D \ {g}, the subspace Z ∩ φ−1({e} × I × I) of Z is second
countable. It follows that the subspace Z+ = φ−1

{
(e, r, s) ∈ Y : r ̸= 0

}
of Z is locally separable. Note that the subspace C \ Z+ of Z coincides
with the compact subspace K0 of K. Also note that K0 = φ−1(K0).
Now, let U be an open cover of Z. Let V be a finite subfamily of U which
covers the compact set K0. Then G = K \ φ−1(Z \

∪
V) is a τ -open set

containing K0. We have d(K0,K \G) > 0, and hence there exists n ∈ N
with 1

n < d(K0,K \G). The set L̂n ∩Z is clopen in Z and L̂n ∩Z ⊂
∪
V.

The clopen subspace Ûn ∩Z = Z \ L̂n of the metrizable space Z is locally
separable and hence strongly paracompact. It follows that there exists
a star-finite open partial refinement W of U with

∪
W = Ûn ∩ Z. Now

{V ∩ L̂n : V ∈ V} ∪ W is a star-finite open refinement of U . We have
shown that the remainder Z of X is strongly paracompact. It follows that
also the Čech-Stone remainder X∗ of X is strongly paracompact.

Since the homeomorphic copy Z of X has a non-strongly paracompact
remainder, it follows from Corollary 4.2 that no remainder of X is para-
compactly placed in the compactification. The space X is nowhere locally
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compact and hence every compactification of X is also a compactification
of the remainder. It follows that either one of the strongly paracompact
remainders Z and X∗ of X can be used to solve Ponomarev’s problem.
In particular, the strongly paracompact metrizable space Z fails to be
paracompactly placed in its compactification C. �

In the example above, both the set
{
(g, s, t) : s, t ∈ I

}
and its comple-

ment are metrizable in the compactifications K and C of X. It follows
by [21, Theorem 1.1] that the spaces K and C are Eberlein compact.
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